ECON 481 LECTURE 10: INTRO TO UNIFORMITY

Ivan A. Canay Northwestern University

PAST & FUTURE

PARTS I & II

- Part I: Treatment Effects
- Part II: Asymptotic Approximations

PART III

- Why uniform inference?
- What's the problem with pointwise approximations?
- When if uniformity a technicality and when it's a real issue.
- Inference in moment inequalities models.

INTRODUCTION

- Let $\{X_i : i = 1, ..., n\}$ be an i.i.d. sample from some distribution $P \in \mathbf{P}$.
- We wish to test the null hypothesis $H_0: P \in \mathbf{P}_0 \subseteq \mathbf{P}$.
- To this end, one may consider a **test function** $\phi_n = \phi_n(X_1, \dots, X_n)$ (that maps data into a binary decision) such that it controls the probability of a Type I error in some sense.
- We must distinguish the exact size of a test from its approximate or asymptotic size.
- Ideal: we would like the test to satisfy

$$E_P[\phi_n] \leqslant \alpha \text{ for all } P \in \mathbf{P}_0 \text{ and } n \ge 1 ,$$
 (1)

but many times this is too demanding of a requirement.

We therefore rely on approximations that take n to infinity. But, HOW?

Alternative: we may settle instead for tests such that

$$\limsup_{n \to \infty} E_P[\phi_n] \leqslant \alpha \text{ for all } P \in \mathbf{P}_0 .$$
(2)

- Test satisfying (1) are said to be of level α for P ∈ P₀, whereas tests satisfying (2) are said to be pointwise asymptotically of level α for P ∈ P₀.
- The hope is that if (2) holds, then (1) holds approximately, at least for large enough n.
- However, asymptotic constructions that merely assert a result under any fixed distribution P may lead to deceiving results.
- All that (2) ensures is that for each $P \in \mathbf{P}_0$ and $\epsilon > 0$ there is an N(P) such that for all n > N(P)

 $E_P[\phi_n] \leq \alpha + \epsilon$.

Note: the sample size required for the approximation to work, N(P), may depend on P. It could be the case that for every sample size n (even, e.g., for $n = 10^{10}$) there could be $P = P_n \in \mathbf{P}_0$ such that

 $E_P[\phi_n] \gg \alpha$.

EXAMPLE

EXAMPLE

Suppose $\mathbf{P} = \{P \text{ on } \mathbf{R} : 0 < \sigma^2(P) < \infty\}$ and $\mathbf{P}_0 = \{P \in \mathbf{P} : \mu(P) = 0\}$. Let ϕ_n be the *t*-test; that is, $\phi_n = I\{\sqrt{n}X_n > \hat{\sigma}_n z_{1-\alpha}\}$, where $z_{1-\alpha}$ is the $1 - \alpha$ quantile of the standard normal distribution. We know

 $E_P[\phi_n] \to \alpha$ for all $P \in \mathbf{P}_0$.

However, we can show that for every 0 < c < 1 and every sample size *n* there exists a $P_{n,c} \in \mathbf{P}_0$ such that

 $E_{P_{n,c}}[\phi_n] \geqslant c$.

UNIFORM APPROXIMATION

To rule this out: we need to ensure that the convergence in (2) is uniform for $P \in \mathbf{P}_0$.

DEFINITION

The sequence $\{\phi_n\}$ is uniformly asymptotically of level α if

 $\limsup_{n\to\infty}\sup_{P\in\mathbf{P}_0}E_P[\phi_n]\leqslant\alpha\;.$

(3)

The LHS of (3) is called the **asymptotic size** of $\{\phi_n\}$.

For the requirement in (3) implies that for each $\epsilon > 0$ there is an N (independent of P) st for all n > N

 $E_P[\phi_n] \leqslant \alpha + \epsilon$.

For the *t*-test, the example shows this is not true for $\mathbf{P} = \{P \text{ on } \mathbf{R} : 0 < \sigma^2(P) < \infty\}$ and $\mathbf{P}_0 = \{P \in \mathbf{P} : \mu(P) = 0\}.$

DEFINITION

The sequence $\{\phi_n\}$ is pointwise consistent in power if, for an $P \in \mathbf{P}_1$, $E_P[\phi_n] \to 1$ as $n \to \infty$.

A RESULT OF BAHADUR AND SAVAGE (1956)

Given the example, we know that for the *t*-test, when $\mathbf{P} = \{P \text{ on } \mathbf{R} : 0 < \sigma^2(P) < \infty\}$ and $\mathbf{P}_0 = \{P \in \mathbf{P} : \mu(P) = 0\}$,

```
\sup_{P\in\mathbf{P}_0}E_P[\phi_n]=1.
```

Perhaps a bit shocking, but it is unique to the *t*-test? Unfortunately, the answer is no.

THEOREM (BAHADUR-SAVAGE)

Let { $X_i : i = 1, ..., n$ } be *i.i.d.* with distribution $P \in \mathbf{P}$ where \mathbf{P} is a class of distributions on \mathbf{R} such that (1) For every $P \in \mathbf{P}$, $\mu(P)$ exists and is finite;

- (II) For every $m \in \mathbf{R}$, there is $P \in \mathbf{P}$ such that $\mu(P) = m$;
- (III) **P** is convex in the sense that if $P_1, P_2 \in \mathbf{P}$, then $\gamma P_1 + (1 \gamma)P_2 \in \mathbf{P}$.

Then, for $H_0: \mu(P) = 0$, the following statements hold.

- (A) Any test of H_0 which has size α for **P** has power $\leq \alpha$ for any alternative $P \in \mathbf{P}$.
- (B) Any test of H_0 which has power β against some alternative $P \in \mathbf{P}$ has size $\geq \beta$.

A USEFUL LEMMA

LEMMA

Let $\{X_i : i = 1, ..., n\}$ be *i.i.d.* with distribution $P \in \mathbf{P}$, where \mathbf{P} is the class of distributions on \mathbf{R} satisfying (*i*)-(*iii*) in the previous theorem. Let $\phi_n(X_1, ..., X_n)$ be any test function and define

 $\mathbf{P}_m = \{P \in \mathbf{P} : \mu(P) = m\}.$

Then,

$$\inf_{P \in \mathbf{P}_m} E_P[\phi_n] \quad and \quad \sup_{P \in \mathbf{P}_m} E_P[\phi_n]$$

are independent of m.

PROOF OF THE LEMMA I

PROOF OF THE LEMMA II

PROOF OF THE THEOREM

REMARKS

- The Bahadur-Savage result holds in the **multivariate case** as well. The theorem reads exactly, except that **P** refers to a family of distributions on \mathbf{R}^k satisfying (i)-(iii) above with *m* a vector.
- The class of distributions with finite second moment satisfies the requirements of the theorem, as does the class of distributions with infinitely many moments. Thus, the failure of the *t*-test is not special to the *t*-test; in this setting, there simply exist no "reasonable" tests.
- Problem: the mean $\mu(P)$ is quite sensitive for the tails of *P*, and one sample yields little information about the tails.
- Not all hope is lost: the *t*-test does satisfy (3) for certain large classes of distributions that are somewhat smaller than P in the theorem. We will discuss this next class.

EXTENSION OF THE RESULT BY BAHADUR-SAVAGE

- We now generalize the result of Bahadur and Savage following Romano (2004), by providing a constructive sufficient condition that applies to other testing problems as well.
- The idea of the Theorem was key in proving results about the testability of completeness conditions in non-parametric models with endogeneity, see Canay, Santos, and Shaikh (2013).
- Suppose data X are observed on a sample space S with probability law P. A model is assumed only in the sense that P is known to belong to P, some family of distributions on S.
- **Testing Problem**: $H_0: P \in \mathbf{P}_0$ versus the alternative hypothesis $H_1: P \in \mathbf{P}_1 = \mathbf{P} \setminus \mathbf{P}_0$.
- A convenient way to discuss the non-existence of tests with good power properties is in terms of the total variation metric, defined by

$$\tau(P,Q) \equiv \sup_{\{g:|g| \le 1\}} \left| \int g dQ - \int g dP \right| .$$
(4)

CONDITION (A)

For every $Q \in \mathbf{P}_1$ there exists a sequence $P_k \in \mathbf{P}_0$ such that $\tau(Q, P_k) \to 0$ as $k \to \infty$.

Condition A asserts that P_0 is dense in P with respect to the metric τ . In some settings assuming the following (stronger) conditions simplifies the arguments.

CONDITION (B)

For every $Q \in \mathbf{P}_1$ and any $\epsilon > 0$, there exists a subset $A = A_{\epsilon}$ of *S* satisfying $Q(A_{\epsilon}) \ge 1 - \epsilon$ and such that, if *X* has distribution *Q*, the conditional distribution of *X* given $X \in A_{\epsilon}$ is a distribution in \mathbf{P}_0 .

We now prove, under conditions (A) or (B), that no test has power against Q greater than the size of the test.

THEOREM

Let $\phi_n(X)$ be any test of \mathbf{P}_0 versus \mathbf{P}_1 .

(1) If Condition (A) holds, then

$$\sup_{\boldsymbol{P}\in\mathbf{P}_{1}} E_{Q}[\phi_{n}(X)] \leqslant \sup_{\boldsymbol{P}\in\mathbf{P}_{0}} E_{P}[\phi_{n}(X)].$$
(5)

Hence, if ϕ_n has size α , then

$$\sup_{Q \in \mathbf{P}_1} E_Q[\phi_n(X)] \leqslant \alpha; \tag{6}$$

that is, the power function if bounded by α .

(II) Assume Condition (B) holds. Then Condition (A) holds and therefore (5) and (6) hold as well.

PROOF OF THE THEOREM: PART (I)

PROOF OF THE THEOREM: PART (II)

Let $\epsilon_k \to 0$ and A_{ϵ_k} be as in (B). Let P_k be the dist. of X given $X \in A_{\epsilon_k}$ when $X \sim Q$.

- Note: the hypothesis testing framework does not have to be cast in terms of testing a particular parameter as P₀ and P₁ are quite general.
- Important: Condition (B), while stronger than condition (A), is easily verified is some novel examples.
- When X_1, \ldots, X_n is a vector of i.i.d. random variables, then it suffices to verify condition (B) for n = 1.

To produce the set A_{ϵ} , for *X*, simply take *n*-fold product set A_{δ} obtained from the case n = 1, where δ is taken small enough to guarantee with probability $1 - \epsilon$ that all *n* observations fall in A_{δ} .

The chance that all observations fall in A_{δ} is at least $(1-\delta)^n$. Thus, choose δ no bigger than $1-(1-\epsilon)^{1/n}$ - same trick we used in the Example!

Example (Finite versus not finite mean)

- Let $X = (X_1, ..., X_n)$ be *n* i.i.d. observations on the real line.
- Bahadur and Savage (1956) conjectured that tests of the existence of $\mu = E[X]$ suffer from the previous problem.
- Let \mathbf{P}_0 be the family of distributions on the real line with a finite mean, and let \mathbf{P}_1 be the distributions without a finite mean.
- Result: Condition (B) readily holds.
- **Proof**: Let Q be a distribution without a mean. Given ϵ , let $A_{\epsilon} \in \mathbf{R}$ be any bounded subset st

$$Q(A_{\epsilon}) \ge 1 - \epsilon$$
.

Note: if $X \sim Q$ then $X|X \in A_{\epsilon}$ has a distribution in \mathbf{P}_0 (as such a rv has support on a bounded set). Hence, (B) holds, the conclusion of theorem holds, and it is impossible to construct a test with power greater than the size of the test.

- For a real-valued parameter θ the impossibility of testing a hypothesis like $H_0: \theta \neq \theta_0$ versus $H_1: \theta = \theta_0$ is well known.
- **Generally**: impossible to test $H_0: P \in \mathbf{P}_0$ versus $H_1: P \in \mathbf{P}_1$ when \mathbf{P}_0 is dense in $\mathbf{P} = \mathbf{P}_1 \cup \mathbf{P}_0$.
- Goodness-of-fit: impossible to conclude that the underlying distribution is normal, or any other family that falls in a lower dimensional subspace of the a priori model space.
- ▶ To make this precise, consider the following condition.

CONDITION (C)

For any $Q \in \mathbf{P}_1$ and any $\epsilon > 0$, there exists some distribution R such that $(1 - \epsilon)Q + \epsilon R \in \mathbf{P}_0$.

CONDITION (C) IMPLIES CONDITION (A)

▶ Pick $Q \in \mathbf{P}_1$ and let $\epsilon_k > 0$. Flip a coin with probability $1 - \epsilon_k$ of heads, and let

 $A_{\epsilon_k} = \{ \text{ the toss is a head } \}.$

- Let $Y(\omega)$ be a random variable (on some probability space) that has distribution Q conditional on $\omega \in A_{e_k}$, and has distribution R condition on $\omega \in A_{e_k}^c$, for some distribution R.
- Condition (C): for any $Q \in \mathbf{P}_1$ and $\epsilon_k > 0$, $\exists Y$ with distribution $P_k = (1 \epsilon_k)Q + \epsilon_k R \in \mathbf{P}_0$ and a subset $A = A_{\epsilon_k}$, with $P_k(A) \ge 1 \epsilon_k$ such that the conditional distribution of $Y|A \sim Q$.

Then, for any *g* such that $|g| \leq 1$,

$$\begin{split} E_{P_k}[g(Y)] &= E_{P_k}[g(Y)|A_{\epsilon_k}]P_k(A_{\epsilon_k}) + E_{P_k}[g(Y)|A_{\epsilon_k}^c]P_k(A_{\epsilon_k}^c),\\ &\leqslant E_Q[g(Y)] + P_k(A_{\epsilon_k}^c),\\ &\leqslant E_O[g(Y)] + \epsilon_k \;. \end{split}$$

Similarly,

$$E_{P_k}[g(Y)] \ge E_Q[g(Y)](1-\epsilon_k) - \epsilon_k \ge E_Q[g(Y)] - 2\epsilon_k$$
.

Hence, $\tau(Q, P_k) \leqslant 2\varepsilon_k$ and Condition (A) follows by letting $\varepsilon_k \to 0$.

GOODNESS OF FIT

EXAMPLE (GOODNESS-OF-FIT TESTING)

The usual approach to testing goodness-of-fit runs as follows.

- Assume X_1, \ldots, X_n are i.i.d. S-valued random variables with distribution P.
- The null hypothesis asserts P belongs to some class {P_θ : θ ∈ Θ} and the alternative hypothesis asserts P ∈ P
 , the family of all other distributions on S.
- Reversing the roles of the null and alternative is not possible.
- **Example**: consider the problem of testing uniformity on S = (0, 1).
- Condition (C): \mathbf{P}_1 consists of U, the uniform distribution on (0, 1). Then, for any other distribution R and any $\epsilon > 0$, $(1 \epsilon)U + \epsilon R$ is not U, and so condition (C) holds.
- Other examples: Specification testing (condition (C)), Vishal's paper on RDD (condition (A))

