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PAasTt & FUTURE

LAST CLASS TODAY

> Dist. with compact support > Review of Subsampling

> Dist. with 2 + & moments > Uniformity issues with Subsampling
> Uniformity of the t-test > Parameter at the Boundary

> Power of the t-test > Asymptotic Size of Subsampling

D FUTURE
A



INTRO TO SUBSAMPLING

| 2

>

Data: {X;,i =1,...,n}is an i.i.d. sequence of random variables with distribution P € P.
Parameter of interest: some real-valued 6(P)
Estimator: 8, = 6,,(X3, ..., Xy).
Root:
Tw = v/n(8,—8(P)),

where root stands for a functional depending on both, the data and 6(P).

Let J,(P) denote the sampling distribution of T;, and define the corresponding cdf as,

ez, 12) = BIE, < 7 (1)

Goal: to estimate ], (x, P) so we can make inferences about 6(P). For example, we would like to
estimate quantiles of [, (x, P), so we can construct confidence sets for 6(P).
Unfortunately, we do not know P, and, as a result, we do not know J;(x, P).



MAIN REQUIREMENT

> The bootstrap: solved this problem simply by replacing the unknown P with an estimate P;,.
> In the case of i.i.d. data, a typical choice of P, is the empirical distribution of the X;,i =1,...,n.

» Condition: for this approach to work, we essentially required that J,; (x, P) when viewed as a function
of P was continuous in a certain neighborhood of P.

> An alternative to the bootstrap known as subsampling, originally due to Politis and Romano (2004),
does not impose this requirement but rather the following much weaker condition.

ASSUMPTION

There exists a limiting law J(P) such that J,,(P) converges weakly to J(P) as n — co.



INTUITION

» Suppose for the time being that 0(P) is known.

» Suppose X;,i =1,...,mis an i.i.d. sequence of random variables with distribution P with 1 = nk for
some very big k (so we have many samples of size n).

» We could then estimate [, (x, P) by looking at the empirical distribution of

\/ﬁ(én(Xn(j_l)H,...,X,,j)—B(P)), T

> This is an i.i.d. sequence of k rvs with distribution ], (x, P). By the Glivenko-Cantelli theorem, we
know that the empirical distribution is a good estimate of [, (x, P), at least for large k.

> Improvement: we can do better by using all possible sets of data of size n from the m observations,

V(8,5 —0(P)), le,---,(m),

n

where én,]» is the estimate of 6(P) using the jth set of data of size n from the original 7 observations.



REALITY

>

In practice m = n, so, even if we knew 0(P), this idea won't work.
Key idea! replace n with some smaller number b that is much smaller than n.

We would then expect
~ . n
vB(8;—0(P)), j=1,..., (b) s

where éb,j is the estimate of 6(P) computed using the jth set of data of size b from the original n
observations, to be a good estimate of ], (x, P), at least if (},) is large.

But: we are interested in [, (x, P), not J,(x, P). We therefore need some way to force [, (x, P) and
Jp(x, P) to be close to one another.

To ensure this, it suffices to assume that J,,(x, P) — J(x, P). Therefore, J,(x, P) and ], (x, P) are both
close to J(x, P), and thus close to one another as well, at least for large b and n.

U (x, P) = Ju (x, P)| < [ (x, P) — J (x, P}l + [ (x, P) — J (%, P} .



INTUITION

> Both b and (}) need to be large: it suffices to assume that b — oo, but b/n — 0.

> This procedure is §ti|l not feasible because in practice we typically do not know 6(P). But we can
replace 0(P) with 8,, provide

g Vb
Vb(6, —6(P)) = %\/ﬁ(ﬂn R

is small, which follows from b/n — 0 in this case.

> All we required was that [, (x, P) converged in distribution to a limit distribution J(x, P). The bootstrap
required this and that J,;(x, P) was continuous in a certain sense.

» Showing continuity of [, (x, P) is very problem specific. On the flip side, we now have a tuning
parameter: b.



MAaIn THEOREM

THEOREM

Assume Assumption A. Also, let J,,(P) denote the sampling distribution of T, (8,, — 8(P)) for some
normalizing sequence t, — 0o, N, = (Z) and assume that t,/t, — 0, b — oo, andb/n — 0 asn — oo.

I) Ifx is a continuity point of (-, P), then L,, ,(x) — J(x, P) in probability, where

Lnb ZI{Tb nb]_en)\ x}.

1) If](-, P) is continuous, then

sup |L,, 5 (x) — Ju(x, P)| — 0 in probability .
X

1) Let
Cyp(l—o) =inflx:L,p(x) 21—} and c(l—«,P)=inflx:](x,P)>1—af.

IfJ(-, P) is continuous at c(1 — «, P), then

Pt (8, —0(P)) < ¢, (1 )} > 1—ocasn — oo .



OUESTIONS?




UnnFrormiTyY ISSUES WITH SUBSAMPLING

v

Andrews and Guggenberger (2010) study the properties of subsampling in a broad class of
non-regular models.

They consider cases in which a test statistic has a discontinuity in its asymptotic distribution as a
function of the true distribution that generates the observations (P).

In such cases bootstrap procedures typically do not provide pointwise asymptotically valid inference.

For such problems subsampling has often been advocated, but the arguments in favor have been
based on “point-wise” asymptotics.

Start with a simple example: parameter is at the boundary of the parameter space.



PArRAMETER AT THE BounpARy

EXAMPLE (PARAMETER AT THE BOUNDARY)

>

>

Suppose X;,i =1,...,n are i.i.d. with distribution P € P = {N(6(P), 1) : 6(P) > 0}.
Maximum Likelihood Estimator: 6,, = max{X,, 0.

Consider the root
T = V(8 — 8(P)) = v/ ( mex{X,:, 0} - 0(P))

max{Z,0} if 6(P)

- d =0
= max{\/fl(Xn _e(p)),—\/ﬁe(P)} - {Z if8(P) >0

where Z ~ N(0, 1).
Notation: Jy = max{Z, 0} and ], = Z.

Before moving to subsampling, we will show that J,,(x, 2,;) (the bootstrap approximation) does not
converge to J(x, P) a.s. in this particular case.



FAalLureE oF THE BoorsTtrAapP |

» For each n: let Xn,l-,i =1,...,nbeiid. with distribution P,, (not necessarily in P) st

(i) P, converges in distribution to P, (i) 8(P,) — 8(P), (iii) 6%(Py) — o2(P)

» The distribution [, (x, Py, ), under P, is simply the distribution of

T = V(B — 0(Pn)) = V1 max{Xnn, 01— 8(Pn) ) = max { v/ (Xisn — O(Pn)), —v/8(Pr) } -

» WLOG 0(P) =0. Letc > 0 and
(iv) suppose vnO(P,) > c for all n.
For such a sequence Py,
Ty < max{v/n(Xy, — 8(Pn)), —c} % max(Z, —c},

under P,,, which is dominated by the distribution of max{Z, 0}.

> To complete the argument, it suffices to show that P,, satisfies a.s. the requirements on P,,.



FaiLureE oF THE BoorsTtTrAaP Il

> (i): By the SLLN P, converges in distribution to P a.s.
> (ii): By the SLLN 6(P,,) — 0(P) a.s.
> (iii): By the SLLN 02(P,,) — 0%(P) a.s.

> (iv): It remains to determine whether /n6(P,,) > ¢ for all  a.s. Equivalently, we need to determine
whether 55
Xy > 7 forall n a.s.

"

Unfortunately, the SLLN will not suffice for this purpose. Instead, we will need the following
refinement of the SLLN known as the Law of the Iterated Logarithm (LIL):

THEOREM

LetY;,i=1,...,n be an i.i.d. sequence of random variables with distribution P on R. Suppose 1.(P) =0
and 6%(P) = 1. Then,

lim sup " a5 and lminf——" ——las

n— o0 /2loglogn n—oo  /2loglogn
n n



FainLureE oF THE BoorsTtTrApP 11

limsupa, =a <= foranye >0 a, >a—eio. and a, <a+ e forn sufficiently large .
n—o0

» LIL then implies: Y, > (1— e)\/w i.0. a.s.



OUESTIONS?




SUBSAMPLING: POINTWISE BEHAVIOR

» Subsampling Estimator: ébm]- = max{)'(bm]-, 0}, where an,j is the sample average
of the b, observations in the jth subsample.

» Subsampling Root:

Ty, j(P) = V/bu(8p, j—B(P)) = V/bu ( max(X,, ;, 01— 8(P) ) = max { v/Bu(X,, ;— 8(P)), —v/BaB(P) } .

> Immediate:
FO(P) =0 = Ty, i(P) % Jo = max{Z,0)

FOP)>0 = Tpi(P) S Jw=2.

> As opposed to the bootstrap, subsampling provides the right limiting behavior under standard
asymptotics based on a fixed probability distribution.

> Andrews and Guggenberger show that if a sequence of test statistics has an asymptotic null
distribution that is discontinuous in a nuisance parameter (as in the previous example), then a
subsample test does not necessarily yield the desired asymptotic level.



SUBSAMPLING: UNIFORM BEHAVIOR

» Subsampling Feature: there are two different rates of drift such that over-rejection and
under-rejection can occur. We will show this using the previous example

> Lety, be alocalization sequence that measures how “far” or “close” we are from 6(P) = 0.

» Consider a sequence of null distributions P, such that 6,, = 6(P,) = v, and look at the behavior of
T, and Ty, ; along the sequence.

» Complication: the asymptotic distribution of T}, is discontinuous at y = 0.

» Remark: Here 6, and vy, are the same parameter but they may be different in general.



UniFormMiITY ISSUES witTH SussAMPLING 1

> Drift Sequence 1: v, = % Study Ty = v/71(8y —8,) vs T, j = \/E(ébmj — @)

» Full sample test statistic:

» Sub-sample test statistic:



COMMENTS

» Full-sample test statistic: asymptotic dist. depends on a “local parameter” k.
» Subsample test statistic : asymptotic distribution for the case i = 0.

» Claim: J,(x) > Jo(x) for all x, where J,,(x) = P{max{Z, —h} < x}.

Jn(x) = Jo(x) for all x > 0 while J,(x) > Jo(x) for all x € [-h,0) ,

> Subsampling: gives a good approximation in the right tail but a poor one in the left-tail.

> Result: an upper one-sided subsample Cl for 6(P), which relies on a subsample critical value from
the right tail of the subsample distribution, will perform well.



COMMENTS

» Upper one-sided Cl: let ¢, (1 — «) be the 1 — x-quantile of J,: 1 — J;(c;(1 — «)) = . Then
Pu{Ty > co(1— o)} = 1 —Ju(co(1 — &) ,
and
1—Juleo(1—a)) < 1—Jpleo(l— o)) = .
> Indeed, if we look at the quantiles:
(l—a) =co(l—o) >0for o < 1/2
(l—a) <cg(l—a) =0for o« >1/2
» Equal-tailed and symmetric two-sided SS Cls: will perform poorly. Let ¢,(1 — o) > 0 be st
1—JnCn(1 — o)) +Jp(—Cp(l —o)) = ex.
For this critical value, we have
Pa{ITal > 20(1 = ) } = 1= Ju(Go(1 — o)) + (o (1 — )
2 1—Jo(Co(1— o)) +Jo(—Co(1 —x)) = .

» Subsampling may lead to over-rejection. Example: for i = 2 the 95% quantile of the distribution of
|max{Z, 0}| is 1.63, while the 95% quantile of the distribution of | max{Z, —h}| is 1.96.



UniFrormMiTyY ISSUES witTH SussamerLiING 1

> Drift Sequence 2: v, = ﬁ. Study Ty = /(8 — 8n) vs Ty, ; = Vbn(6y, j — 6n)

» Full sample test statistic:

» Sub-sample test statistic:



ASYMPTOTIC SIZE OF SUBSAMPLING

v

Consider the family of distributions P = {Pg -, : 0 € ©,y & I'}. Here y might be infinite dimensional.

v

The exact size of a test that rejects Hy : 6(P) = 0g when T,,(0g) > ¢ is:

ExSzn = sup Pe, .y {Tn(60) > c1- o} ,
ver

since Pp ={Pg : 0 = 0g,y € I'.

v

The asymptotic size of the test is defined by

AsySz = limsup sup Pg, - {Tn(80) > c1—o} -
n—oo yerl

v

Our interest is in the exact finite-sample size of the test; we just use asymptotics to approximate this.

v

Uniformity over y € T, which is built into the definition of AsySz,, is necessary for the asymptotic size
to give a good approximation to the finite-sample size.



COMMENTS

> What we learned from the example in the previous section is in fact a general result.

> Let J, denote the asymptotic distribution of T, under a sequence vy, (i-e., under P, = Pg, ) st
i = nﬁnw \/EYn and g= nﬂnw buyn »

forsome h € H = [0,00] and g € H = [0, o0].
> Under the same sequence Py, let |, denote the asymptotic distribution of Tbn,j.

> The set of all possible pairs of localization parameters (g, /1) is denoted by GH and is defined by

GH:{(g,h)eHxH:g:Oifh<oo&ge[o,oo}ifh:oo}.

> NOTE: ¢ < hfor all (g,/1) € GH. In the previous example, we got (g,/1) = (0,0) and (g, ) = (oo, c0)
by standard asymptotics; and (g, /) = (0, /) and (g, h) = (g, c0) using drifting sequences.



GENERAL CASE

LEMMA

Suppose that for allh € H and all sequences {y, :n > 1}, T, 4, Jn under{Pg, ~, :n > 1} for some
distribution J,. Then,
AsySz = sup [1 —Jn (cg(l — oc))] ,
(gh)EGH

provided a certain assumption in Andrews and Guggenberger (2010) holds.

> Therefore: AsySz < o iff co(1— o) > ¢ (1 — ).

> The general results can be used to show for example that:

1. In aninstrumental variables (IVs) regression model with potentially weak Vs, all nominal level 1 — o
one-sided and two-sided subsampling tests concerning the coefficient on an exogenous variable and based
on the two-stage least squares (2SLS) estimator have asymptotic size equal to one;

2. In models where (partially-identified) parameters are restricted by moment inequalities, subsampling tests
and Cls based on suitable test statistics have correct asymptotic size.



COMMENTS

» The approach given above is based on sequences of nuisance parameters and it requires verifying
certain assumptions for all possible sequences of nuisance parameters.

> In particular, proving that a test controls asymptotic size typically requires to argue that it is not
possible to find a non-stochastic (sub)sequence of parameters y,, such that:

Jim Po(p),y, {Tn > 1o} > o.

> Proving the latter typically involves deriving the asymptotic distribution of the test statistic along all
possible non-stochastic sequences vy, € T'.

> A different approach includes the one in Romano and Shaikh (2012), who show that subsampling
tests are valid whenever the family P satisfies,

lim supsup [J,(x, P) —Ju(x,P)| =0.
n—oo PEPXER

The authors also provide uniform results for Bootstrap tests.



THE END
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