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> Part |: Treatment Effects » Why uniform inference?

> Part Il: Asymptotic Approximations > What’s the problem with pointwise
approximations?

» When if uniformity a technicality and when it's a
real issue.

» Inference in moment inequalities models.
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INTRODUCTION

> Let{X;:i=1,...,n}be ani.i.d. sample from some distribution P € P.

» We wish to test the null hypothesis Hy : P € Py C P.

> To this end, one may consider a test function ¢, = ¢, (X1, ..., X,) (that maps data into a binary
decision) such that it controls the probability of a Type | error in some sense.

> We must distinguish the exact size of a test from its approximate or asymptotic size.

> |Ideal: we would like the test to satisfy
Epldy]l < aforallPe Pyandn > 1, (1)

but many times this is too demanding of a requirement.

> We therefore rely on approximations that take n to infinity. But, HOW?



POINTWISE APPROXIMATION

> Alternative: we may settle instead for tests such that
limsup Ep[d,] < aforall P € Py . (2)
n—00

> Test satisfying (1) are said to be of level o for P € Py, whereas tests satisfying (2) are said to be
pointwise asymptotically of level « for P € Py.

> The hope is that if (2) holds, then (1) holds approximately, at least for large enough .

> However, asymptotic constructions that merely assert a result under any fixed distribution P may
lead to deceiving results.

> All that (2) ensures is that for each P € Py and € > 0 there is an N(P) such that for all n > N(P)
Ep[(bn] <ox+e.

Note: the sample size required for the approximation to work, N(P), may depend on P. It could be
the case that for every sample size 7 (even, e.g., for n = 1010) there could be P = P,, € Py such that

Epldnl > .



EXAMPLE

EXAMPLE

Suppose P ={PonR:0 < 02(P) < oo} and Py = {P € P : u(P) = 0}. Let ¢, be the t-test; that is,
&y = {v/nXy, > 6,21 o), Where z;_ is the 1 — o quantile of the standard normal distribution. We know

Epldy] — aforall P € Py .
However, we can show that for every 0 < ¢ < 1 and every sample size n there exists a P, € Py such that

EP,M [(bn} € o



UniForM APPROXIMATION

> To rule this out: we need to ensure that the convergence in (2) is uniform for P € P.

DEFINITION
The sequence {¢,} is uniformly asymptotically of level « if

lim sup sup Epld,] < o . )

n—00 PP,

The LHS of (3) is called the asymptotic size of {¢p,}.
» The requirement in (3) implies that for each € > 0 there is an N (independent of P) st for all n > N
Epldn] < ax+€.

> For the t-test, the example shows this is not true for P = {Pon R : 0 < 0%(P) < oo} and
Py ={P € P:u(P) =0}

DEFINITION

The sequence {¢,} is pointwise consistent in power if, for an P € Py, Epld,] — 1 as n — oo.



OUESTIONS?




A RESULT oF BAnApUR AND SAVAGE (1956)

> Given the example, we know that for the t-test, when P = {P on R : 0 < 02(P) < oo}
and Py ={P € P: u(P) =0},

sSup EP[Cbn] =1.
PePy

» Perhaps a bit shocking, but it is unique to the t-test? Unfortunately, the answer is no.
THEOREM (BAHADUR-SAVAGE)

Let{X;:i=1,...,n} be ii.d. with distribution P € P where P is a class of distributions on R such that
(1) Forevery P € P, u(P) exists and is finite;

() Foreverym € R, there is P € P such that i(P) = m;

(111) P is convex in the sense that if P1,P, € P, thenyP, + (1 —y)P, € P.

Then, for Hy : u(P) = 0, the following statements hold .
(A) Any test of Hy which has size « for P has power < « for any alternative P € P.

(B) Any test of Hy which has power (3 against some alternative P € P has size > 3.



A USEFUL LEMMA

LEMMA
Let{X;:i=1,...,n} beiid. with distribution P € P, where P is the class of distributions on R satisfying
(i)-(iii) in the previous theorem. Let &, (X1, ..., X,) be any test function and define

P, ={Pe€P:uP) =m}.

Then,

inf Epldy] and  sup Epldy]
PeP, PeP,

are independent of m.



Proor oF THE LEMmmA |




Proor oF THE LEmmA 11




Proor oF THE THEOREM




REMARKS

» The Bahadur-Savage result holds in the multivariate case as well. The theorem reads exactly,
except that P refers to a family of distributions on RF satisfying (i)-(iii) above with m a vector.

> The class of distributions with finite second moment satisfies the requirements of the theorem, as
does the class of distributions with infinitely many moments. Thus, the failure of the t-test is not
special to the t-test; in this setting, there simply exist no “reasonable” tests.

» Problem: the mean p(P) is quite sensitive for the tails of P, and one sample yields little information
about the tails.

> Not all hope is lost: the t-test does satisfy (3) for certain large classes of distributions that are
somewhat smaller than P in the theorem. We will discuss this next class.



OUESTIONS?




EXTENSION oF THE REsuULT BY BAHADUR-SAVAGE

> We now generalize the result of Bahadur and Savage following Romano (2004), by providing a
constructive sufficient condition that applies to other testing problems as well.

» The idea of the Theorem was key in proving results about the testability of completeness conditions
in non-parametric models with endogeneity, see Canay, Santos, and Shaikh (2013).

> Suppose data X are observed on a sample space S with probability law P. A model is assumed only
in the sense that P is known to belong to P, some family of distributions on S.

> Testing Problem: Hy : P € Py versus the alternative hypothesis Hy : P € P; = P\ Py.

> A convenient way to discuss the non-existence of tests with good power properties is in terms of the
total variation metric, defined by

T(P,Q) = sup
{g:1g1<1}

[s0- Jgdp' | @



CONDITIONS

CONDITION (A)
For every Q € P; there exists a sequence P} € Py such that ©(Q, P;) — 0 as k — co.

Condition A asserts that P is dense in P with respect to the metric . In some settings assuming the
following (stronger) conditions simplifies the arguments.

CONDITION (B)

For every Q € P and any € > 0, there exists a subset A = A of S satisfying Q(Ae¢) > 1 — € and such
that, if X has distribution Q, the conditional distribution of X given X € A is a distribution in Py.

We now prove, under conditions (A) or (B), that no test has power against Q greater than the size of the
test.



MAain THEOREM

THEOREM

Let ,,(X) be any test of Py versus P;.
(1) If Condition (A) holds, then

sup Egld,(X)] < sup Epldx(X)]. (5)
QGPl PeP,
Hence, if b, has size «, then
sup Egldn(X)] < o (6)
QepP;

that is, the power function if bounded by o.

(1) Assume Condition (B) holds. Then Condition (A) holds and therefore (5) and (6) hold as well.



Proor oF THE THEOREM: PART (1)




Proor oF THE THEOREM: PART (1)

Let e — 0 and A¢, be as in (B). Let Py be the dist. of X given X € A¢, when X ~ Q.



REMARKS

> Note: the hypothesis testing framework does not have to be cast in terms of testing a particular
parameter as Py and P; are quite general.

> Important: Condition (B), while stronger than condition (A), is easily verified is some novel examples.
> When X, ..., X} is a vector of i.i.d. random variables, then it suffices to verify condition (B) for n = 1.

To produce the set A¢, for X, simply take n-fold product set Ag obtained from the case n = 1, where
0 is taken small enough to guarantee with probability 1 — € that all n observations fall in As.

The chance that all observations fall in Ag is at least (1 — 3)". Thus, choose & no bigger than
1—(1—€)'/" - same trick we used in the Example!



FINITE VERSUS NOT FINITE MEAN

EXAMPLE (FINITE VERSUS NOT FINITE MEAN)

>

>

Let X = (Xq,...,Xy) be ni.i.d. observations on the real line.

Bahadur and Savage (1956) conjectured that tests of the existence of i = E[X] suffer from the
previous problem.

Let Py be the family of distributions on the real line with a finite mean, and let P; be the distributions
without a finite mean.

Result: Condition (B) readily holds.

Proof: Let Q be a distribution without a mean. Given ¢, let Ac € R be any bounded subset st
QAe)>21—€.

Note: if X ~ Q then X|X € A has a distribution in Py (as such a rv has support on a bounded set).
Hence, (B) holds, the conclusion of theorem holds, and it is impossible to construct a test with power
greater than the size of the test.



InTtropucinGg ConprtTion (€)

> For a real-valued parameter 0 the impossibility of testing a hypothesis like Hy : © # 0 versus
Hy: 0 =0 is well known.

> Generally: impossible to test H : P € Py versus H;y : P € P; when P is dense in P = P; U Py.

> Goodness-of-fit: impossible to conclude that the underlying distribution is normal, or any other
family that falls in a lower dimensional subspace of the a priori model space.
> To make this precise, consider the following condition.

CONDITION (C)
For any Q € P; and any € > 0, there exists some distribution R such that (1 — €)Q + eR € Py,



ConpiTion (€C) mmerLiESs ConpiTion (A)

» Pick Q € P; and let €, > 0. Flip a coin with probability 1 — €, of heads, and let
Ae, ={thetossisahead}.

> Let Y(w) be a random variable (on some probability space) that has distribution Q conditional on
w € Ag,, and has distribution R condition on w € A%, , for some distribution R.

» Condition (C): for any Q € P; and ¢, > 0, 3 Y with distribution P, = (1 — €;)Q + €xR € Py and a
subset A = Ae,, with Pi(A) > 1 — e such that the conditional distribution of Y|A ~ Q.

Then, for any g such that |g| < 1,

Ep [g(Y)] = Ep,[g(Y)|A¢ JPk(Ae,) + Ep, [g(Y)IAG 1Pk (AS, ),
< Eglg(Y)] + Pr(AS,).
< )

Similarly,
Epk [g(Y)] = EQ[g(Y)](l —€) — € = EQ[g(Y)] —2¢g .
Hence, t(Q, Px) < 2¢; and Condition (A) follows by letting e, — 0.



GOODNESS OF FIT

EXAMPLE (GOODNESS-OF-FIT TESTING)

| g

>

The usual approach to testing goodness-of-fit runs as follows.
Assume Xi, ..., X, are i.i.d. S-valued random variables with distribution P.

The null hypothesis asserts P belongs to some class {Pg : 6 € ®} and the alternative hypothesis
asserts P € P, the family of all other distributions on S.

Reversing the roles of the null and alternative is not possible.
Example: consider the problem of testing uniformity on S = (0, 1).

Condition (C): P; consists of U, the uniform distribution on (0, 1). Then, for any other distribution R
and any € > 0, (1 —€)U + eR is not U, and so condition (C) holds.

Other examples: Specification testing (condition (C)), Vishal’s paper on RDD (condition (A))



THE END
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