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Topics of Part I
I Lec I: Selection on Observables

1. Potential Outcomes vs Latent Variables

2. Causal Inference

3. Selection Bias

4. Selection on Observables & Selection on Prop. Score

I Lec II: Roy Models and LATE
1. The role of heterogeneity

2. Multiple instruments, Covariates, and Abadie’s κ

I Lec III: Marginal Treatment E�ect
1. Parameters as functions of MTEs

2. Policy Relevant Treatment E�ects

I Lec IV: Extrapolations
1. Semi-Parametrics MTEs

2. Weights for Target Parameters
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Outline

1. Linear IV and Heterogeneity

2. Roy Models: parametric approach

3. LATE

4. Abadie’s κ

5. Empirical Application: Angrist and Evans (98)
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Instrumental Variables

I Selection on observables can be di�cult to justify in economics
I Unobserved confounders tend to be the rule, not the exception
I Instrumental variable (IV) strategies provide an alternative

The two properties of an instrument
1. Exogenous — unrelated (in some sense) with potential outcomes
2. Relevant — related (in some sense) to treatment states

I The “in some sense” may change in di�erent types of IV models
I But the basic idea is always the same:

Exogenous variation in the IV changes the (endogenous) treatment
Resulting changes in the outcome reflect only the treatment

I The first part requires relevance, so that treatment actually changes
I The second part requires exogeneity, so that nothing else changes
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Linear IV Models & Heterogeneity

I You have seen linear IV models in previous courses:
1. Exactly identified (“simple”) IV
2. Overidentified IV and the two stage least squares estimator (TSLS)
3. Overidentified IV and (optimal) generalized method of moments (GMM)

I These models take the form:

Y︸︷︷︸
outcome

= D′β︸︷︷︸
endogenous treatment

+ X′γ︸︷︷︸
controls

+U

I Unlike OLS, always intended as causal — never descriptive
I As such, they place strong assumptions on the potential outcomes:

Yd − Yd̃ = (d− d̃)′β no treatment e�ect heterogeneity!

I Unobserved heterogeneity (random β) complicates things immensely
I Intuitively, we must consider who is a�ected by the instrument
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IV and Potential Outcomes

Potential outcomes
I As before, we work with potential outcomes {Yd : d ∈ D}
I Sometimes, we also consider potential outcomes for D: {Dz : z ∈ Z}

Dz is what would have been chosen had Z been set to z

I Same relationship as for outcomes:

D = ∑
z∈Z

DzI{Z = z}

Forms of exogeneity
I Exogeneity requires Z to be independent of {Yd : d ∈ D} in some sense

Could be mean independence, full independence, uncorrelated, etc.
I Stronger exogeneity conditions also require Z independent of {Dz : z ∈ Z}
I Usually this would be joint, e.g. Z ⊥⊥ ({Yd : d ∈ D}, {Dz : z ∈ Z})
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Roy Models

Latent variable models
I An alternative to potential outcomes for D is a latent variable model
I The leading case is binary with a separable latent variable:

D = I

 U︸︷︷︸
latent variable

≤ ν(X, Z)︸ ︷︷ ︸
unknown function


I Combined with Y = Y1D + Y0(1−D), this is called the Roy Model
I Refers to Roy (1951), although the name is arguably a bit of a misnomer

I Apply the usual translation: Dz = I{U ≤ ν(X, z)}
I Some advantages — explicitly models D as a choice problem

ν(X, Z)−U is the utility of D = 1 vs. D = 0
I Economists often feel (more) comfortable with modeling choice behavior
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Roy Models and Heterogeneity

I A common version of the Roy model:

Y0 = X′β0 + V0 D = I{U ≤ W′γ}︸ ︷︷ ︸
Y1 = X′β1 + V1 (selection equation)

where (V0, V1, U) are unobservable and W ≡ (X, Z) are observable
I This model allows for both observed and unobserved heterogeneity:

Y1 − Y0 = X′(β1 − β0)︸ ︷︷ ︸
observed

+ V1 −V0︸ ︷︷ ︸
unobserved

I Implies a random coe�cient specification for the observed outcome:

Y = DY1 + (1−D)Y0 = (V1 −V0)︸ ︷︷ ︸
random coe�.

D + X′β0 + DX′(β1 − β0) + V0

I Selection on unobservables if U and (V0, V1) are dependent
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Parametric Roy Models

Likelihood approaches
I Classic Roy model assumes (V0, V1, U) is normal, independent of (X, Z)
I Fully parametric: Point identification by well-parameterization

Requires (X, Z) to be not perfectly collinear, as usual
I Straightforward to derive the likelihood
I Today it is also straightforward to maximize the likelihood
I However in the 1970s and 1980s it was di�cult (so I’m told)

The Heckman two-step approach
I Heckman (1976) used the parametric structure to derive regressions
I These establish point identification through explicit construction
I Less e�cient (statistically), but more intuitive, easier to compute
I The 1976 paper is a bit obscure — “missing data” was more standard

But notice that causal inference is a missing data problem
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The Heckman Two-Step Argument

I The parametric assumptions imply:

E[Y|W, D = 1] = X′β1 + E[V1|W, W′γ ≥ U]

= X′β1 − cov(V1, U)λ(W′γ)

I The second equality is a property of bivariate normals:

λ(W′γ) ≡ φ(W′γ)
Φ(W′γ) is called the (inverse) Mills ratio

I λ(W′γ) enters as an additional regressor that controls for selection
I cov(V1, U) is an unknown parameter to be estimated
I The derivation for D = 0 is symmetric:

E[Y|W, D = 0] = X′β0 + cov(V0, U)λ(−W′γ)

I Others versions of this idea are called control function approaches
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Identification: Heckman Two-Step

Identification argument
I Under the parametric assumptions, the selection equation is just a probit
I γ is point identified, and hence λ(W′γ) is as well
I Then identify βd and cov(Vd, U) from linear regression
I So we need X to be not perfectly collinear with λ(W′γ)
I Regress Y on X and −λ(W′γ) among D = 1 to identify β1, cov(V1, U)

I Regress Y on X and λ(−W′γ) among D = 0 to identify β0, cov(V0, U)

Point identification with an instrument
I Recall that W ≡ (X, Z)
I Suppose that Z helps predict D after accounting for X
I Then the component of γ corresponding to Z is non-zero in the probit
I If this is true, then X and λ(W′γ) are not perfectly collinear
I This is an example of a su�cient condition for relevance
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Parametric Identification

Point identification without an instrument
I Suppose, however, there is no Z, so that λ(W′γ) = λ(X′γ)
I λ(X′γ) will still not be perfectly collinear with X — λ(·) is nonlinear

The fully parametric model is identified even without any instruments
I Although λ(·) is not very nonlinear, so can be nearly collinear in practice

The credibility of parametric identification
I This is a concerning property of this model
I Exposes the reliance of identification on the assumed parameterization
I No strong reason (except mathematical convenience) to choose normality
I So should be especially concerning that identification uses normality
I Other distributions can be used, but lead to the same issue
I Fully parametric Roy models are rarely used in top-flight research today

When they are, they almost always have excluded instruments
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What Does Linear IV Estimate?

I Textbook linear IV models impose constant treatment e�ects (given X)
I Question: What is the IV estimand with unobserved heterogeneity?
I An estimand is the population quantity that an estimator estimates

A simple extension of the linear IV model
I Consider the random coe�cients linear IV model

Y = α + BD + U α, π are constant
D = π + CZ + V B, C, U, V are unobservable random variables

I Assume exogeneity: Z ⊥⊥ (U, V, B, C) — stronger than usual
I Assume relevance: cov(D, Z) 6= 0
I The linear IV (slope) estimand is given by

βIV ≡
cov(Y, Z)
cov(D, Z)



16

IV Estimand: Random Coeff. Model

I When B is constant, we know that βIV = B
I More generally, one can show that

βIV ≡
cov(Y, Z)
cov(D, Z)

= E
[

C
E(C)

B
]

I βIV is a weighted average of the causal e�ect of D on Y (i.e. of B)
I Agents more strongly impacted by Z (larger |C|) get more weight

I This immediately raises some concerns on interpretation
I For example, consider common instruments in the returns to schooling:

1. Distance from college
2. Quarter of birth (compulsory schooling laws)
3. Tuition subsidies

I βIV overweights returns to agents most a�ected by these instruments
Unlikely to be representative of the overall population

I Another concern — weights can be negative for those with C× E[C] < 0
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Imbens and Angrist (1994)

Overview
I Provided additional conditions under which βIV is easier to interpret
I Highly influential paper for both empirical and theoretical work
I Highly controversial and frequently misinterpreted or misunderstood
I We will look at results first, then discuss interpretations and controversy

Setup
I Binary treatment D ∈ {0, 1} and binary instrument Z ∈ {0, 1}
I Results partially extend to multiple values of D and/or Z, with caveats
I Covariates X are conditioned on nonparametrically and implicitly

Assumptions
1. Exogeneity: Z ⊥⊥ (Y0, Y1, D0, D1)

2. Relevance: cov(D, Z) 6= 0
3. “Monotonicity”: D1 ≥ D0 a.s. — a new condition
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Local Average Treatment Effect

I Since both D and Z are binary, one has

βIV ≡
cov(Y, Z)
cov(D, Z)

=
E[Y|Z = 1]− E[Y|Z = 0]
E[D|Z = 1]− E[D|Z = 0]︸ ︷︷ ︸

Wald estimand

I The main result is the following (shown in 480):

βIV = E[Y1 − Y0︸ ︷︷ ︸
average treatment e�ect

|D1 = 1, D0 = 0]︸ ︷︷ ︸
local

≡ LATE

Interpretation of the LATE
I Average treatment e�ect for the compliers = [D1 = 1, D0 = 0]
I Name motivated by randomized experiment with partial compliance
I Subgroup whose treatment is a�ected by the instrument
I The defiers are [D1 = 0, D0 = 1], so monotonicity⇔ “no defiers”
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One-Sided Non-Compliance

I Suppose that only agents with Z = 1 can have D = 1
I One-sided non-compliance: [Z = 1, D = 0] ok, but not [Z = 0, D = 1]
I Leading example is an experiment with D = 1 unavailable elsewhere

I Under one-sided non-compliance we know D0 = 0 always, hence

[D = 1]︸ ︷︷ ︸
treated

= [D0 = 1, D1 = 1]︸ ︷︷ ︸
probability 0

+ [D0 = 0, D1 = 1]︸ ︷︷ ︸
compliers

I So in this case, LATE = ATT, and hence βIV = ATT

I Opposite case is when all agents with Z = 1 have D = 1 (D1 = 1):

[D = 0]︸ ︷︷ ︸
untreated

= [D0 = 0, D1 = 1]︸ ︷︷ ︸
compliers

+ [D0 = 0, D1 = 0]︸ ︷︷ ︸
probability 0

I So here LATE = ATU, and hence βIV = ATU
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Dist. of Outcomes for Compliers

Choice types
I compliers: [D1 > D0] = [D1 = 1, D0 = 0]
I defiers: [D0 > D1] — probability 0 under monotonicity
I always-takers: [D0 = D1 = 1]
I never-takers: [D0 = D1 = 0]
I Let T ∈ {a, n, c} denote a choice type

I Complier outcome distributions are point identified:

FY0|T(y|c) = FY|DZ(y|0, 0)
P[T ∈ {c, n}]

P[T = c]
− FY|DZ(y|0, 1)

P[T = n]
P[T = c]

FY1|T(y|c) = FY|DZ(y|1, 1)
P[T ∈ {c, a}]

P[T = c]
− FY|DZ(y|1, 0)

P[T = a]
P[T = c]

I The intuition is that we can di�erence out the always (or never) takers:

[D = 1, Z = 1]\[D = 1, Z = 0] = [T ∈ {a, c}]\[T ∈ {a}] = [T ∈ {c}]
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Extension to Multiple Instruments

Adjusted setup and assumptions
I Suppose Z ∈ {0, 1, . . . , L} with L ≥ 2 — multiple discrete instruments
I Adjust exogeneity to be: Z ⊥⊥ (D0, D1, . . . , DL, Y0, Y1)

I Adjust monotonicity to be: Dz′ ≥ Dz (or conversely) for all z′ ≥ z

Ordering the instruments
I Notice that the direction of monotonicity is point identified
I Let p(z) ≡ P{D = 1|Z = z} — our old friend the propensity score
I By the exogeneity condition, we know that p(z) = P{Dz = 1}
I Under monotonicity, Dz′ ≥ Dz if and only if p(z′) ≥ p(z)
I So we can relabel Z such that Dz and p(z) are increasing:

D0 ≤ D1 ≤ D2 ≤ · · · ≤ DL

p(z0) ≤ p(z1) ≤ p(z2) ≤ · · · ≤ p(zL)
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TSLS Estimand: Multiple Instruments
I Consider the TSLS estimator using {I{Z = z} : z = 0, . . . , L} as instruments
I The population first stage coe�cient on I{Z = zl} is p(zl)

I Hence, the slope coe�cient estimand on D is given by

βTSLS ≡
cov(Y, p(Z))
cov(D, p(Z))

I The following is derived in the problem set:

βTSLS =
L

∑
m=1

λmLATEm
m−1 where LATEm

m−1 ≡ E[Y1 − Y0|Dm = 1, Dm−1 = 0]

and λm ≡
[p(zm)− p(zm−1)]

(
∑L

l=m (p(zl)− E[p(Z)])P[Z = zl]
)

∑L
n=1 (p(zn)− p(zn−1))

(
∑L

l=n(p(zl)− E[p(Z)])P[Z = zl]
) .

I So the TSLS estimand is a weighted average of pairwise LATEs
I The pairwise LATEs represent Z = m− 1 to Z = m compliers
I The weights are positive (this is important) and sum to 1
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Covariates — Nonparametric

I Often, one wants covariates X to help justify the exogeneity of Z
I And/or to reduce residual noise in Y
I And/or to look at observed heterogeneity in treatment e�ects

Adjust the assumptions to be conditional on X
1. Exogeneity: (Y0, Y1, D0, D1) ⊥⊥ Z|X
2. Relevance: P{D = 1|X, Z = 1} 6= P{D = 1|X, Z = 0} a.s.
3. Monotonicity: P{D1 ≥ D0|X} = 1 a.s.
4. Overlap: P{Z = 1|X} ∈ (0, 1) a.s.

I Same argument point identifies E[Y1 − Y0|T = c, X = x] ≡ LATE(x)
I In addition, one could aggregate these into:

E[Y1 − Y0|T = c] = E
[

LATE(X)P[T = c|X]

P[T = c]

]
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Covariates — TSLS

I Usual curse of dimensionality from conditioning on X = x
I A more standard procedure with covariates is IV/TSLS
I Can these estimands be interpreted as (positively-weighted) LATEs?
I In general, the answer is no

A specific case where the answer is yes
I Suppose that X is discrete and write it as a set of binary indicators
I Included instruments: X — a full set of dummies
I Excluded instruments: X and XZ — suppose Z ∈ {0, 1} for simplicity
I Not nonparametric (fully saturated), since no XD in the outcome
I Then the TSLS estimand of coe�cient on D is:

βTSLS = E
[

LATE(X)
var(p(X, Z)|X)

E[var(p(X, Z)|X)]

]
I Weighted average of LATEs – more weight the more residual Z variation



25

Interpreting Estimands

IV
I The IV estimand in the binary D, binary Z case is the LATE
I This parameter is easy to interpret as the average e�ect for compliers
I It could be quite relevant for a policy intervention that a�ects compliers

TSLS
I In contrast, the TSLS estimand is a mess, even in specialized cases
I A weighted average of several di�erent complier groups
I When would these weights be useful to inform a counterfactual?

Reverse engineering
I These results are motivated by a backward (literally) thought process
I Start with a common estimator, then interpret the estimand
I Why not start with a parameter of interest and then create an estimator?
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Abadie’s (2003) κ

I For covariates (but D, Z binary) there exists a more elegant approach
I Idea is to run regressions only on the compliers
I Compliers aren’t directly observable, but they can be weighted
I Abadie showed that for any function G = g(Y, X, D)

E[G|T = c] =
1

P{T = c}E[κG],

where κ ≡ 1− D(1− Z)
P{Z = 0|X} −

(1−D)Z
P{Z = 1|X}

Intuition
I Complier = 1− Always Taker− Never Taker
I On average, κ only applies positive weights to compliers:

E[κ|T = t, X, D, Y] = I{t = c} for t = c, a, n

I So on average, κG is only positive for compliers
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Using Abadie’s κ

Linear/nonlinear regression
I For example, take g(Y, X, D) = (Y− αD−X′β)2 then:

min
α,β

E[(Y− αD−X′β)2|T = c] = min
α,β

E
[
κ(Y− αD−X′β)2

]
I Estimate α, β by solving a sample analog of the second problem

This is just a weighted regression, with estimated weights (κ)
I Result is general enough to use for many other estimators (e.g. MLE)
I Specify X however you like — still picks out the compliers

Estimating κ
I To implement the result one must estimate κ, hence P{Z = 1|X}
I If P{Z = 1|X} is linear, the κ-weighted (linear) regression equals TSLS
I Of course, Z is binary, so P{Z = 1|X} typically won’t be exactly linear
I Logit/probit often close to linear, so in practice may be close anyway
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Angrist and Evans (98, “AE”)

Motivation
I Relationship between fertility decisions and female labor supply?
I Strong negative correlation, but these are joint choices
I Leads to many possible endogeneity stories, here’s just one:

High earning women have fewer children due to higher opportunity cost

Empirical strategy
I Y is a labor market outcome for the woman (or her husband)
I Restrict the sample to only women (or couples) with 2 or more children
I D is an indicator for having more than 2 children (vs. exactly 2)
I Z = 1 if first two children had the same sex

Based on the idea that there is preference to have a mix of boys and girls
I Also consider Z = 1 if the second birth was a twin

Twins are primarily for comparison — used before this paper
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Assumptions in AE

Exogeneity
I Requires the assumption that sex at birth is randomly assigned
I Authors conduct balance tests to support this (next slide)
I The twins instrument is less compelling
I First, well-known that older women have twins more (see next slide)

More subtly, it impacts both the number and spacing of children

Monotonicity
I Monotonicity restricts preference heterogeneity in unattractive ways

Some families may want two boys or girls (then stop)
I No discussion of this in the paper — unfortunately common practice
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Evidence in Support of Exogeneity
VOL. 88 NO. 3 ANGRIST AND EVANS: CHILDREN AND THEIR PARENTS' LABOR SUJPPLY 459 

TABLE 4-DIFFERENCES IN MEANS FOR DEMOGRAPHIC VARIABLES 

BY SAME SEX AND TWINS-2 

Difference in means (standard error) 

By Same sex By Twins-2 

Variable 1980 PUMS 1990 PUMS 1980 PULMS 

Age -0.0147 0.0174 0.2505 
(0.0112) (0.0112) (0.0607) 

Age atfirst birth 0.0162 -0.0074 0.2233 
(0.0094) (0.0114) (00510) 

Black 0.0003 0.0021 0.0300 
(0.0010) (0.0011) (0.0056) 

White 0.0003 -0.0006 -0.0210 
(0.0012) (0.0013) (0.0066) 

Other race -0.0006 -0.0014 -0.0090 
(0.0005) (0.0009) (0.0041) 

Hispanic -0.0014 -0.0007 -0.0069 
(0.0009) (0.0010) (0.0047) 

Years of education -0.0028 0.0100 0.0940 
(0.0076) (0.0074) (0.0415) 

Notes: The samples are the same as in Table 2. Standard errors are reported in parentheses. 

to having more children than women with 
one boy and one girl, women with two chil- 
dren of the same sex have a lower probability 
of working, work fewer weeks per year and 
fewer hours per week, and have lower annual 
earnings and lower family income. All but 
the final result is statistically significant in 
both Census years. 

The Wald estimates for 1980 calculated by 
dividing 5Yj - Y3o by XI - io when xi is More 
than 2 children imply that having more than 
two children reduced labor supply by 13.3 
(-0.008/0.06) percentage points, weeks 
worked by about 6.4 weeks, hours of work per 
week by 5.2, and labor income by just over 
$2,200 per year. The results for 1990 are also 
negative, though (with the exception of family 
income) somewhat smaller. The Wald esti- 
mates calculated using the effect of Same sex 
on total Number of children put these effects in 
per-child terms. In per-child terms, the esti- 
mates are about 0.78 as large in 1980 and 0.75 
as large in 1990 as the estimates produced with 
More than 2 children in the denominator. 

The last three columns in the table show that 
women whose second pregnancy resulted in 
twins are also less likely to work. With the ex- 
ception of the estimate for family income, 
which is not very precise, the Wald estimates 
generated by Twins-2, reported in column (6), 
are lower than the Wald estimates based on 
Same sex. In Section III, we explore the com- 
parison between Same sex and Twins-2 esti- 
mates further and show how they can be 
reconciled. 

As with the Same sex estimates, Twins-2 es- 
timates in per-child termrs are necessarily 
smaller than estimates treating the indicator 
More than 2 children as the endogenous re- 
gressor. But the factor of proportionality con- 
necting the per-child and More than 2 children 
estimates using Twins-2 is also 0.75. It there- 
fore makes little difference which denominator 
is used because estimates based on More than 
2 children can always be converted into per- 
child estimates by multiplying by ).75. We 
chose to discuss estimates treating More than 2 
children as the endogenous regressor in the re- 

I Same sex is uncorrelated with a variety of observed confounders
I Twins is well-known to be correlated with age (so, education) and race
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Wald Estimates
460 THE AMERICAN ECONOMIC REVIEW JUNE 1998 

TABLE 5-WALD ESTIMATES OF LABOR-SUPPLY MODELS 

1980 PUMS 1990 PUMS 1980 PUMS 

Wald estimate Wald estimate Wald estimate using 
using as covariate: using as covariate: as covariate: 

Mean Mean 
difference Number difference Number Mean More Number 
by Same More than of by Same More than of difference than 2 of 

Variable sex 2 children children sex 2 children children by Twins-2 children children 

More than 2 0.0600 0.0628 0.6031 
children (0.0016) (0.0016) (0.0084) 

Number of 0.0765 0.0836 0.8094 
children (0.0026) (0.0025) (0.0139) 

Worked for pay -0.0080 -0.133 -0.104 -0.0053 -0.084 -0.063 -0.0459 -0.076 -0.057 
(0.0016) (0.026) (0.021) (0.0015) (0.024) (0.018) (0.0086) (0.014) (0.011) 

Weeks worked -0.3826 -6.38 -5.00 -0.3233 -5.15 -3.87 -1.982 -3.28 --2.45 
(0.0709) (1.17) (0.92) (0.0743) (1.17) (0.88) (0.386) (0.63) (0.47) 

Hours/week -0.3110 -5.18 -4.07 -0.2363 -3.76 -2.83 -1.979 -3.28 -2.44 
(0.0602) (1.00) (0.78) (0.0620) (0.98) (0.73) (0.327) (0.54) (0.40) 

Labor income -132.5 -2208.8 -1732.4 --119.4 -1901.4 -1428.0 -570.8 -946.4 -705.2 
(34.4) (569.2) (446.3) (42.4) (670.3) (502.6) (186.9) (308.6) (229.8) 

ln(Family -0.0018 -0.029 -0.023 -0.0085 -0.136 -0.102 -0.0341 -0.057 -0.042 
income) (0.0041) (0.068) (0.054) (0.0047) (0.074) (0.056) (0.0223) (0.037) (0.027) 

Notes: The samples are the same as in Table 2. Standard errors are reported in parentheses. 

mainder of the paper because this emphasizes 
the fact that the fertility increment induced by 
either instrument is a move from two to more 
than two children. 

B. Two-Stage Least-Squares Estimation 

While the Wald estimates provide a simple 
illustration of how the instruments identify the 
effect of children on labor supply, the rest of 
the paper discusses two-stage least-squares 
(2SLS) and ordinary least-squares (OLS) es- 
timates of regression models relating labor- 
market outcomes to fertility and a variety of 
exogenous covariates. 2SLS estimation allows 
us to accomplish three things. First, even if 
there is no association between the instrument 
and exogenous covariates, as suggested by Ta- 
ble 4, controlling for exogenous covariates can 
lead to more precise estimates if the treatment 
effects are roughly constant across groups. 

Second, we can use 2SLS to control for any 
secular additive effects of child sex when us- 
ing Same sex as an instrument. This is desir- 
able because Same sex is an interaction term 

involving the sex of the first two children, and 
therefore potentially correlated with the sex of 
either child. To see this, let s1 and S2 be indi- 
cators for male firstborn and second-born chil- 
dren. The instrument can be written as 

(3) Same sex =S1S2 + (1 - si)(l - S2) 

Assuming that child sex is independent and 
identically distributed (i.i.d.) over children, 
the population regression of Same sex on ei- 
ther sj produces a slope coefficient equal to 
2E[sj] - 1, which is zero only if E[sj] = 1/2.1 

Since the probability of giving birth to a male 
child is 0.51, there is a slight positive associ- 
ation between Same sex and the sex of each 
child. This correlation is a concern only if sj 

10 Proof: Assuming child sex is i.i.d., we have E[si ] = 

E[S2] and E[s1s2] = E [j]2 . Therefore, Cov(Same sex, 
sj) = E[sj](E[sj] - E[Same sex]). Some manipulation 
gives E[sj] - E[Same sex] = (1 - E[sj])(2E[sj] - 1). 
Since the variance of sj is E [sj] (l -E[sj] ), the regression 
coefficient is (2E [sj] - 1). 

First stage (denominator of Wald) for two measures of fertility
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TABLE 5-WALD ESTIMATES OF LABOR-SUPPLY MODELS 

1980 PUMS 1990 PUMS 1980 PUMS 

Wald estimate Wald estimate Wald estimate using 
using as covariate: using as covariate: as covariate: 

Mean Mean 
difference Number difference Number Mean More Number 
by Same More than of by Same More than of difference than 2 of 

Variable sex 2 children children sex 2 children children by Twins-2 children children 

More than 2 0.0600 0.0628 0.6031 
children (0.0016) (0.0016) (0.0084) 

Number of 0.0765 0.0836 0.8094 
children (0.0026) (0.0025) (0.0139) 

Worked for pay -0.0080 -0.133 -0.104 -0.0053 -0.084 -0.063 -0.0459 -0.076 -0.057 
(0.0016) (0.026) (0.021) (0.0015) (0.024) (0.018) (0.0086) (0.014) (0.011) 

Weeks worked -0.3826 -6.38 -5.00 -0.3233 -5.15 -3.87 -1.982 -3.28 --2.45 
(0.0709) (1.17) (0.92) (0.0743) (1.17) (0.88) (0.386) (0.63) (0.47) 

Hours/week -0.3110 -5.18 -4.07 -0.2363 -3.76 -2.83 -1.979 -3.28 -2.44 
(0.0602) (1.00) (0.78) (0.0620) (0.98) (0.73) (0.327) (0.54) (0.40) 

Labor income -132.5 -2208.8 -1732.4 --119.4 -1901.4 -1428.0 -570.8 -946.4 -705.2 
(34.4) (569.2) (446.3) (42.4) (670.3) (502.6) (186.9) (308.6) (229.8) 

ln(Family -0.0018 -0.029 -0.023 -0.0085 -0.136 -0.102 -0.0341 -0.057 -0.042 
income) (0.0041) (0.068) (0.054) (0.0047) (0.074) (0.056) (0.0223) (0.037) (0.027) 

Notes: The samples are the same as in Table 2. Standard errors are reported in parentheses. 

mainder of the paper because this emphasizes 
the fact that the fertility increment induced by 
either instrument is a move from two to more 
than two children. 

B. Two-Stage Least-Squares Estimation 

While the Wald estimates provide a simple 
illustration of how the instruments identify the 
effect of children on labor supply, the rest of 
the paper discusses two-stage least-squares 
(2SLS) and ordinary least-squares (OLS) es- 
timates of regression models relating labor- 
market outcomes to fertility and a variety of 
exogenous covariates. 2SLS estimation allows 
us to accomplish three things. First, even if 
there is no association between the instrument 
and exogenous covariates, as suggested by Ta- 
ble 4, controlling for exogenous covariates can 
lead to more precise estimates if the treatment 
effects are roughly constant across groups. 

Second, we can use 2SLS to control for any 
secular additive effects of child sex when us- 
ing Same sex as an instrument. This is desir- 
able because Same sex is an interaction term 

involving the sex of the first two children, and 
therefore potentially correlated with the sex of 
either child. To see this, let s1 and S2 be indi- 
cators for male firstborn and second-born chil- 
dren. The instrument can be written as 

(3) Same sex =S1S2 + (1 - si)(l - S2) 

Assuming that child sex is independent and 
identically distributed (i.i.d.) over children, 
the population regression of Same sex on ei- 
ther sj produces a slope coefficient equal to 
2E[sj] - 1, which is zero only if E[sj] = 1/2.1 

Since the probability of giving birth to a male 
child is 0.51, there is a slight positive associ- 
ation between Same sex and the sex of each 
child. This correlation is a concern only if sj 

10 Proof: Assuming child sex is i.i.d., we have E[si ] = 

E[S2] and E[s1s2] = E [j]2 . Therefore, Cov(Same sex, 
sj) = E[sj](E[sj] - E[Same sex]). Some manipulation 
gives E[sj] - E[Same sex] = (1 - E[sj])(2E[sj] - 1). 
Since the variance of sj is E [sj] (l -E[sj] ), the regression 
coefficient is (2E [sj] - 1). 

Reduced form (numerator of Wald) for several labor market outcomes
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TABLE 5-WALD ESTIMATES OF LABOR-SUPPLY MODELS 

1980 PUMS 1990 PUMS 1980 PUMS 

Wald estimate Wald estimate Wald estimate using 
using as covariate: using as covariate: as covariate: 

Mean Mean 
difference Number difference Number Mean More Number 
by Same More than of by Same More than of difference than 2 of 

Variable sex 2 children children sex 2 children children by Twins-2 children children 

More than 2 0.0600 0.0628 0.6031 
children (0.0016) (0.0016) (0.0084) 

Number of 0.0765 0.0836 0.8094 
children (0.0026) (0.0025) (0.0139) 

Worked for pay -0.0080 -0.133 -0.104 -0.0053 -0.084 -0.063 -0.0459 -0.076 -0.057 
(0.0016) (0.026) (0.021) (0.0015) (0.024) (0.018) (0.0086) (0.014) (0.011) 

Weeks worked -0.3826 -6.38 -5.00 -0.3233 -5.15 -3.87 -1.982 -3.28 --2.45 
(0.0709) (1.17) (0.92) (0.0743) (1.17) (0.88) (0.386) (0.63) (0.47) 

Hours/week -0.3110 -5.18 -4.07 -0.2363 -3.76 -2.83 -1.979 -3.28 -2.44 
(0.0602) (1.00) (0.78) (0.0620) (0.98) (0.73) (0.327) (0.54) (0.40) 

Labor income -132.5 -2208.8 -1732.4 --119.4 -1901.4 -1428.0 -570.8 -946.4 -705.2 
(34.4) (569.2) (446.3) (42.4) (670.3) (502.6) (186.9) (308.6) (229.8) 

ln(Family -0.0018 -0.029 -0.023 -0.0085 -0.136 -0.102 -0.0341 -0.057 -0.042 
income) (0.0041) (0.068) (0.054) (0.0047) (0.074) (0.056) (0.0223) (0.037) (0.027) 

Notes: The samples are the same as in Table 2. Standard errors are reported in parentheses. 

mainder of the paper because this emphasizes 
the fact that the fertility increment induced by 
either instrument is a move from two to more 
than two children. 

B. Two-Stage Least-Squares Estimation 

While the Wald estimates provide a simple 
illustration of how the instruments identify the 
effect of children on labor supply, the rest of 
the paper discusses two-stage least-squares 
(2SLS) and ordinary least-squares (OLS) es- 
timates of regression models relating labor- 
market outcomes to fertility and a variety of 
exogenous covariates. 2SLS estimation allows 
us to accomplish three things. First, even if 
there is no association between the instrument 
and exogenous covariates, as suggested by Ta- 
ble 4, controlling for exogenous covariates can 
lead to more precise estimates if the treatment 
effects are roughly constant across groups. 

Second, we can use 2SLS to control for any 
secular additive effects of child sex when us- 
ing Same sex as an instrument. This is desir- 
able because Same sex is an interaction term 

involving the sex of the first two children, and 
therefore potentially correlated with the sex of 
either child. To see this, let s1 and S2 be indi- 
cators for male firstborn and second-born chil- 
dren. The instrument can be written as 

(3) Same sex =S1S2 + (1 - si)(l - S2) 

Assuming that child sex is independent and 
identically distributed (i.i.d.) over children, 
the population regression of Same sex on ei- 
ther sj produces a slope coefficient equal to 
2E[sj] - 1, which is zero only if E[sj] = 1/2.1 

Since the probability of giving birth to a male 
child is 0.51, there is a slight positive associ- 
ation between Same sex and the sex of each 
child. This correlation is a concern only if sj 

10 Proof: Assuming child sex is i.i.d., we have E[si ] = 

E[S2] and E[s1s2] = E [j]2 . Therefore, Cov(Same sex, 
sj) = E[sj](E[sj] - E[Same sex]). Some manipulation 
gives E[sj] - E[Same sex] = (1 - E[sj])(2E[sj] - 1). 
Since the variance of sj is E [sj] (l -E[sj] ), the regression 
coefficient is (2E [sj] - 1). 

IV (Wald) estimator, e.g. −.133 ≈ −.008/.060 — these are LATEs
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TABLE 7-OLS AND 2SLS ESTIMATES OF LABOR-SUPPLY MODELS USING 1980 CENSUS DATA 

All women Married women Husbands of married women 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Estimation method OLS 2SLS 2SLS OLS 2SLS 2SLS OLS 2SLS 2SLS 

Instrument for More than - Same sex Two boys, - Same sex Two boys, - Same sex Two boys, 
2 children Two girls Two girls Two girls 

Dependent variable: 

Worked for pay -0.176 -0.120 -0.113 -0.167 -0.120 -0.113 -0.008 0.004 0.001 
(0.002) (0.025) (0.025) (0.002) (0.028) (0.028) (0.001) (0.009) (0.008) 

[0.013] [0.013] [0.013] 

Weeks worked -8.97 -5.66 -5.37 -8.05 -5.40 -5.16 -0.82 0.59 0.45 
(0.07) (1.1 1) (1.10) (0.09) (1.20) (1.20) (0.04) (0.60) (0.59) 

[0.017] [0.071] [0.0301 

Hours/week -6.66 -4.59 -4.37 -6.02 -4.83 -4.61 0.25 0.56 0.50 
(0.06) (0.95) (0.94) (0.08) (1.02) (1.01) (0.05) (0.70) (0.69) 

[0.030] [0.049] [0.71] 

Labor income -3768.2 -1960.5 -1870.4 -3165.7 -1344.8 -1321.2 -1505.5 -1248.1 -1382.3 
(35.4) (541.5) (538.5) (42.0) (569.2) (565.9) (103.5) (1397.8) (1388.9) 

[0.126] [0.703] (0.549) 

ln(Family income) -0.126 -0.038 -0.045 -0.132 -0.051 -0.053 -- - - 

(0.004) (0.064) (0.064) (0.004) (0.056) (0.056) 
[0.3 191 [0.743] 

ln(Non-wife income) - - - -0.053 0.023 0.016 -- 
(0.005) (0.066) (0.066) 

[0.297] 

Notes: The table reports estimates of the coefficient on the More than 2 children variable in equations (4) and (6) in the text. Other covariates 
in the models are Age, Age at first birth, plus indicators for Boy 1st, Boy 2nd, Black, Hispanic, and Other race. The variable Boy 2nd is 
excluded from equation (6). The p-value for the test of overidentifying restrictions associated with equation (6) is showli in brackets. 
Standard errors are reported in parentheses. 

quadratic terms in the wife's education, 
quadratic terms in wife's age, age at first 
birth, linear and quadratic terms in hus- 
band's age, husband's age at first birth and 
education, linear and quadratic terms in hus- 
band's labor income, and a full set of state 
dummy variables."2 In these models, the 
2SLS estimates (standard errors) of the 
More than 2 children coefficient have the 
following values: Worked for pay, -0.122 
(0.027); Weeks worked, -5.45 (1.18); 
Hours/week, -5.04 (0.99); Labor income, 
- 1,390 (555). All of these values are within 

5 percent of the corresponding estimates 
from Table 7. 

A referee and others who read earlier ver- 
sions of this paper expressed concern about 
whether the results are likely to be represen- 
tative of the impact of childbearing in gen- 
eral since the sample is restricted to women 
with two or more children and to women in 
a relatively young age-group. Estimates of 
the effect of going from two to more than 
two children do not necessarily generalize. 
On the other hand, we believe these results 
are likely to be of general interest because a 
significant fraction of the change in fertility 
between 1970 and 1990 was due to reduc- 
tions in the number of women having more 
than two children. As noted in Section I, this 
fact is apparent in Census data on completed 
family size. 

12 Two of these covariates, years of education and hus- 
band's earnings, are potentially endogenous because they 
may be partly determined by fertility. For this reason, they 
were excluded from the main set of estimates. 

OLS is quite di�erent from IV — consistent with endogeneity (selection)



34

Two Stage Least Squares Estimates
VOL. 88NO. 3 ANGRISTANDEVANS: CHILDRENANDTHEIRPARENTS'LABORSUPPLY 465 

TABLE 7-OLS AND 2SLS ESTIMATES OF LABOR-SUPPLY MODELS USING 1980 CENSUS DATA 

All women Married women Husbands of married women 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Estimation method OLS 2SLS 2SLS OLS 2SLS 2SLS OLS 2SLS 2SLS 

Instrument for More than - Same sex Two boys, - Same sex Two boys, - Same sex Two boys, 
2 children Two girls Two girls Two girls 

Dependent variable: 

Worked for pay -0.176 -0.120 -0.113 -0.167 -0.120 -0.113 -0.008 0.004 0.001 
(0.002) (0.025) (0.025) (0.002) (0.028) (0.028) (0.001) (0.009) (0.008) 

[0.013] [0.013] [0.013] 

Weeks worked -8.97 -5.66 -5.37 -8.05 -5.40 -5.16 -0.82 0.59 0.45 
(0.07) (1.1 1) (1.10) (0.09) (1.20) (1.20) (0.04) (0.60) (0.59) 

[0.017] [0.071] [0.0301 

Hours/week -6.66 -4.59 -4.37 -6.02 -4.83 -4.61 0.25 0.56 0.50 
(0.06) (0.95) (0.94) (0.08) (1.02) (1.01) (0.05) (0.70) (0.69) 

[0.030] [0.049] [0.71] 

Labor income -3768.2 -1960.5 -1870.4 -3165.7 -1344.8 -1321.2 -1505.5 -1248.1 -1382.3 
(35.4) (541.5) (538.5) (42.0) (569.2) (565.9) (103.5) (1397.8) (1388.9) 

[0.126] [0.703] (0.549) 

ln(Family income) -0.126 -0.038 -0.045 -0.132 -0.051 -0.053 -- - - 

(0.004) (0.064) (0.064) (0.004) (0.056) (0.056) 
[0.3 191 [0.743] 

ln(Non-wife income) - - - -0.053 0.023 0.016 -- 
(0.005) (0.066) (0.066) 

[0.297] 

Notes: The table reports estimates of the coefficient on the More than 2 children variable in equations (4) and (6) in the text. Other covariates 
in the models are Age, Age at first birth, plus indicators for Boy 1st, Boy 2nd, Black, Hispanic, and Other race. The variable Boy 2nd is 
excluded from equation (6). The p-value for the test of overidentifying restrictions associated with equation (6) is showli in brackets. 
Standard errors are reported in parentheses. 

quadratic terms in the wife's education, 
quadratic terms in wife's age, age at first 
birth, linear and quadratic terms in hus- 
band's age, husband's age at first birth and 
education, linear and quadratic terms in hus- 
band's labor income, and a full set of state 
dummy variables."2 In these models, the 
2SLS estimates (standard errors) of the 
More than 2 children coefficient have the 
following values: Worked for pay, -0.122 
(0.027); Weeks worked, -5.45 (1.18); 
Hours/week, -5.04 (0.99); Labor income, 
- 1,390 (555). All of these values are within 

5 percent of the corresponding estimates 
from Table 7. 

A referee and others who read earlier ver- 
sions of this paper expressed concern about 
whether the results are likely to be represen- 
tative of the impact of childbearing in gen- 
eral since the sample is restricted to women 
with two or more children and to women in 
a relatively young age-group. Estimates of 
the effect of going from two to more than 
two children do not necessarily generalize. 
On the other hand, we believe these results 
are likely to be of general interest because a 
significant fraction of the change in fertility 
between 1970 and 1990 was due to reduc- 
tions in the number of women having more 
than two children. As noted in Section I, this 
fact is apparent in Census data on completed 
family size. 

12 Two of these covariates, years of education and hus- 
band's earnings, are potentially endogenous because they 
may be partly determined by fertility. For this reason, they 
were excluded from the main set of estimates. 

Break same-sex into two instruments — two boys vs. two girls
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TABLE 7-OLS AND 2SLS ESTIMATES OF LABOR-SUPPLY MODELS USING 1980 CENSUS DATA 

All women Married women Husbands of married women 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Estimation method OLS 2SLS 2SLS OLS 2SLS 2SLS OLS 2SLS 2SLS 

Instrument for More than - Same sex Two boys, - Same sex Two boys, - Same sex Two boys, 
2 children Two girls Two girls Two girls 

Dependent variable: 

Worked for pay -0.176 -0.120 -0.113 -0.167 -0.120 -0.113 -0.008 0.004 0.001 
(0.002) (0.025) (0.025) (0.002) (0.028) (0.028) (0.001) (0.009) (0.008) 

[0.013] [0.013] [0.013] 

Weeks worked -8.97 -5.66 -5.37 -8.05 -5.40 -5.16 -0.82 0.59 0.45 
(0.07) (1.1 1) (1.10) (0.09) (1.20) (1.20) (0.04) (0.60) (0.59) 

[0.017] [0.071] [0.0301 

Hours/week -6.66 -4.59 -4.37 -6.02 -4.83 -4.61 0.25 0.56 0.50 
(0.06) (0.95) (0.94) (0.08) (1.02) (1.01) (0.05) (0.70) (0.69) 

[0.030] [0.049] [0.71] 

Labor income -3768.2 -1960.5 -1870.4 -3165.7 -1344.8 -1321.2 -1505.5 -1248.1 -1382.3 
(35.4) (541.5) (538.5) (42.0) (569.2) (565.9) (103.5) (1397.8) (1388.9) 

[0.126] [0.703] (0.549) 

ln(Family income) -0.126 -0.038 -0.045 -0.132 -0.051 -0.053 -- - - 

(0.004) (0.064) (0.064) (0.004) (0.056) (0.056) 
[0.3 191 [0.743] 

ln(Non-wife income) - - - -0.053 0.023 0.016 -- 
(0.005) (0.066) (0.066) 

[0.297] 

Notes: The table reports estimates of the coefficient on the More than 2 children variable in equations (4) and (6) in the text. Other covariates 
in the models are Age, Age at first birth, plus indicators for Boy 1st, Boy 2nd, Black, Hispanic, and Other race. The variable Boy 2nd is 
excluded from equation (6). The p-value for the test of overidentifying restrictions associated with equation (6) is showli in brackets. 
Standard errors are reported in parentheses. 

quadratic terms in the wife's education, 
quadratic terms in wife's age, age at first 
birth, linear and quadratic terms in hus- 
band's age, husband's age at first birth and 
education, linear and quadratic terms in hus- 
band's labor income, and a full set of state 
dummy variables."2 In these models, the 
2SLS estimates (standard errors) of the 
More than 2 children coefficient have the 
following values: Worked for pay, -0.122 
(0.027); Weeks worked, -5.45 (1.18); 
Hours/week, -5.04 (0.99); Labor income, 
- 1,390 (555). All of these values are within 

5 percent of the corresponding estimates 
from Table 7. 

A referee and others who read earlier ver- 
sions of this paper expressed concern about 
whether the results are likely to be represen- 
tative of the impact of childbearing in gen- 
eral since the sample is restricted to women 
with two or more children and to women in 
a relatively young age-group. Estimates of 
the effect of going from two to more than 
two children do not necessarily generalize. 
On the other hand, we believe these results 
are likely to be of general interest because a 
significant fraction of the change in fertility 
between 1970 and 1990 was due to reduc- 
tions in the number of women having more 
than two children. As noted in Section I, this 
fact is apparent in Census data on completed 
family size. 

12 Two of these covariates, years of education and hus- 
band's earnings, are potentially endogenous because they 
may be partly determined by fertility. For this reason, they 
were excluded from the main set of estimates. 

Overid test p-values — many interpretations with heterogeneity
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Controversy and Debate
Controversy
I Angrist, Imbens and Rubin (1996, “AIR”) — special issue of JASA
I Article criticized “econometric approaches” (latent variable notation)
I Advocated potential outcome “approach” (notation) as more credible
I LATE held up as an example of the fruits of potential outcomes
I Clearly struck a nerve with some (see commenting articles)

Debate
I Many economists are skeptical of the relevance of LATEs
I The definition of LATE depends on the instrument — external validity?

What do same-sex compliers tell us about policy?
I LATE as a battle in a broader debate: Internal vs. external validity
I This debate continues in economics — see symposia in the JoE, JEP, JEL
I Camps sometimes roughly described as “structural” or “reduced form”
I Both groups make good points — why not combine their best elements?
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