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Past & Future

LAST CLASS
I Dist. with compact support
I Dist. with 2 + δ moments
I Uniformity of the t-test
I Power of the t-test

TODAY
I Review of Subsampling
I Uniformity issues with Subsampling
I Parameter at the Boundary
I Asymptotic Size of Subsampling
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Intro to Subsampling

I Data: {Xi, i = 1, . . . , n} is an i.i.d. sequence of random variables with distribution P ∈ P.

I Parameter of interest: some real-valued θ(P)

I Estimator: θ̂n = θ̂n(X1, . . . , Xn).

I Root:
Tn =

√
n(θ̂n − θ(P)) ,

where root stands for a functional depending on both, the data and θ(P).

I Let Jn(P) denote the sampling distribution of Tn and define the corresponding cdf as,

Jn(x, P) = P{Tn 6 x} . (1)

I Goal: to estimate Jn(x, P) so we can make inferences about θ(P). For example, we would like to
estimate quantiles of Jn(x, P), so we can construct confidence sets for θ(P).
Unfortunately, we do not know P, and, as a result, we do not know Jn(x, P).
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Main Requirement

I The bootstrap: solved this problem simply by replacing the unknown P with an estimate P̂n.

I In the case of i.i.d. data, a typical choice of P̂n is the empirical distribution of the Xi, i = 1, . . . , n.

I Condition: for this approach to work, we essentially required that Jn(x, P) when viewed as a function
of P was continuous in a certain neighborhood of P.

I An alternative to the bootstrap known as subsampling, originally due to Politis and Romano (2004),
does not impose this requirement but rather the following much weaker condition.

ASSUMPTION

There exists a limiting law J(P) such that Jn(P) converges weakly to J(P) as n→∞.
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Intuition

I Suppose for the time being that θ(P) is known.

I Suppose Xi, i = 1, . . . , m is an i.i.d. sequence of random variables with distribution P with m = nk for
some very big k (so we have many samples of size n).

I We could then estimate Jn(x, P) by looking at the empirical distribution of

√
n
(
θ̂n(Xn(j−1)+1, . . . , Xnj) − θ(P)

)
, j = 1, . . . , k .

I This is an i.i.d. sequence of k rvs with distribution Jn(x, P). By the Glivenko-Cantelli theorem, we
know that the empirical distribution is a good estimate of Jn(x, P), at least for large k.

I Improvement: we can do better by using all possible sets of data of size n from the m observations,

√
n
(
θ̂n,j − θ(P)

)
, j = 1, . . . ,

(
m
n

)
,

where θ̂n,j is the estimate of θ(P) using the jth set of data of size n from the original m observations.
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Reality

I In practice m = n, so, even if we knew θ(P), this idea won’t work.

I Key idea! replace n with some smaller number b that is much smaller than n.

I We would then expect
√

b
(
θ̂b,j − θ(P)

)
, j = 1, . . . ,

(
n
b

)
,

where θ̂b,j is the estimate of θ(P) computed using the jth set of data of size b from the original n
observations, to be a good estimate of Jb(x, P), at least if

(n
b
)

is large.

I But: we are interested in Jn(x, P), not Jb(x, P). We therefore need some way to force Jn(x, P) and
Jb(x, P) to be close to one another.

I To ensure this, it suffices to assume that Jn(x, P)→ J(x, P). Therefore, Jb(x, P) and Jn(x, P) are both
close to J(x, P), and thus close to one another as well, at least for large b and n.

|Jb(x, P) − Jn(x, P)| 6 |Jb(x, P) − J(x, P)|+ |Jn(x, P) − J(x, P)| .
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Intuition

I Both b and
(n

b
)

need to be large: it suffices to assume that b→∞, but b/n→ 0.

I This procedure is still not feasible because in practice we typically do not know θ(P). But we can
replace θ(P) with θ̂n provide

√
b(θ̂n − θ(P)) =

√
b√
n
√

n(θ̂n − θ(P))

is small, which follows from b/n→ 0 in this case.

I All we required was that Jn(x, P) converged in distribution to a limit distribution J(x, P). The bootstrap
required this and that Jn(x, P) was continuous in a certain sense.

I Showing continuity of Jn(x, P) is very problem specific. On the flip side, we now have a tuning
parameter: b.
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Main Theorem

THEOREM

Assume Assumption A. Also, let Jn(P) denote the sampling distribution of τn(θ̂n − θ(P)) for some
normalizing sequence τn →∞, Nn =

(n
b
)
, and assume that τb/τn → 0, b→∞, and b/n→ 0 as n→∞.

I) If x is a continuity point of J(·, P), then Ln,b(x)→ J(x, P) in probability, where

Ln,b(x) =
1

Nn

Nn∑
j=1

I{τb(θ̂n,b,j − θ̂n) 6 x} .

II) If J(·, P) is continuous, then

sup
x

|Ln,b(x) − Jn(x, P)|→ 0 in probability .

III) Let
cn,b(1 −α) = inf{x : Ln,b(x) > 1 −α} and c(1 −α, P) = inf{x : J(x, P) > 1 −α} .

If J(·, P) is continuous at c(1 −α, P), then

P{τn(θ̂n − θ(P)) 6 cn,b(1 −α)}→ 1 −α as n→∞ .
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QUESTIONS?
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Uniformity Issues with Subsampling

I Andrews and Guggenberger (2010) study the properties of subsampling in a broad class of
non-regular models.

I They consider cases in which a test statistic has a discontinuity in its asymptotic distribution as a
function of the true distribution that generates the observations (P).

I In such cases bootstrap procedures typically do not provide pointwise asymptotically valid inference.

I For such problems subsampling has often been advocated, but the arguments in favor have been
based on “point-wise” asymptotics.

I Start with a simple example: parameter is at the boundary of the parameter space.



11

Parameter at the Boundary

EXAMPLE (PARAMETER AT THE BOUNDARY)
I Suppose Xi, i = 1, . . . , n are i.i.d. with distribution P ∈ P = {N(θ(P), 1) : θ(P) > 0}.

I Maximum Likelihood Estimator: θ̂n = max{X̄n, 0}.

I Consider the root

Tn =
√

n(θ̂n − θ(P)) =
√

n
(

max{X̄n, 0}− θ(P)
)

= max
{√

n(X̄n − θ(P)),−
√

nθ(P)
}

d→

{
max{Z, 0} if θ(P) = 0
Z if θ(P) > 0

where Z ∼ N(0, 1).

I Notation: J0 ≡ max{Z, 0} and J∞ ≡ Z.

I Before moving to subsampling, we will show that Jn(x, P̂n) (the bootstrap approximation) does not
converge to J(x, P) a.s. in this particular case.
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Failure of the Bootstrap I

I For each n: let Xn,i, i = 1, . . . , n be i.i.d. with distribution Pn (not necessarily in P) st

(i) Pn converges in distribution to P, (ii) θ(Pn)→ θ(P), (iii) σ2(Pn)→ σ2(P)

I The distribution Jn(x, Pn), under Pn is simply the distribution of

Tn =
√

n(θ̂n,n − θ(Pn)) =
√

n
(

max{X̄n,n, 0}− θ(Pn)
)
= max

{√
n(X̄n,n − θ(Pn)),−

√
nθ(Pn)

}
.

I WLOG θ(P) = 0. Let c > 0 and

(iv) suppose
√

nθ(Pn) > c for all n.

For such a sequence Pn,

Tn 6 max{
√

n(X̄n,n − θ(Pn)),−c} d→ max{Z,−c} ,

under Pn, which is dominated by the distribution of max{Z, 0}.

I To complete the argument, it suffices to show that P̂n satisfies a.s. the requirements on Pn.
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Failure of the Bootstrap II

I (i): By the SLLN P̂n converges in distribution to P a.s.

I (ii): By the SLLN θ(P̂n)→ θ(P) a.s.

I (iii): By the SLLN σ2(P̂n)→ σ2(P) a.s.

I (iv): It remains to determine whether
√

nθ(P̂n) > c for all n a.s. Equivalently, we need to determine
whether

X̄n >
c√
n

for all n a.s.

Unfortunately, the SLLN will not suffice for this purpose. Instead, we will need the following
refinement of the SLLN known as the Law of the Iterated Logarithm (LIL):

THEOREM

Let Yi, i = 1, ..., n be an i.i.d. sequence of random variables with distribution P on R. Suppose µ(P) = 0
and σ2(P) = 1. Then,

lim sup
n→∞

Ȳn√
2 log log n

n

= 1 a.s. and lim inf
n→∞ Ȳn√

2 log log n
n

= −1 a.s.
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Failure of the Bootstrap III

lim sup
n→∞ an = a ⇐⇒ for any ε > 0 an > a − ε i.o. and an < a + ε for n sufficiently large .

I LIL then implies: Ȳn > (1 − ε)
√

2 log log n
n i.o. a.s.
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QUESTIONS?
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Subsampling: pointwise behavior

I Subsampling Estimator: θ̂bn,j = max{X̄bn,j, 0}, where X̄bn,j is the sample average
of the bn observations in the jth subsample.

I Subsampling Root:

Tbn,j(P) =
√

bn(θ̂bn,j −θ(P)) =
√

bn

(
max{X̄bn,j, 0}−θ(P)

)
= max

{√
bn(X̄bn,j −θ(P)),−

√
bnθ(P)

}
.

I Immediate:

If θ(P) = 0 ⇒ Tbn,j(P)
d→ J0 = max{Z, 0}

If θ(P) > 0 ⇒ Tbn,j(P)
d→ J∞ = Z .

I As opposed to the bootstrap, subsampling provides the right limiting behavior under standard
asymptotics based on a fixed probability distribution.

I Andrews and Guggenberger show that if a sequence of test statistics has an asymptotic null
distribution that is discontinuous in a nuisance parameter (as in the previous example), then a
subsample test does not necessarily yield the desired asymptotic level.
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Subsampling: uniform behavior

I Subsampling Feature: there are two different rates of drift such that over-rejection and
under-rejection can occur. We will show this using the previous example

I Let γn be a localization sequence that measures how “far” or “close” we are from θ(P) = 0.

I Consider a sequence of null distributions Pn such that θn = θ(Pn) = γn and look at the behavior of
Tn and Tbn,j along the sequence.

I Complication: the asymptotic distribution of Tn is discontinuous at γ = 0.

I Remark: Here θn and γn are the same parameter but they may be different in general.
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Uniformity Issues with Subsampling I

I Drift Sequence 1: γn = h√
n . Study Tn =

√
n(θ̂n − θn) vs Tbn,j =

√
bn(θ̂bn,j − θn).

I Full sample test statistic:

I Sub-sample test statistic:
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Comments

I Full-sample test statistic: asymptotic dist. depends on a “local parameter” h.

I Subsample test statistic : asymptotic distribution for the case h = 0.

I Claim: Jh(x) > J0(x) for all x, where Jh(x) = P{max{Z,−h} 6 x}.

Jh(x) = J0(x) for all x > 0 while Jh(x) > J0(x) for all x ∈ [−h, 0) ,

I Subsampling: gives a good approximation in the right tail but a poor one in the left-tail.

I Result: an upper one-sided subsample CI for θ(P), which relies on a subsample critical value from
the right tail of the subsample distribution, will perform well.
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Comments

I Upper one-sided CI: let ch(1 −α) be the 1 −α-quantile of Jh: 1 − Jh(ch(1 −α)) = α. Then

Pn{Tn > c0(1 −α)}→ 1 − Jh(c0(1 −α)) ,

and
1 − Jh(c0(1 −α)) 6 1 − J0(c0(1 −α)) = α .

I Indeed, if we look at the quantiles:

ch(1 −α) = c0(1 −α) > 0 for α < 1/2

ch(1 −α) < c0(1 −α) = 0 for α > 1/2

I Equal-tailed and symmetric two-sided SS CIs: will perform poorly. Let c̄h(1 −α) > 0 be st

1 − Jh(c̄h(1 −α)) + Jh(−c̄h(1 −α)) = α .

For this critical value, we have

Pn

{
|Tn| > c̄0(1 −α)

}
→ 1 − Jh(c̄0(1 −α)) + Jh(−c̄0(1 −α))

> 1 − J0(c̄0(1 −α)) + J0(−c̄0(1 −α)) = α .

I Subsampling may lead to over-rejection. Example: for h = 2 the 95% quantile of the distribution of
|max{Z, 0}| is 1.63, while the 95% quantile of the distribution of |max{Z,−h}| is 1.96.
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Uniformity Issues with Subsampling II

I Drift Sequence 2: γn =
g√
bn

. Study Tn =
√

n(θ̂n − θn) vs Tbn,j =
√

bn(θ̂bn,j − θn)

I Full sample test statistic:

I Sub-sample test statistic:
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Asymptotic Size of Subsampling

I Consider the family of distributions P = {Pθ,γ : θ ∈ Θ,γ ∈ Γ }. Here γ might be infinite dimensional.

I The exact size of a test that rejects H0 : θ(P) = θ0 when Tn(θ0) > c1−α is:

ExSzn = sup
γ∈Γ

Pθ0,γ {Tn(θ0) > c1−α} ,

since P0 = {Pθ,γ : θ = θ0,γ ∈ Γ }.

I The asymptotic size of the test is defined by

AsySz = lim sup
n→∞ sup

γ∈Γ
Pθ0,γ {Tn(θ0) > c1−α} .

I Our interest is in the exact finite-sample size of the test; we just use asymptotics to approximate this.

I Uniformity over γ ∈ Γ , which is built into the definition of AsySzn, is necessary for the asymptotic size
to give a good approximation to the finite-sample size.
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Comments

I What we learned from the example in the previous section is in fact a general result.

I Let Jh denote the asymptotic distribution of Tn under a sequence γn (i.e., under Pn = Pθ0,γn ) st

h = lim
n→∞√nγn and g = lim

n→∞
√

bnγn ,

for some h ∈ H = [0,∞] and g ∈ H = [0,∞].

I Under the same sequence Pn, let Jg denote the asymptotic distribution of Tbn,j.

I The set of all possible pairs of localization parameters (g, h) is denoted by GH and is defined by

GH =
{
(g, h) ∈ H×H : g = 0 if h <∞ & g ∈ [0,∞] if h =∞} .

I NOTE: g 6 h for all (g, h) ∈ GH. In the previous example, we got (g, h) = (0, 0) and (g, h) = (∞,∞)
by standard asymptotics; and (g, h) = (0, h) and (g, h) = (g,∞) using drifting sequences.
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General Case

LEMMA

Suppose that for all h ∈ H and all sequences {γn : n > 1}, Tn
d→ Jh under {Pθ0,γn : n > 1} for some

distribution Jh. Then,

AsySz = sup
(g,h)∈GH

[
1 − Jh

(
cg(1 −α)

)]
,

provided a certain assumption in Andrews and Guggenberger (2010) holds.

I Therefore: AsySz 6 α iff cg(1 −α) > ch(1 −α).

I The general results can be used to show for example that:
1. In an instrumental variables (IVs) regression model with potentially weak IVs, all nominal level 1 −α

one-sided and two-sided subsampling tests concerning the coefficient on an exogenous variable and based
on the two-stage least squares (2SLS) estimator have asymptotic size equal to one;

2. In models where (partially-identified) parameters are restricted by moment inequalities, subsampling tests
and CIs based on suitable test statistics have correct asymptotic size.
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Comments

I The approach given above is based on sequences of nuisance parameters and it requires verifying
certain assumptions for all possible sequences of nuisance parameters.

I In particular, proving that a test controls asymptotic size typically requires to argue that it is not
possible to find a non-stochastic (sub)sequence of parameters γn such that:

lim
n→∞Pθ(P),γn

{Tn > c1−α} > α .

I Proving the latter typically involves deriving the asymptotic distribution of the test statistic along all
possible non-stochastic sequences γn ∈ Γ .

I A different approach includes the one in Romano and Shaikh (2012), who show that subsampling
tests are valid whenever the family P satisfies,

lim
n→∞ sup

P∈P
sup
x∈R

|Jb(x, P) − Jn(x, P)| = 0 .

The authors also provide uniform results for Bootstrap tests.
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THE END
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