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Past & Future

PARTS I & II
I Part I: Treatment Effects
I Part II: Asymptotic Approximations

PART III
I Why uniform inference?
I What’s the problem with pointwise

approximations?
I When if uniformity a technicality and when it’s a

real issue.
I Inference in moment inequalities models.
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Introduction

I Let {Xi : i = 1, . . . , n} be an i.i.d. sample from some distribution P ∈ P.

I We wish to test the null hypothesis H0 : P ∈ P0 ⊆ P.

I To this end, one may consider a test function φn = φn(X1, . . . , Xn) (that maps data into a binary
decision) such that it controls the probability of a Type I error in some sense.

I We must distinguish the exact size of a test from its approximate or asymptotic size.

I Ideal: we would like the test to satisfy

EP[φn] 6 α for all P ∈ P0 and n > 1 , (1)

but many times this is too demanding of a requirement.

I We therefore rely on approximations that take n to infinity. But, HOW?
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Pointwise approximation

I Alternative: we may settle instead for tests such that

lim sup
n→∞ EP[φn] 6 α for all P ∈ P0 . (2)

I Test satisfying (1) are said to be of level α for P ∈ P0, whereas tests satisfying (2) are said to be
pointwise asymptotically of level α for P ∈ P0.

I The hope is that if (2) holds, then (1) holds approximately, at least for large enough n.

I However, asymptotic constructions that merely assert a result under any fixed distribution P may
lead to deceiving results.

I All that (2) ensures is that for each P ∈ P0 and ε > 0 there is an N(P) such that for all n > N(P)

EP[φn] 6 α+ ε .

Note: the sample size required for the approximation to work, N(P), may depend on P. It could be
the case that for every sample size n (even, e.g., for n = 1010) there could be P = Pn ∈ P0 such that

EP[φn]� α .
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Example
EXAMPLE

Suppose P = {P on R : 0 < σ2(P) <∞} and P0 = {P ∈ P : µ(P) = 0}. Let φn be the t-test; that is,
φn = I{

√
nX̄n > σ̂nz1−α}, where z1−α is the 1 −α quantile of the standard normal distribution. We know

EP[φn]→ α for all P ∈ P0 .

However, we can show that for every 0 < c < 1 and every sample size n there exists a Pn,c ∈ P0 such that

EPn,c [φn] > c .



6

Uniform approximation

I To rule this out: we need to ensure that the convergence in (2) is uniform for P ∈ P0.

DEFINITION

The sequence {φn} is uniformly asymptotically of level α if

lim sup
n→∞ sup

P∈P0

EP[φn] 6 α . (3)

The LHS of (3) is called the asymptotic size of {φn}.

I The requirement in (3) implies that for each ε > 0 there is an N (independent of P) st for all n > N

EP[φn] 6 α+ ε .

I For the t-test, the example shows this is not true for P = {P on R : 0 < σ2(P) <∞} and
P0 = {P ∈ P : µ(P) = 0}.

DEFINITION

The sequence {φn} is pointwise consistent in power if, for an P ∈ P1, EP[φn]→ 1 as n→∞.
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QUESTIONS?
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A result of Bahadur and Savage (1956)

I Given the example, we know that for the t-test, when P = {P on R : 0 < σ2(P) <∞}

and P0 = {P ∈ P : µ(P) = 0},
sup
P∈P0

EP[φn] = 1 .

I Perhaps a bit shocking, but it is unique to the t-test? Unfortunately, the answer is no.

THEOREM (BAHADUR-SAVAGE)

Let {Xi : i = 1, . . . , n} be i.i.d. with distribution P ∈ P where P is a class of distributions on R such that
(I) For every P ∈ P, µ(P) exists and is finite;

(II) For every m ∈ R, there is P ∈ P such that µ(P) = m;

(III) P is convex in the sense that if P1, P2 ∈ P, then γP1 +(1 −γ)P2 ∈ P.

Then, for H0 : µ(P) = 0, the following statements hold .
(A) Any test of H0 which has size α for P has power 6 α for any alternative P ∈ P.

(B) Any test of H0 which has power β against some alternative P ∈ P has size > β.
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A useful Lemma

LEMMA

Let {Xi : i = 1, . . . , n} be i.i.d. with distribution P ∈ P, where P is the class of distributions on R satisfying
(i)-(iii) in the previous theorem. Let φn(X1, . . . , Xn) be any test function and define

Pm = {P ∈ P : µ(P) = m} .

Then,
inf

P∈Pm
EP[φn] and sup

P∈Pm

EP[φn]

are independent of m.
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Proof of the Lemma I
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Proof of the Lemma II
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Proof of the Theorem
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Remarks

I The Bahadur-Savage result holds in the multivariate case as well. The theorem reads exactly,
except that P refers to a family of distributions on Rk satisfying (i)-(iii) above with m a vector.

I The class of distributions with finite second moment satisfies the requirements of the theorem, as
does the class of distributions with infinitely many moments. Thus, the failure of the t-test is not
special to the t-test; in this setting, there simply exist no “reasonable” tests.

I Problem: the mean µ(P) is quite sensitive for the tails of P, and one sample yields little information
about the tails.

I Not all hope is lost: the t-test does satisfy (3) for certain large classes of distributions that are
somewhat smaller than P in the theorem. We will discuss this next class.
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QUESTIONS?
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Extension of the Result by Bahadur-Savage

I We now generalize the result of Bahadur and Savage following Romano (2004), by providing a
constructive sufficient condition that applies to other testing problems as well.

I The idea of the Theorem was key in proving results about the testability of completeness conditions
in non-parametric models with endogeneity, see Canay, Santos, and Shaikh (2013).

I Suppose data X are observed on a sample space S with probability law P. A model is assumed only
in the sense that P is known to belong to P, some family of distributions on S.

I Testing Problem: H0 : P ∈ P0 versus the alternative hypothesis H1 : P ∈ P1 = P \ P0.

I A convenient way to discuss the non-existence of tests with good power properties is in terms of the
total variation metric, defined by

τ(P, Q) ≡ sup
{g:|g|61}

∣∣∣∣∫ gdQ −

∫
gdP

∣∣∣∣ . (4)
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Conditions

CONDITION (A)

For every Q ∈ P1 there exists a sequence Pk ∈ P0 such that τ(Q, Pk)→ 0 as k→∞.

Condition A asserts that P0 is dense in P with respect to the metric τ. In some settings assuming the
following (stronger) conditions simplifies the arguments.

CONDITION (B)

For every Q ∈ P1 and any ε > 0, there exists a subset A = Aε of S satisfying Q(Aε) > 1 − ε and such
that, if X has distribution Q, the conditional distribution of X given X ∈ Aε is a distribution in P0.

We now prove, under conditions (A) or (B), that no test has power against Q greater than the size of the
test.
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Main Theorem

THEOREM

Let φn(X) be any test of P0 versus P1.

(I) If Condition (A) holds, then
sup

Q∈P1

EQ[φn(X)] 6 sup
P∈P0

EP[φn(X)]. (5)

Hence, if φn has size α, then
sup

Q∈P1

EQ[φn(X)] 6 α; (6)

that is, the power function if bounded by α.

(II) Assume Condition (B) holds. Then Condition (A) holds and therefore (5) and (6) hold as well.
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Proof of the Theorem: part (i)
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Proof of the Theorem: part (ii)

Let εk → 0 and Aεk be as in (B). Let Pk be the dist. of X given X ∈ Aεk when X ∼ Q.
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Remarks

I Note: the hypothesis testing framework does not have to be cast in terms of testing a particular
parameter as P0 and P1 are quite general.

I Important: Condition (B), while stronger than condition (A), is easily verified is some novel examples.

I When X1, . . . , Xn is a vector of i.i.d. random variables, then it suffices to verify condition (B) for n = 1.

To produce the set Aε, for X, simply take n-fold product set Aδ obtained from the case n = 1, where
δ is taken small enough to guarantee with probability 1 − ε that all n observations fall in Aδ.

The chance that all observations fall in Aδ is at least (1 − δ)n. Thus, choose δ no bigger than
1 − (1 − ε)1/n - same trick we used in the Example!
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Finite versus not finite mean

EXAMPLE (FINITE VERSUS NOT FINITE MEAN)
I Let X = (X1, . . . , Xn) be n i.i.d. observations on the real line.

I Bahadur and Savage (1956) conjectured that tests of the existence of µ = E[X] suffer from the
previous problem.

I Let P0 be the family of distributions on the real line with a finite mean, and let P1 be the distributions
without a finite mean.

I Result: Condition (B) readily holds.

I Proof: Let Q be a distribution without a mean. Given ε, let Aε ∈ R be any bounded subset st

Q(Aε) > 1 − ε .

Note: if X ∼ Q then X|X ∈ Aε has a distribution in P0 (as such a rv has support on a bounded set).
Hence, (B) holds, the conclusion of theorem holds, and it is impossible to construct a test with power
greater than the size of the test.
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Introducing Condition (C)

I For a real-valued parameter θ the impossibility of testing a hypothesis like H0 : θ 6= θ0 versus
H1 : θ = θ0 is well known.

I Generally: impossible to test H0 : P ∈ P0 versus H1 : P ∈ P1 when P0 is dense in P = P1 ∪ P0.

I Goodness-of-fit: impossible to conclude that the underlying distribution is normal, or any other
family that falls in a lower dimensional subspace of the a priori model space.

I To make this precise, consider the following condition.

CONDITION (C)

For any Q ∈ P1 and any ε > 0, there exists some distribution R such that (1 − ε)Q + εR ∈ P0.
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Condition (C) implies Condition (A)

I Pick Q ∈ P1 and let εk > 0. Flip a coin with probability 1 − εk of heads, and let

Aεk = { the toss is a head } .

I Let Y(ω) be a random variable (on some probability space) that has distribution Q conditional on
ω ∈ Aεk , and has distribution R condition on ω ∈ Ac

εk
, for some distribution R.

I Condition (C): for any Q ∈ P1 and εk > 0, ∃ Y with distribution Pk = (1 − εk)Q + εkR ∈ P0 and a
subset A = Aεk , with Pk(A) > 1 − εk such that the conditional distribution of Y|A ∼ Q.

Then, for any g such that |g| 6 1,

EPk [g(Y)] = EPk [g(Y)|Aεk ]Pk(Aεk) + EPk [g(Y)|A
c
εk
]Pk(A

c
εk
),

6 EQ[g(Y)] + Pk(A
c
εk
),

6 EQ[g(Y)] + εk .

Similarly,
EPk [g(Y)] > EQ[g(Y)](1 − εk) − εk > EQ[g(Y)] − 2εk .

Hence, τ(Q, Pk) 6 2εk and Condition (A) follows by letting εk → 0.
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Goodness of fit

EXAMPLE (GOODNESS-OF-FIT TESTING)
I The usual approach to testing goodness-of-fit runs as follows.

I Assume X1, . . . , Xn are i.i.d. S-valued random variables with distribution P.

I The null hypothesis asserts P belongs to some class {Pθ : θ ∈ Θ} and the alternative hypothesis
asserts P ∈ P̄, the family of all other distributions on S.

I Reversing the roles of the null and alternative is not possible.

I Example: consider the problem of testing uniformity on S = (0, 1).

I Condition (C): P1 consists of U, the uniform distribution on (0, 1). Then, for any other distribution R
and any ε > 0, (1 − ε)U + εR is not U, and so condition (C) holds.

I Other examples: Specification testing (condition (C)), Vishal’s paper on RDD (condition (A))
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THE END


	Thanks for Coming!

