ECON 481-3 LECTURE 12: UNIFORMITY OF SUBSAMPLING

Ivan A. Canay Northwestern University

LAST CLASS

- Dist. with compact support
- ▶ Dist. with $2 + \delta$ moments
- Uniformity of the t-test
- Power of the t-test

TODAY

- Review of Subsampling
- Uniformity issues with Subsampling
- Parameter at the Boundary
- Asymptotic Size of Subsampling

INTRO TO SUBSAMPLING

- **Data**: { X_i , i = 1, ..., n} is an i.i.d. sequence of random variables with distribution $P \in \mathbf{P}$.
- **Parameter of interest**: some real-valued $\theta(P)$
- **Estimator**: $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$.
- ► Root:

$$T_n = \sqrt{n}(\hat{\theta}_n - \theta(P))$$
,

where root stands for a functional depending on both, the data and $\theta(P)$.

Let $J_n(P)$ denote the sampling distribution of T_n and define the corresponding cdf as,

$$J_n(x,P) = P\{T_n \leqslant x\}.$$
⁽¹⁾

Goal: to estimate $J_n(x, P)$ so we can make inferences about $\theta(P)$. For example, we would like to estimate quantiles of $J_n(x, P)$, so we can construct confidence sets for $\theta(P)$. Unfortunately, we do not know P, and, as a result, we do not know $J_n(x, P)$. **The bootstrap**: solved this problem simply by replacing the unknown *P* with an estimate \hat{P}_n .

- In the case of i.i.d. data, a typical choice of \hat{P}_n is the empirical distribution of the X_i , i = 1, ..., n.
- Condition: for this approach to work, we essentially required that $J_n(x, P)$ when viewed as a function of *P* was continuous in a certain neighborhood of *P*.
- An alternative to the bootstrap known as subsampling, originally due to Politis and Romano (2004), does not impose this requirement but rather the following much weaker condition.

ASSUMPTION

There exists a limiting law J(P) such that $J_n(P)$ converges weakly to J(P) as $n \to \infty$.

INTUITION

- Suppose for the time being that $\theta(P)$ is known.
- Suppose X_i , i = 1, ..., m is an i.i.d. sequence of random variables with distribution P with m = nk for some very big k (so we have many samples of size n).
- We could then estimate $J_n(x, P)$ by looking at the empirical distribution of

$$\sqrt{n}\Big(\hat{\theta}_n(X_{n(j-1)+1},\ldots,X_{nj})-\theta(P)\Big), \quad j=1,\ldots,k.$$

- This is an i.i.d. sequence of k rvs with distribution $J_n(x, P)$. By the Glivenko-Cantelli theorem, we know that the empirical distribution is a good estimate of $J_n(x, P)$, at least for large k.
- Improvement: we can do better by using all possible sets of data of size n from the m observations,

$$\sqrt{n} \left(\hat{\theta}_{n,j} - \theta(P) \right), \quad j = 1, \dots, \binom{m}{n},$$

where $\hat{\theta}_{n,j}$ is the estimate of $\theta(P)$ using the *j*th set of data of size *n* from the original *m* observations.

REALITY

- ln practice m = n, so, even if we knew $\theta(P)$, this idea won't work.
- **Key idea!** replace n with some smaller number b that is much smaller than n.
- We would then expect

$$\sqrt{b} \Big(\hat{\theta}_{b,j} - \theta(P) \Big), \quad j = 1, \dots, \binom{n}{b},$$

where $\hat{\theta}_{b,j}$ is the estimate of $\theta(P)$ computed using the *j*th set of data of size *b* from the original *n* observations, to be a good estimate of $J_b(x, P)$, at least if $\binom{n}{b}$ is large.

- **But**: we are interested in $J_n(x, P)$, not $J_b(x, P)$. We therefore need some way to force $J_n(x, P)$ and $J_b(x, P)$ to be close to one another.
- ▶ To ensure this, it suffices to assume that $J_n(x, P) \rightarrow J(x, P)$. Therefore, $J_b(x, P)$ and $J_n(x, P)$ are both close to J(x, P), and thus close to one another as well, at least for large *b* and *n*.

 $|J_b(x, P) - J_n(x, P)| \leq |J_b(x, P) - J(x, P)| + |J_n(x, P) - J(x, P)|.$

INTUITION

- **Both** *b* and $\binom{n}{b}$ need to be large: it suffices to assume that $b \to \infty$, but $b/n \to 0$.
- This procedure is still not feasible because in practice we typically do not know $\theta(P)$. But we can replace $\theta(P)$ with $\hat{\theta}_n$ provide

$$\sqrt{b}(\hat{\theta}_n - \theta(P)) = \frac{\sqrt{b}}{\sqrt{n}}\sqrt{n}(\hat{\theta}_n - \theta(P))$$

is **small**, which follows from $b/n \rightarrow 0$ in this case.

- All we required was that $J_n(x, P)$ converged in distribution to a limit distribution J(x, P). The bootstrap required this and that $J_n(x, P)$ was continuous in a certain sense.
- Showing continuity of $J_n(x, P)$ is very problem specific. On the flip side, we now have a tuning parameter: *b*.

MAIN THEOREM

THEOREM

Assume Assumption A. Also, let $J_n(P)$ denote the sampling distribution of $\tau_n(\hat{\theta}_n - \theta(P))$ for some normalizing sequence $\tau_n \to \infty$, $N_n = {n \choose b}$, and assume that $\tau_b/\tau_n \to 0$, $b \to \infty$, and $b/n \to 0$ as $n \to \infty$.

1) If x is a continuity point of $J(\cdot, P)$, then $L_{n,b}(x) \to J(x, P)$ in probability, where

$$L_{n,b}(x) = \frac{1}{N_n} \sum_{j=1}^{N_n} I\{\tau_b(\hat{\theta}_{n,b,j} - \hat{\theta}_n) \leqslant x\}.$$

II) If $J(\cdot, P)$ is continuous, then

$$\sup_{x} |L_{n,b}(x) - J_n(x,P)| \to 0 \text{ in probability }.$$

111) Let

 $c_{n,b}(1-\alpha) = \inf\{x : L_{n,b}(x) \ge 1-\alpha\} \quad \text{and} \quad c(1-\alpha, P) = \inf\{x : J(x, P) \ge 1-\alpha\}.$

If $J(\cdot, P)$ is continuous at $c(1 - \alpha, P)$, then

 $P\{\tau_n(\hat{\theta}_n - \theta(P)) \leq c_{n,b}(1-\alpha)\} \to 1-\alpha \text{ as } n \to \infty$.

UNIFORMITY ISSUES WITH SUBSAMPLING

- Andrews and Guggenberger (2010) study the properties of subsampling in a broad class of non-regular models.
- They consider cases in which a test statistic has a discontinuity in its asymptotic distribution as a function of the true distribution that generates the observations (P).
- In such cases bootstrap procedures typically do not provide pointwise asymptotically valid inference.
- For such problems subsampling has often been advocated, but the arguments in favor have been based on "point-wise" asymptotics.
- Start with a **simple example**: parameter is at the boundary of the parameter space.

PARAMETER AT THE BOUNDARY

Example (Parameter at the boundary)

Suppose X_i , i = 1, ..., n are i.i.d. with distribution $P \in \mathbf{P} = \{N(\theta(P), 1) : \theta(P) \ge 0\}$.

Maximum Likelihood Estimator: $\hat{\theta}_n = \max{\{\bar{X}_n, 0\}}$.

Consider the root

$$\begin{split} T_n &= \sqrt{n}(\hat{\theta}_n - \theta(P)) = \sqrt{n} \Big(\max\{\bar{X}_n, 0\} - \theta(P) \Big) \\ &= \max\left\{ \sqrt{n}(\bar{X}_n - \theta(P)), -\sqrt{n}\theta(P) \right\} \xrightarrow{d} \begin{cases} \max\{Z, 0\} & \text{if } \theta(P) = 0\\ Z & \text{if } \theta(P) > 0 \end{cases} \end{split}$$

where $Z \sim N(0, 1)$.

- Notation: $J_0 \equiv \max\{Z, 0\}$ and $J_\infty \equiv Z$.
- Before moving to subsampling, we will show that $J_n(x, \hat{P}_n)$ (the bootstrap approximation) **does not** converge to J(x, P) a.s. in this particular case.

FAILURE OF THE BOOTSTRAP I

For each *n*: let $X_{n,i}$, i = 1, ..., n be i.i.d. with distribution P_n (not necessarily in **P**) st

(*i*) P_n converges in distribution to P, (*ii*) $\theta(P_n) \to \theta(P)$, (*iii*) $\sigma^2(P_n) \to \sigma^2(P)$

▶ The distribution $J_n(x, P_n)$, under P_n is simply the distribution of

$$T_n = \sqrt{n}(\hat{\theta}_{n,n} - \theta(P_n)) = \sqrt{n} \Big(\max\{\bar{X}_{n,n}, 0\} - \theta(P_n) \Big) = \max\left\{ \sqrt{n}(\bar{X}_{n,n} - \theta(P_n)), -\sqrt{n}\theta(P_n) \right\}.$$

WLOG $\theta(P) = 0$. Let c > 0 and

(*iv*) suppose $\sqrt{n}\theta(P_n) > c$ for all n.

For such a sequence P_n ,

$$T_n \leqslant \max\{\sqrt{n}(\bar{X}_{n,n} - \theta(P_n)), -c\} \xrightarrow{d} \max\{Z, -c\},\$$

under P_n , which is dominated by the distribution of max{Z, 0}.

▶ To complete the argument, it suffices to show that \hat{P}_n satisfies a.s. the requirements on P_n .

FAILURE OF THE BOOTSTRAP II

- (i): By the SLLN \hat{P}_n converges in distribution to P a.s.
- ▶ (ii): By the SLLN $\theta(\hat{P}_n) \to \theta(P)$ a.s.
- ▶ (iii): By the SLLN $\sigma^2(\hat{P}_n) \rightarrow \sigma^2(P)$ a.s.
- (iv): It remains to determine whether $\sqrt{n}\theta(\hat{P}_n) > c$ for all *n* a.s. Equivalently, we need to determine whether

$$\bar{X}_n > \frac{c}{\sqrt{n}}$$
 for all n a.s.

Unfortunately, the SLLN will not suffice for this purpose. Instead, we will need the following refinement of the SLLN known as the Law of the Iterated Logarithm (LIL):

THEOREM

Let Y_i , i = 1, ..., n be an i.i.d. sequence of random variables with distribution P on \mathbf{R} . Suppose $\mu(P) = 0$ and $\sigma^2(P) = 1$. Then,

$$\limsup_{n \to \infty} \frac{\bar{Y}_n}{\sqrt{\frac{2\log\log n}{n}}} = 1 \text{ a.s.} \quad \text{and} \quad \liminf_{n \to \infty} \frac{\bar{Y}_n}{\sqrt{\frac{2\log\log n}{n}}} = -1 \text{ a.s.}$$

FAILURE OF THE BOOTSTRAP III

 $\limsup_{n \to \infty} a_n = a \iff \text{ for any } \varepsilon > 0 \quad a_n > a - \varepsilon \text{ i.o.} \quad \text{and} \quad a_n < a + \varepsilon \text{ for } n \text{ sufficiently large }.$

LIL then implies:
$$\bar{Y}_n > (1-\epsilon)\sqrt{\frac{2\log\log n}{n}}$$
 i.o. a.s.

SUBSAMPLING: POINTWISE BEHAVIOR

Subsampling Estimator: $\hat{\theta}_{b_n,j} = \max{\{\bar{X}_{b_n,j}, 0\}}$, where $\bar{X}_{b_n,j}$ is the sample average of the b_n observations in the *j*th subsample.

Subsampling Root:

$$T_{b_n,j}(P) = \sqrt{b_n}(\hat{\theta}_{b_n,j} - \theta(P)) = \sqrt{b_n} \Big(\max\{\bar{X}_{b_n,j}, 0\} - \theta(P) \Big) = \max\left\{ \sqrt{b_n}(\bar{X}_{b_n,j} - \theta(P)), -\sqrt{b_n}\theta(P) \right\}.$$

Immediate:

$$\begin{split} & \text{If } \theta(P) = 0 \quad \Rightarrow \quad T_{b_n, j}(P) \xrightarrow{d} J_0 = \max\{Z, 0\} \\ & \text{If } \theta(P) > 0 \quad \Rightarrow \quad T_{b_n, j}(P) \xrightarrow{d} J_\infty = Z \;. \end{split}$$

- As opposed to the bootstrap, subsampling provides the right limiting behavior under standard asymptotics based on a fixed probability distribution.
- Andrews and Guggenberger show that if a sequence of test statistics has an asymptotic null distribution that is discontinuous in a nuisance parameter (as in the previous example), then a subsample test does not necessarily yield the desired asymptotic level.

- Subsampling Feature: there are two different rates of drift such that over-rejection and under-rejection can occur. We will show this using the previous example
- Let γ_n be a localization sequence that measures how "far" or "close" we are from $\theta(P) = 0$.
- Consider a sequence of null distributions P_n such that $\theta_n = \theta(P_n) = \gamma_n$ and look at the behavior of T_n and $T_{b_n,j}$ along the sequence.
- **Complication**: the asymptotic distribution of T_n is discontinuous at $\gamma = 0$.
- **Remark**: Here θ_n and γ_n are the same parameter but they may be different in general.

UNIFORMITY ISSUES WITH SUBSAMPLING I

► Drift Sequence 1:
$$\gamma_n = \frac{h}{\sqrt{n}}$$
. Study $T_n = \sqrt{n}(\hat{\theta}_n - \theta_n)$ vs $T_{b_n,j} = \sqrt{b_n}(\hat{\theta}_{b_n,j} - \theta_n)$.

Full sample test statistic:

Sub-sample test statistic:

COMMENTS

- **Full-sample test statistic**: asymptotic dist. depends on a "local parameter" *h*.
- Subsample test statistic : asymptotic distribution for the case h = 0.
- Claim: $J_h(x) \ge J_0(x)$ for all x, where $J_h(x) = P\{\max\{Z, -h\} \le x\}$.

 $J_h(x) = J_0(x)$ for all $x \ge 0$ while $J_h(x) > J_0(x)$ for all $x \in [-h, 0)$,

- Subsampling: gives a good approximation in the right tail but a poor one in the left-tail.
- Result: an upper one-sided subsample CI for θ(P), which relies on a subsample critical value from the right tail of the subsample distribution, will perform well.

COMMENTS

▶ Upper one-sided CI: let $c_h(1 - \alpha)$ be the $1 - \alpha$ -quantile of J_h : $1 - J_h(c_h(1 - \alpha)) = \alpha$. Then $P_n\{T_n > c_0(1 - \alpha)\} \rightarrow 1 - J_h(c_0(1 - \alpha))$,

and

$$1 - J_h(c_0(1 - \alpha)) \leq 1 - J_0(c_0(1 - \alpha)) = \alpha$$

Indeed, if we look at the quantiles:

$$\begin{aligned} c_h(1-\alpha) &= c_0(1-\alpha) > 0 \text{ for } \alpha < 1/2 \\ c_h(1-\alpha) &< c_0(1-\alpha) = 0 \text{ for } \alpha > 1/2 \end{aligned}$$

Equal-tailed and symmetric two-sided SS CIs: will perform poorly. Let $\tilde{c}_{l_l}(1-\alpha) > 0$ be st

$$1-J_h(\bar{c}_h(1-\alpha))+J_h(-\bar{c}_h(1-\alpha))=\alpha.$$

For this critical value, we have

$$P_n \Big\{ |T_n| > \bar{c}_0(1-\alpha) \Big\} \to 1 - J_h(\bar{c}_0(1-\alpha)) + J_h(-\bar{c}_0(1-\alpha))$$

$$\ge 1 - J_0(\bar{c}_0(1-\alpha)) + J_0(-\bar{c}_0(1-\alpha)) = \alpha$$

Subsampling may lead to over-rejection. Example: for h = 2 the 95% quantile of the distribution of $|\max\{Z, 0\}|$ is 1.63, while the 95% quantile of the distribution of $|\max\{Z, -h\}|$ is 1.96.

UNIFORMITY ISSUES WITH SUBSAMPLING II

Drift Sequence 2:
$$\gamma_n = \frac{g}{\sqrt{b_n}}$$
. Study $T_n = \sqrt{n}(\hat{\theta}_n - \theta_n)$ vs $T_{b_n,j} = \sqrt{b_n}(\hat{\theta}_{b_n,j} - \theta_n)$

Full sample test statistic:

Sub-sample test statistic:

Asymptotic Size of Subsampling

• Consider the family of distributions $\mathbf{P} = \{P_{\theta,\gamma} : \theta \in \Theta, \gamma \in \Gamma\}$. Here γ might be infinite dimensional.

The exact size of a test that rejects $H_0: \theta(P) = \theta_0$ when $T_n(\theta_0) > c_{1-\alpha}$ is:

$$ExSz_n = \sup_{\gamma \in \Gamma} P_{\theta_0,\gamma} \{T_n(\theta_0) > c_{1-\alpha}\},\$$

since $\mathbf{P}_0 = \{ P_{\theta, \gamma} : \theta = \theta_0, \gamma \in \Gamma \}.$

The asymptotic size of the test is defined by

$$AsySz = \limsup_{n \to \infty} \sup_{\gamma \in \Gamma} P_{\theta_0, \gamma} \{ T_n(\theta_0) > c_{1-\alpha} \} .$$

- Our interest is in the exact finite-sample size of the test; we just use asymptotics to approximate this.
- Uniformity over $\gamma \in \Gamma$, which is built into the definition of $AsySz_n$, is necessary for the asymptotic size to give a good approximation to the finite-sample size.

COMMENTS

- What we learned from the example in the previous section is in fact a general result.
- Let J_h denote the asymptotic distribution of T_n under a sequence γ_n (i.e., under $P_n = P_{\theta_0, \gamma_n}$) st

$$h = \lim_{n \to \infty} \sqrt{n} \gamma_n$$
 and $g = \lim_{n \to \infty} \sqrt{b_n} \gamma_n$,

for some $h \in H = [0, \infty]$ and $g \in H = [0, \infty]$.

- ▶ Under the same sequence P_n , let J_g denote the asymptotic distribution of $T_{b_n,j}$.
- The set of all possible pairs of localization parameters (g, h) is denoted by GH and is defined by

$$\mathbf{GH} = \left\{ (g,h) \in H \times H : g = 0 \text{ if } h < \infty \& g \in [0,\infty] \text{ if } h = \infty \right\}.$$

▶ NOTE: $g \leq h$ for all $(g, h) \in \mathbf{GH}$. In the previous example, we got (g, h) = (0, 0) and $(g, h) = (\infty, \infty)$ by standard asymptotics; and (g, h) = (0, h) and $(g, h) = (g, \infty)$ using drifting sequences.

LEMMA

Suppose that for all $h \in H$ and all sequences $\{\gamma_n : n \ge 1\}$, $T_n \xrightarrow{d} J_h$ under $\{P_{\theta_0,\gamma_n} : n \ge 1\}$ for some distribution J_h . Then,

$$AsySz = \sup_{(g,h)\in\mathbf{GH}} \left[1 - J_h \left(c_g(1-\alpha) \right) \right] ,$$

provided a certain assumption in Andrews and Guggenberger (2010) holds.

- Therefore: $AsySz \leq \alpha$ iff $c_g(1-\alpha) \geq c_h(1-\alpha)$.
- The general results can be used to show for example that:
 - In an instrumental variables (IVs) regression model with potentially weak IVs, all nominal level 1 α one-sided and two-sided subsampling tests concerning the coefficient on an exogenous variable and based on the two-stage least squares (2SLS) estimator have asymptotic size equal to one;
 - 2. In models where (partially-identified) parameters are restricted by moment inequalities, subsampling tests and CIs based on suitable test statistics have correct asymptotic size.

COMMENTS

- The approach given above is based on sequences of nuisance parameters and it requires verifying certain assumptions for all possible sequences of nuisance parameters.
- In particular, proving that a test controls asymptotic size typically requires to argue that it is not possible to find a non-stochastic (sub)sequence of parameters γ_n such that:

$$\lim_{n\to\infty} P_{\theta(P),\gamma_n}\{T_n>c_{1-\alpha}\}>\alpha.$$

- Proving the latter typically involves deriving the asymptotic distribution of the test statistic along all possible non-stochastic sequences $\gamma_n \in \Gamma$.
- A different approach includes the one in Romano and Shaikh (2012), who show that subsampling tests are valid whenever the family P satisfies,

 $\lim_{n\to\infty} \sup_{P\in\mathbf{P}} \sup_{x\in\mathbf{R}} |J_b(x,P) - J_n(x,P)| = 0.$

The authors also provide uniform results for Bootstrap tests.

