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Topics of Part I
I Lec I: Selection on Observables

1. Potential Outcomes vs Latent Variables

2. Causal Inference

3. Selection Bias

4. Selection on Observables & Selection on Prop. Score

I Lec II: Roy Models and LATE
1. The role of heterogeneity

2. Multiple instruments, Covariates, and Abadie’s κ

I Lec III: Marginal Treatment E�ect
1. Parameters as functions of MTEs

2. Policy Relevant Treatment E�ects

I Lec IV: Extrapolations
1. Semi-Parametrics MTEs

2. Weights for Target Parameters
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Motivation

Counterfactual Questions
I What would happen if a job training program were expanded? [Labor]

I What would happen to prices/welfare if two firms merged? [IO]

I What would di�erent monetary policy do to real output? [Macro]

I What e�ect would this medication have on heart disease? [Biostatistics]

I What will happen to global temps if emissions decrease? [Climatology]

Causal Inference
I Thinking about a counterfactual requires thinking about causality

I Theory alone (might) tell us the direction of causality
⇒ Even when it does, it will rarely tell us the magnitude

I Causal inference uses data to address counterfactuals
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Potential Outcome Notation

I Also known as the Neyman-Fisher-Roy-Quandt-Rubin causal model

Notation
I D is a mutually exclusive and exhaustive set of states (“treatments”)

e.g. training/no training D = {0, 1}, prices D = [0, ∞), etc.

I For each d ∈ D there is a potential outcome Yd (a random variable)

I Yd is what would have happened if the state were d

I Observed: the actual state, a random variable D ∈ D

I Observed: outcome Y, related to potential outcomes as

Y = ∑
d∈D

YdI{D = d} = YD .

Y = YD is observed, but Yd for d 6= D are unobserved
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What Do We Want to Measure?
I We are interested in counterfactuals, Yd for d 6= D

I These variables capture the “what if” aspect of causality

I Since they are random variables, they can be summarized in many ways

I That is, there are many possible parameters of interest

Example (Program Evaluation)
I Suppose d ∈ {0, 1} indicates participation in a job training program

I Y is a scalar labor market outcome such as earnings

I If D = 1 we observe Y1 (but not Y0) and if D = 0 we observe Y0

I There are many possible questions one could ask:
I What would be average earnings if everyone were trained, i.e. E[Y1]?
I What is the average e�ect of the program, i.e. E[Y1 − Y0]?
I What about only for those who are trained, i.e. E[Y1 − Y0|D = 1]?
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Latent Variable Notation

I Many empirical models in economics look like a special case of:

Y = g(D, U) ,

where g is a function and U are unobservable variables

I A causal interpretation of this model is implicitly saying:

Yd = g(d, U) for every d ∈ D

I This could impose assumptions, depending on what g and U are

Warning
I Some are dogmatic about potential outcome vs. latent variable notation

I Often follows some field-specific social norms, e.g. labor vs. IO

I Remember: It’s just notation - use the above to translate
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Outline

1. Potential Outcomes and Latent Variables

2. Random Assignment: The fundamental Problem of Causal Inference

3. Selection Bias and Selection on Observables

4. The Role on the Propensity Score

5. Final Remarks on Selection on Observables
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Random Assignment

I Random assignment is the assumption that {Yd : d ∈ D} ⊥⊥ D

I Under random assignment, the distribution of Yd is point identified,

Fd(y)︸ ︷︷ ︸
parameter

= P{Yd ≤ y} (∗)
= P{Yd ≤ y|D = d} = P{Y ≤ y|D = d}︸ ︷︷ ︸

observed

,

where (∗) follows from random assignment.

I Any parameter that is a function of Fd : d ∈ D is also point identified

I Intuition: conditioning on treatment does not change potential outcomes

⇒ No self-selection, sorting, correlated observables/unobservables, etc.
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Parameters

Common parameters of interest with binary D
I Average treatment e�ect (ATE): E[Y1 − Y0]

I Average treatment on the treated (ATT): E[Y1 − Y0|D = 1]

I Quantile treatment e�ect (QTE): QY1(t)−QY0(t) for some t ∈ (0, 1)

I QTE on the treated/untreated (QTT/QTU) defined analogously

I All point identified under random assignment

I Moreover, ATE = ATT = ATU, and QTE = QTT = QTU

I Nothing systematically di�erent about treatment/control groups

I If D is multivalued or continuous, conventions are less established
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Causal Inference: Problem

The Problem
I Even with random assignment, joint dist’s, P{Y1 ≤ y1, Y0 ≤ y0}, are not point id’d:

I Sometimes called the fundamental problem of causal inference

I Intuition: we never see both Y0 and Y1 for anyone

Implications
I Most features of Y1 − Y0 are not point identified

I Even with random assignment⇒ so without it as well

I We might care about the proportion of individuals who are hurt:

P{Y1 ≤ Y0} → not point identified!

I Nor are the quantiles of Y1 − Y0

I Note: Quantile treatment e�ect (QTE) vs. quantile of the treatment e�ect
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Random Assignment and Covariates

Role of Covariates
I Suppose we regress Y on D and predetermined X
I D is randomly assigned, so should be uncorrelated with X
→ Common practice to check this as a “balance test”

I Also means variation in coe�cient on D will go down
I How much depends on how much X and Y are correlated

Example
I Y is cholesterol after the experiment
I D is a drug intended to reduce cholesterol
I X is your cholesterol in the past, before the experiment
I X probably explains a lot of the variation in Y
I Controlling for X reduces residual variation in Y, but not D
I This allows one to estimate the e�ect of D more precisely
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Scope of Random Assignment

When is random assignment a good assumption?
I Typically, settings where agents have no control over D

I Less likely: Agents choose D without considering {Yd : d ∈ D}

I Randomized controlled experiments are the leading case

I Random assignment is rarely compelling with observational data

I When agents can control D, we typically expect selection

I Random assignment leads to high internal validity

I The phrase “gold standard” is often used in biostatistics

I In practice, researchers rarely “flip a coin” (c.f. CAR)

I Random assignment often comes along with lower external validity
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Outline

1. Potential Outcomes and Latent Variables

2. Random Assignment: The fundamental Problem of Causal Inference

3. Selection Bias and Selection on Observables

4. The Role on the Propensity Score

5. Final Remarks on Selection on Observables
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Selection

Formal definition
I There is selection into the treatment state D if

Yd|D = d is distributed di�erently from Yd|D = d′ for d 6= d′

I Expected to occur if agents choose D with knowledge of {Yd : d ∈ D}

Selection is common
I Particularly concerning if you are trained in neoclassical economics

I Optimization: Agents choose a job training program (D ∈ {0, 1}) to maximize utility

I Utility: incorporates expected future earnings (Y0, Y1)

I Agents who choose job training might do so because of low Y0

I Alternatively, might choose D = 0 because of high Y0
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Selection Bias

I Consider the simple treatment/control mean contrast under selection

I This contrast would be the ATE under random assignment

I Decompose the contrast into a causal e�ect and selection bias:

E[Y|D = 1]−E[Y|D = 0] = (E[Y1|D = 1]− E[Y0|D = 1])︸ ︷︷ ︸
ATT

+ (E[Y0|D = 1]− E[Y0|D = 0])︸ ︷︷ ︸
selection bias

I First term: causal e�ect for those who were treated

I Second term: how the treated would have been di�erent anyway

I E�ects could cancel out: ATT is (+) while selection bias is (−)
⇒ Job training program, drug for a lethal disease, etc
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Selection on Observables

I A simple relaxation of random assignment is selection on observables

I Suppose that we observe (Y, D, X) where X are covariates

I The selection on observables assumption is that

{Yd : d ∈ D} ⊥⊥ D | X .

I Says: Conditional on X, treatment is as-good-as randomly assigned

I Other terms: unconfoundedness, ignorable treatment assignment

I Underlies causal interpretations of linear regression
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Identification Argument

I Conditional version of random assignment:

Fd(y|x) = P{Yd ≤ y|X = x}
= P{Yd ≤ y|D = d, X = x}
= P{Y ≤ y|D = d, X = x}

I Second equality requires overlap: P{D = d|X = x} > 0

I Integrating over x, one can point identify the marginals

Fd(y) = P{Yd ≤ y} = E[P{Yd ≤ y|X = x}] = E[P{Y ≤ y|D = d, X = x}]
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Identification of Mean Contrasts

I Suppose D ∈ {0, 1} is binary - by far the most common case

I Using essentially the same argument as on the previous page:

ATE = E[E[Y1|X]− E[Y0|X]] = E[E[Y|D = 1, X]− E[Y|D = 0, X]]

I Similar expression for the ATT has an important di�erence:

ATT = E[Y|D = 1]− E[E[Y|D = 0, X|D = 1]]

I Helps in estimation since only one conditional expectation (more later)

I Note that only mean independence is needed for these arguments

E[Yd|D = 0, X] = E[Yd|D = 1, X]

I Di�cult to think of arguments for means (without full) independence
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Controlling on too much

Example
I Suppose that (Y0, Y1) ⊥⊥ D|X

I Let X2 be a subset of X

I Let X1 be a subset of X2

I So controlling on X is the most information, and X1 is the least

I Suppose however that we only have X2 (hence X1) in our data

I Perhaps surprisingly, using X2 can introduce more bias than using X1

I That is: adding information (X2 vs X1) need not reduce bias

I If X2 = X, then it does, but not more generally

I Point is not well-appreciated in applied work. But should be concerning
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Outline

1. Potential Outcomes and Latent Variables

2. Random Assignment: The fundamental Problem of Causal Inference

3. Selection Bias and Selection on Observables

4. The Role on the Propensity Score

5. Final Remarks on Selection on Observables
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The Propensity Score
Definition
I Binary treatment case: D ∈ {0, 1}
I p(x) = P{D = 1|X = x} is called the propensity score
I Let P = p(X) be the random variable P{D = 1|X}

Rosenbaum and Rubin (1983) sufficiency argument
I Selection on observables implies (Y0, Y1) ⊥⊥ D | P:

P{D = 1|Y0, Y1, P} = E
[
P{D = 1|Y0, Y1, P, X}|Y0, Y1, P

]
= E

[
P{D = 1|Y0, Y1, X}|Y0, Y1, P

]
= E

[
P{D = 1|X}|Y0, Y1, P

]
= E

[
p(X)|Y0, Y1, P

]
= P

I Implication: we can condition on P instead of X
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Propensity Score Weighting

I Using p, we can write the ATE as a weighted average of Y

ATE(x) = E
[

Y(D− p(x))
p(x)(1− p(x))

∣∣∣X = x
]

I Average over X to point identify

ATE = E
[

Y(D− p(X))

p(X)(1− p(X))

]
I Similar expressions can be derived for ATT,

ATT = E
[

Y(D− p(X))

P{D = 1}(1− p(X))

]
I Derivations are straightforward (see Pset)
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Different Identification arguments

Summary
I Three di�erent constructive identification results for the ATE
⇒ Match on X, match on P, weight using p

I Each one shows that ATE is point identified

I And they are all derived under the same assumptions

So why have three?
I Identification arguments directly inform the construction of estimators

I Di�erent arguments suggest di�erent estimators

I In general, these di�erent estimators may have di�erent properties

I In selection on observables this is definitely true
⇒ Subtle di�erences in e�ciency, rates of convergence

I More importantly, di�erences in finite sample performance
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Multivalued Treatments

I Many interesting counterfactual states are multivalued

I The main identification arguments mostly remain the same/similar

I Some details (Imbens, 2000) regarding the (generalized) propensity score

I However, the literature is overwhelmingly about D ∈ {0, 1}
I Imbens and Rubin (2015 book, 650 pages) exclusively discuss this case!

I The reason seems (to me) to be mostly sociological

I Nonparametric methods are highly valued by those in this literature

I With D ∈ 0, 1 there is only non-parametric (in D)

I If D ∈ {0, 1, 2}, then one needs to make a choice:
(a) Make a (potentially wrong) functional form assumption
(b) Remain non-parametric - basically reduces back to the binary case

I Community is against the first option, and second has low payo� for theory work.
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Criticisms of Selection on Observables
Inherent unobservables
I Selection on observables can be di�cult to believe in economics

→ Inherent unobservables: preferences, private info, expectations, . . .
I Observationally identical people behave di�erently due to . . . a coin flip?

Controlling for more: not a solution
I Often argued that large X makes selection on observables more likely
⇒ This is, of course, not necessarily true - we saw this earlier

I Even if it were, still raises an uncomfortable friction with overlap
⇒ If we could perfectly explain D with X then P{D = 1|X} would be 0 or 1

Better methods for choosing observables will not solve this
I Selection on observables is seeing a resurgence with machine learning
I Fancier methods, but the identifying assumption is still the same
I Bias/variance trade-o� is not the first-order issue here
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Angrist (1998)
Misfit selection on observables
I Well-known economic application of selection on observables:

I Y is a labor market outcome (employment/earnings)
I D ∈ {0, 1} is veteran status (participation in the military)
I X are socioeconomic variables (race, year, schooling, AFQT, age)

I Assumption: given X, military participation as-if randomly assigned
I Observationally similar people randomly join the military?!?
I Ignores first-order issues such as outside employment options
⇒ Also unobservable screening factors (fitness, interpersonal skills)

I These are unobserved and inherently unobservable

Allowing for selection on unobservables
I Most applied microeconomists seem to share this skepticism
I This motivates the other methods that we will discuss in the course
I All use di�erent arguments to allow for selection on unobservables
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