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Topics of Part I
I Lec I: Selection on Observables

1. Potential Outcomes vs Latent Variables

2. Causal Inference

3. Selection Bias

4. Selection on Observables & Selection on Prop. Score

I Lec II: Roy Models and LATE
1. The role of heterogeneity

2. Multiple instruments, Covariates, and Abadie’s κ

I Lec III: Marginal Treatment E�ect
1. Parameters as functions of MTEs

2. Policy Relevant Treatment E�ects

I Lec IV: Extrapolations
1. Semi-Parametrics MTEs

2. Weights for Target Parameters
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Outline

1. Vytlacil’s equivalence result

2. Marginal Treatment E�ects

3. Policy Relevant Treatment E�ects

4. Empirical Application: Carneiro, Heckman, Vytlacil (11)
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Selection and Monotonicity

Background
I AIR argue the interpretation of “error terms” is di�cult to understand

“Error terms” are a way to refer to latent variables (unobservables)
I They argue that assumptions about latent variables are hard to interpret
I Recall mapping from latent variable to potential outcome notation

D = I{U ≤ ν(Z)} ⇒ Dz = I{U ≤ ν(z)}

I The reverse mapping is not necessarily as easy to understand

Monotonicity and latent variables
I AIR made another argument (pg. 450) that turns out to be simply wrong:

“Monotonicity has no explicit counterpart in the econometric formulation”
I This statement was shown to be wrong by Vytlacil (2002)
I Monotonicity is equivalent to a Roy model with a separable index
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Vytlacil’s (02) Equivalence Result

Model 1 (“IA”) as in Imbens and Angrist (1994)
1. Y = DY1 + (1−D)Y0

2. D = ∑z∈Z I{Z = z}Dz

3. For any z, z′ ∈ Z , Dz ≥ Dz′ or Dz′ ≥ Dz (a.s.)
4. (Y0, Y1, {Dz}z∈Z ) ⊥⊥ Z

Model 2 (“Roy”) is the nonparametric Roy model
1. Y = DY1 + (1−D)Y0 (same as in Model 1)
2. D = I{U ≤ ν(Z)} for latent variable U and unknown function ν

3. (Y0, Y1, U) ⊥⊥ Z

I Vytlacil (2002) showed that these two models are equivalent
I Model 2⇒ Model 1 is easy (next slide)
I Model 1⇒ Model 2 is more subtle
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proof of equivalence

WTS D = I{U ≤ ν(Z)} and (Y0, Y1, U) ⊥⊥ Z imply conditions 1.2− 1.4 .
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Outline

1. Vytlacil’s equivalence result

2. Marginal Treatment E�ects

3. Policy Relevant Treatment E�ects

4. Empirical Application: Carneiro, Heckman, Vytlacil (11)
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Heckman and Vytlacil (99/05)

Motivation
I Vytlacil’s result shows that nothing is lost from the Roy model
I Equivalence result means same assumptions as the “LATE framework”
I The Roy model may actually be easier to interpret for economists
I Interpret ν(Z)−U as latent utility in the choice problem for D

Just keep in mind that the definition of U depends on Z

Setup
I The analysis uses the same non-parametric Roy model as before:

Y = DY1 + (1−D)Y0

D = I{U ≤ ν(Z)} with (Y0, Y1, U) ⊥⊥ Z

I U continuously distributed, normalized to be uniform [0, 1]
Implies that ν(Z) = p(Z)

I Everything is “conditional-on-X,” so suppress X in the notation
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Normalization: Selection Equation
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The Marginal Treatment Effect
Definition
I HV define the marginal treatment e�ect (MTE) as:

MTE(u) ≡ E[Y1 − Y0|U = u]

I MTE(u) is the ATE for those agents with first stage unobservable u
Those with small u (close to 0) often choose D = 1
Those with large u (close to 1) infrequently choose D = 1

I Unobserved treatment heterogeneity if and only if non-constant MTE

Pointwise identification of the MTE
I The MTE is point identified for all p ∈ int supp p(Z) (next slide):

∂

∂p
E[Y|p(Z) = p]︸ ︷︷ ︸

“local IV estimand”

= MTE(p)

I Note that this requires Z to be continuously distributed!
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Proof of identification of MTE
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Proof of identification of MTE

E[Y|P(Z) = p] = E[Y1|U ≤ p]p + E[Y0|U > p](1− p).
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Utility of the MTE
An organizing principle
I U provides a single dimension on which we can organize heterogeneity

I Many quantities can be written as weighted averages of the MTE

θ =
∫ b

a
MTE(u)ω(u)du .

We will see several examples ahead

I Point identification follows from LIV if support at non-zero weights

I Tool to discuss new quantities that answer specific policy questions

Implementation and extrapolation
I The MTE also gives us something we can restrict and/or parameterize

I This is useful for estimation (dimension reduction)

I It is also useful for thinking about extrapolation
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ATE: Unweighted Average MTE

I The ATE is the unweighted average of the MTEs:

ATE = E [E[Y1 − Y0|U]] =
∫ 1

0
MTE(u)× 1 du︸︷︷︸

U uniform

I The ATE is point identified if {0, 1} ∈ supp p(Z)
I This follows from the LIV-MTE identification argument, e.g.:

E[Y|p(Z) = 1] = E[Y1|U ≤ 1] = E[Y1]

I Requiring {0, 1} ∈ supp p(Z) is a large support condition
I It says that there exist instrument values z0, z1 ∈ Z such that:

Every agent with z0 would never take the treatment (p(z0) = 0)
Every agent with z1 would always take the treatment (p(z1) = 1)

I A severe demand to place on the data⇒ limited scope
I Basically means you have random assignment since Z = zd ⇒ D = d
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ATT/ATU: Weighted Average MTE

ATT
I The ATT can be written as (see problem set)

ATT =
∫ 1

0
MTE(u)P[p(Z) ≥ u]

P[D = 1]
du ≡

∫ 1

0
MTE(u)ωATT(u) du,

I Those with low values of u are more highly weighted
These are the most likely to take treatment

I The weights are known or identifiable and integrate to 1

ATU
I Analogous argument for the ATU:

ATT =
∫ 1

0
MTE(u)P[p(Z) < u]

P[D = 0]
du ≡

∫ 1

0
MTE(u)ωATU(u) du,

I High values of u are more highly weighted (least likely to take treatment)
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LATE as a Weighted MTE

Weights
I Suppose p(z) > p(z′) for two values z′ and z — then

LATEz
z′ =

∫ 1

0
MTE(u)ωLATE(u)du, where ωLATE(u) ≡

I{p(z′) < u ≤ p(z)}
p(z)− p(z′)

I u ≤ p(z′) are always-takers for z′ → z and u > p(z) are never-takers
I u ∈ (p(z′), p(z)] are z′ → z compliers
I LATEz

z′ puts equal weight on compliers, 0 weight on all others
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LATE as a Weighted MTE

Limiting case
I Notice that as we take p(z)↘ p(z′),

lim
p(z)↘p(z′)

LATEz
z′ = lim

p(z)↘p(z′)

∫ p(z)
p(z′) MTE(u) du

p(z)− p(z′)
= MTE(p(z′)),

I So the MTE is a limiting (marginal) version of the LATE
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The IV Estimand as a Weighted MTE

I Suppose we use J(Z) as an instrument for D — IV estimand βIV,J

I Using similar arguments it can be shown that

βIV,J ≡
cov(J(Z), Y)
cov(J(Z), D)

=
∫ 1

0
MTE(u)ωIV,J(u)du,

with ωIV,J(u) ≡
(E[J(Z)|p(Z) ≥ u]− E[J(Z)])P[p(Z) ≥ u]

cov(J(Z), D)
,

I Weights are 0 for u < inf supp P and u > sup supp P
I Weights integrate to 1
I Weights will generally be negative for some u:

E[J(Z)|p(Z) ≥ u]− E[J(Z)] may be both positive and negative

I Example of only positive is J(Z) = p(Z) or a monotone transformation
I So IV/TSLS need not estimate a “causal e�ect” in general
I Still consistent with the IA results since they ordered Z by p(Z)
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Outline

1. Vytlacil’s equivalence result

2. Marginal Treatment E�ects

3. Policy Relevant Treatment E�ects

4. Empirical Application: Carneiro, Heckman, Vytlacil (11)
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“Policy Relevant” Parameter?

I The MTE framework partitions all agents in a clear way
I Provides a foundation for thinking about “ideal” treatment e�ects
I The “ideal” treatment e�ect clearly depends on the question

I The ATE receives a lot of attention in the literature
But not very useful for policy — can agents still choose D?

I The ATT is somewhat clearer in this regard
Loss in benefit to treated group from discontinuing D = 1

I Perhaps more relevant is changing the agent’s choice problem
I For example, D ∈ {0, 1} is attending a four-year college
I Average e�ect of forcing college/no college (ATE) is not interesting
I Nor is the e�ect on college-goers of shutting down college (ATT)
I More interesting are the e�ects via D of adjusting tuition Z
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Policy Relevant Treatment Effects

I HV formalize this idea as policy relevant treatment e�ects (PRTE)
I Aggregate e�ect on Y of a change in the propensity score/instrument
I Change corresponds to a policy that a�ects treatment choice

I Let p?(Z?), Z? be the propensity score/instrument under a new policy
I Let D? denote the treatment choice under the new policy:

D? = I{U ≤ p?(Z?)}

I Letting Y? = D?Y1 + (1−D?)Y0 be the outcome under the new policy,

HV define the PRTE as: βPRTE ≡
E[Y?]− E[Y]
E[D?]− E[D]

I The mean e�ect (per net person) of the policy change
I Implicit assumption is that the policy does not a�ect (Y0, Y1, U)

Intuitively necessary — see HV for a formalization
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The PRTE as a Weighted MTE

I One can show that

βPRTE ≡
E[Y?]− E[Y]
E[D?]− E[D]

=
∫ 1

0
MTE(u)ωPRTE(u) du

with ωPRTE(u) ≡
F−P (u)− F−P?(u)

E[P?]− E[P]

where FP and FP? are the distributions of P ≡ p(Z) and P? ≡ p?(Z?)

F−P (u) ≡ limv↑u FP(u) is the left-limit of FP at u
I The weights show that point identifying βPRTE will be di�cult
I In particular, the support of P? must be contained in that of P
I Since we can only possibly point identify MTE(u) on the support of P
I Restricts to interpolating policies vs. extrapolating policies
I In addition, still need to have a continuous instrument
I Or else cannot nonparametrically point identify MTE(u) for any u
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PRTEs: Two Counterfactual Policies
I Instead of contrasting with status quo, could have two policies:

Da ≡ I{U ≤ pa(Za)} and Db ≡ I{U ≤ pb(Zb)}
Ya ≡ DaY1 + (1−Da)Y0 and Yb ≡ DbY1 + (1−Db)Y0

I Then define the PRTE for b relative to a as

PRTEb
a ≡

E[Yb]− E[Ya]

E[Db]− E[Da]

I Derivation of the weights just requires relabeling the previous argument

The LATE is a PRTE
I Policy a: Every agent receives Z = z′: pa(·) = p(·), Za = z′

I Policy b: Every agent receives Z = z: pb(·) = p(·), Zb = z
I Then PRTEb

a = LATEz
z′

If Z is a policy lever, the LATE may be intrinsically interesting
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2. Marginal Treatment E�ects

3. Policy Relevant Treatment E�ects

4. Empirical Application: Carneiro, Heckman, Vytlacil (11)
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Empirical Application

Carneiro, Heckman & Vytlacil (2011)
I Study returns to schooling in the NLSY 79 for N = 1,747 white males
I Y is (roughly) log average hourly wages
I D ∈ {0, 1} is attending some college — annualized in various ways
I X contains the usual suspects plus some controls relevant for Z
I Z are taken from a variety of other previous studies:

1. The presence of a four-year college in the county of residence at age 14
2. Local wage in the county of residence at age 17
3. Local unemployment in the state of residence at age 17
4. Average tuition in public four-year colleges in age 17 county of residence

I Analysis so far has been “conditional-on-X” — won’t work in practice
Nonparametric conditioning leads to the usual curse of dimensionality

I CHV solve this by imposing some semiparametric structure
I The way they do this also helps with limited instrument support
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Variables Used in CHV (2011) 2763cARnEiRO Et Al.: EStimAting mARginAl REtuRnS tO EducAtiOnVOl. 101 nO. 6

of residence at age 17, and (iv) average tuition in public four-year colleges in the 
county of residence at age 17.12

Distance to college was first used as an instrument for schooling by Card (1995) 
and was subsequently used by Thomas J. Kane and Cecilia Elena Rouse (1995), 
Jeffrey R. Kling (2001), Janet Currie and Enrico Moretti (2003), and Cameron 
and Taber (2004). Cameron and Taber (2004) and Carneiro and Heckman (2002) 
show that distance to college in the NLSY79 is correlated with a measure of ability 
(Armed Forces Qualification Test (AFQT)). In this paper, we include this measure 
of ability in the outcome equation.

Cameron and Heckman (1998, 2001) and the papers they cite emphasize the impor-
tance of controlling for local labor market characteristics (see also Cameron and Taber 
2004). If local unemployment and local earnings at age 17 are correlated with the 
unobservables in the earnings equations in the adult years, our measures of local labor 
market conditions would not be valid instruments. To mitigate this concern, we have 
included measures of permanent local labor market conditions (which we define as 
the average earnings and unemployment between 1973 and 2000 for each location of 
residence at 17) both in the selection and outcome equations. Effectively, we use only 
the innovations in the local labor market variables as instruments. This is similar to 
the procedure used by Cameron and Taber (2004). Further, in the outcome equations 
we also include the average log earnings in the county of residence in 1991, and the 
average unemployment rate in the state of residence in 1991.13

Tuition is used to predict college attendance in Cameron and Heckman (1998, 
2001) and Kane and Rouse (1995). We control for AFQT and maternal education 

12 We have constructed both county and state measures of unemployment, but our state measure has better pre-
dictive power for schooling (perhaps because of less measurement error), and therefore we choose to use it instead 
of county unemployment.

13 As Cameron and Taber (2004) argue, the sign of the total impact of these variables on schooling choice is theo-
retically ambiguous. Local labor market conditions can influence schooling through two possible channels. On the 
one hand, better labor market conditions increase the opportunity costs of schooling and reduce educational attain-
ment. On the other hand, better labor market conditions lead to an increase in the resources of credit constrained 
households and, therefore, promote educational attainment.

Table 2—Definitions of the Variables Used in the Empirical Analysis

Variable Definition

Y Log wage in 1991 (average of all nonmissing wages between 1989 and 1993)
S = 1 If ever enrolled in college by 1991; zero otherwise

X AFQT,a mother’s education, number of siblings, average log earnings 1979–2000 in county of 
residence at 17, average unemployment 1979–2000 in state of residence at 17, urban residence at 14, 
cohort dummies, years of experience in 1991, average local log earnings in 1991, local unemployment 
in 1991

Z\ X   b  Presence of a college at age 14 (Card 1995; Stephen V. Cameron and Christopher Taber 2004), local 
earnings at 17 (Cameron and Heckman 1998; Cameron and Taber 2004), local unemployment at 17 
(Cameron and Heckman 1998), local tuition in public four-year colleges at 17 (Thomas J. Kane and 
Cecilia E. Rouse 1995)

a  We use a measure of this score corrected for the effect of schooling attained by the participant at the date of the 
test, since at the date the test was taken, in 1981, different individuals have different amounts of schooling and the 
effect of schooling on AFQT scores is important. We use a correction based on the method developed in Karsten T. 
Hansen, Heckman, and Kathleen J. Mullen (2004). We take the sample of white males, perform this correction, and 
then standardize the AFQT to have mean 0 and variance 1 within this sample. See Table A-2 in the online Appendix.

b The papers in parentheses are papers that previously used these instruments.

Notational differences
I Their S is my D
I Their Z is like my (X, Z)
I So their Z \X are the (excluded) instruments — what I call Z
I X are the covariates as in my notation
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A Semiparametric MTE Model

I Suppose that we make the following functional form assumptions:

Yd = X′δd + Vd, Vd ≡ Yd − E[Yd|X] for d = 0, 1

I Under these assumptions one can show that

E[Y|X = x, P = p] = x′δ0 + px′(δ1 − δ0) + K(p, x)

where K(p, x) ≡
∫ p

0
E[V1 −V0|X = x, U = u] du

so that MTE(p, x) = x′(δ1 − δ0) +
∂

∂p
K(p, x)

I This is almost a partially linear model (Robinson 1988)
X and PX enter linearly, and through an unknown function K(P, X)

I But still a dimensionality problem, because K(P, X) depends on X
I Also, we wouldn’t be able to separately identify (δ0, δ1) from K(p, x)
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A Partially Linear MTE Model

I To address this, CHV assume that (X, Z) ⊥⊥ (V0, V1, U), so then

K(p, x) ≡
∫ p

0
E[V1 −V0|X = x, U = u] du

=
∫ p

0
E[V1 −V0|U = u] du ≡ K(p)

I The nonparametric component is now a function of a scalar, i.e.

Y = X′δ0 + PX′(δ1 − δ0) + K(P) + ε where ε ≡ Y− E[Y|X, P] (?)

I Now apply the classic argument for partially linear models:

(?)⇒ E[Y|P] = E[X|P]′δ0 + PE[X|P]′(δ1 − δ0) + K(P)

let Ỹ ≡ Y− E[Y|P] and X̃j ≡ Xj − E[Xj|P] for each component j

then Ỹ = X̃′δ0 + PX̃′(δ1 − δ0)︸ ︷︷ ︸
linear in X̃, PX̃

+ε with E[ε|X̃, PX̃] = 0 ,
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Semiparametric Estimation

1. Estimate P(X) using a logit or probit to get P̂(X)

2. Construct Ỹ and X̃ through (1-dimensional!) nonparametric regression
3. Linear regression of Ỹ on X̃ and PX̃ to get (δ̂0, δ̂1)

4. Nonparametrically regress Y−X′ δ̂0 − P̂X′(δ̂1 − δ̂0) on P̂,

noting that E[Y−X′δ0 − PX′(δ1 − δ0)|P] = K(P)

Note that we want to estimate the derivative of K
5. Then x′(δ̂1 − δ̂0) + K̂′(p) is an estimate of MTE(p, x)

I K(p, x) can only possibly be point identified for (p, x) ∈ supp(P, X)

I That is, for a fixed x, only for p ∈ supp(P|X = x)
I But K(p) can be point identified for any p ∈ supp(P) ⊇ supp(P|X = x)
I So assuming (X, Z) ⊥⊥ (V0, V1, U) has addressed the support issues
I As in most applications, these support issues are a big problem . . .
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Joint Support of P and Index of X
2769cARnEiRO Et Al.: EStimAting mARginAl REtuRnS tO EducAtiOnVOl. 101 nO. 6

assumption, MTE is identified over the marginal support of P(Z), and thus it is only 
necessary to investigate the marginal support of P(Z) as opposed to the support of 
P(Z) given X. The support of the estimated P(Z) is shown in Figure 3, and it is almost 
the full unit interval. We trim observations for which the estimated P (Z) is below 
0.0324 or above 0.9775, which are the minimum and maximum values of P for which 
we have common support.17

The parameters of equation (9) can be estimated by a partially linear regression 
of Y on X and P(Z). We proceed in two steps. The first step is construction of the 
estimated P(Z), and the second step is estimation of  δ 1  and  δ 0  using the estimated  
P(Z). The first step is carried out using a logit regression of S on Z. Our specifica-
tion is quite flexible, and alternative functional form specifications for the choice 
model (e.g., probit) produce results similar to the ones reported here. In the second 
step we use the Peter M. Robinson (1988) method for estimating partially linear 
models as extended in Heckman, Hidehiko Ichimura, and Todd (1997).18 Estimates 
of  δ 1  and  δ 0  are presented in online Appendix Table A-7.

17 We define common support as the intersection of the support of P(Z) given d = 1 and the support of P(Z) 
given d = 0. Restricting our empirical estimates to the common support leads us to delete 67 observations, cor-
responding to 4.35 percent of the sample.

18 We run kernel regressions of each of the regressors on P using a bandwidth of 0.05. We compute the residuals 
of each of these regressions and then run a linear regression of Y on these residuals. Our results are robust to choices 
of bandwidth between 0.01 and 0.2.
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Figure 2. Support of P Conditional on X

notes: P is the estimated probability of going to college. It is estimated from a logit regression of college atten-
dance on corrected AFQT, mother’s education, number of siblings, urban residence at 14, permanent earnings in the 
county of residence at 17, permanent unemployment in the state of residence at 17, cohort dummies, a dummy vari-
able indicating the presence of a college in the county of residence at age 14, average log earnings in the county of 
residence at age 17, and average state unemployment in the state of residence at age 17 (see Table 3). X corresponds 
to an index of variables in the outcome equation.

It is striking how small the support of P is for each value of the X index.
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Marginal Support of P
2770 tHE AmERicAn EcOnOmic REViEW OctOBER 2011

Next, consider estimation of K(P(Z)). Equation (9) implies that

 E (Y − X  δ 0  − P(Z) X [ δ 1  −  δ 0 ] | P (Z)) = K (P(Z)).

We thus use local polynomial regression of Y − X    δ  0  −    P (Z)X[    δ  1  −     δ  0 ] on    P (Z) to 
estimate K(P(Z)) and its partial derivative with respect to P(Z). Local polynomial 
estimation not only provides a unified framework for estimating both a function and 
its derivative but also has a variety of desirable properties in comparison with other 
available nonparametric methods.19

Figure 4 plots the component of the MTE that depends on  u  S  , with 90 percent 
confidence bands computed from the bootstrap.20 We fix the components of X at their 

19 Jianqing Fan and Irène Gijbels (1996) provide a detailed discussion of the properties of local polynomial 
estimators. In general, use of higher-order polynomials may reduce the bias but increase the variance by introduc-
ing more parameters. Fan and Gijbels suggest that the order π of the polynomial be equal to π = τ + 1, where τ is 
the order of the derivative of the function of interest that we want to fit. That is, Fan and Gijbels recommend a local 
linear estimator for fitting a function and a local quadratic estimator for fitting a first-order derivative. Therefore, 
we use a local quadratic estimator of ∂K(p)/∂p. We choose the bandwidth that minimizes the residual square cri-
terion proposed in Fan and Gijbels, which gives us a bandwidth of 0.322. Our results are robust to the choice of 
bandwidths between 0.1 and 0.4.

20 Heckman, Ichimura, and Todd (1997) show that the bootstrap provides a better approximation to the true 
standard errors than asymptotic standard errors for the estimation of  β 1 ,  β 0 , and K(P) in a model similar to the one 
we present here. We use 250 bootstrap replications. Throughout the paper, in each iteration of the bootstrap we re-
estimate P(Z) so all standard errors account for the fact that P(Z) is itself an estimated object.
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Figure 3. Support of P for S = 0 and S = 1

notes: P is the estimated probability of going to college. It is estimated from a logit regression of college atten-
dance on corrected AFQT, mother’s education, number of siblings, urban residence at 14, permanent earnings in the 
county of residence at 17, permanent unemployment in the state of residence at 17, cohort dummies, a dummy vari-
able indicating the presence of a college in the county of residence at age 14, average log earnings in the county of 
residence at age 17, and average state unemployment in the state of residence at age 17 (see Table 3).The support of the estimated P(Z) is almost full for both D ∈ {0, 1}
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A Better Way to Separability

I The assumption used in CHV is (V0, V1, U) ⊥⊥ (X, Z)
X ⊥⊥ U: unattractive given the variables usually included in X

I X is still allowed to have a direct e�ect on Yd via X′δd
I So X are completely exogenous (and correctly parameterized) covariates

A weaker condition
I In fact, all that was used in the CHV derivation was:

E[V1 −V0|X = x, U = u] = E[V1 −V0|U = u]

I A su�cient condition is (V0, V1) ⊥⊥ X|U — does not require X ⊥⊥ U
I The benefits can be seen from:

∂

∂p
MTE(p, x) =

∂

∂p

[
x′(δ1 − δ0) +

∂

∂p
K(p)

]
=

∂2

∂p2 K(p)

I So the slope of the MTE does not depend on x — separability



33

Estimated MTE: Semiparametric Case2771cARnEiRO Et Al.: EStimAting mARginAl REtuRnS tO EducAtiOnVOl. 101 nO. 6

mean values in the sample. As above, we annualize the MTE. Our estimates show 
that, in agreement with the normal model, E( u  1  −  u  0  |  u  S  =  u S ) is declining in  u S , i.e., 
students with high values of  u  S  have lower returns than those with low values of  u  S .

Even though the semiparametric estimate of the MTE has larger standard errors 
than the estimate based on the normal model, we still reject the hypothesis that its 
slope is zero. We have already discussed the rejection of the hypothesis that MTE is 
constant in  u S , based on the test results reported in Table 4, panel A. But we can also 
directly test whether the semiparametric MTE is constant in  u S  or not. We evaluate 
the MTE at 26 points, equally spaced between 0 and 1 (with intervals of 0.04). We 
construct pairs of nonoverlapping adjacent intervals (0–0.04, 0.08–0.12, 0.16–0.20, 
0.24–0.28, …), and we take the mean of the MTE for each pair. These are LATEs 
defined over different sections of the MTE. We compare adjacent LATEs. Table 4, 
panel B, reports the outcome of these comparisons. For example, the first column 
reports that

  E ( Y 1  −  Y  0  | X =  _ x  , 0 ≤  u  S  ≤ 0.04) 

  − E ( Y 1  −  Y 0  | X =  _ x  , 0.08 ≤  u  S  ≤ 0.12) = 0.0689.
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Figure 4. E( Y  1  −  Y  0  | X,  u  S ) with 90 Percent Confidence Interval— 

Locally Quadratic Regression Estimates

notes: To estimate the function plotted here, we first use a partially linear regression of log wages on polynomials 
in X, interactions of polynomials in X and P, and K(P), a locally quadratic function of P (where P is the predicted 
probability of attending college), with a bandwidth of 0.32; X includes experience, current average earnings in the 
county of residence, current average unemployment in the state of residence, AFQT, mother’s education, number of 
siblings, urban residence at 14, permanent local earnings in the county of residence at 17, permanent unemployment 
in the state of residence at 17, and cohort dummies. The figure is generated by evaluating by the derivative of (9) 
at the average value of X. Ninety percent standard error bands are obtained using the bootstrap (250 replications).

I This plots x′(δ̂1 − δ̂0) +
∂

∂p K̂(p) evaluated at the average of x

I Presumably only for p in its unconditional support [.032, .978]
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u S ). Individuals choose the schooling sector in which they have comparative advan-
tage. The magnitude of the heterogeneity in returns on which agents select is sub-
stantial: returns can vary from −15.6 percent (for high  u  S  persons, who would lose 
from attending college) to 28.8 percent per year of college (for low  u  S  persons).16 
The magnitude of total heterogeneity is likely to be even higher since the MTE is 
the average gain at that quantile of desire to attend college. In general, there will be 
a distribution of returns centered at each value of the MTE. Furthermore, once we 
account for variation in X and its impact on returns through X( δ 1  −  δ 0 ), we observe 
returns as low as −31.56 percent and as high as 51.02 percent.

Using the weights presented in online Appendix Table A-1B, we can construct 
the standard treatment parameters from the MTE. We present the results in the 
first column of Table 5 (standard errors are bootstrapped). These include marginal 
returns to the three different policies considered in Table 1 (MPRTE), which are all 

16 One unattractive feature of the normal model is that (for our estimates of  σ 1V  and  σ 0V ) mtE(x, 0) = + ∞ and 
mtE(x, 1) = −∞. In order to get finite values at the extremes of the normal MTE, we restrict the support of  u  S  to 
be between 0.0001 and 0.9999.
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Figure 1. MTE Estimated from a Normal Selection Model

notes: To estimate the function plotted here, we estimate a parametric normal selection model by maximum likeli-
hood. The figure is computed using the following formula: 

  ΔMTE (x, uS) = μ1 (x) − μ0 (x) − (σ1V − σ0V) Φ−1 (uS),

where  σ 1V  and  σ 0V  are the covariances between the unobservables of the college and high school equation and the 
unobservable in the selection equation; and X includes experience, current average earnings in the county of resi-
dence, current average unemployment in the state of residence, AFQT, mother’s education, number of siblings, 
urban residence at 14, permanent local earnings in the county of residence at 17, permanent unemployment in the 
state of residence at 17, and cohort dummies. We plot 90 percent confidence bands.

I Notice that the normal model restricts the MTE to be monotone
I What happens as p (uS in their notation) tends to 0 or 1?



35

H0: No Unobserved Heterogeneity

I CHV provide two tests of H0 : no unobserved heterogeneity
Important null — without heterogeneity we could use simple linear IV

I Recall that under their assumptions:

E[Y|X = x, P = p] = x′δ0 + px′(δ1 − δ0) + K(p)

where K(p) ≡
∫ p

0
E[V1 −V0|U = u] du

I No unobserved heterogeneity in treatment response if and only if

E[V1 −V0|U = u] = C for all u, some C ⇔ K(p) = pC

I So test H0 : E[Y|X = x, P = p] is linear in p for each x

One way to implement this test
I Assume K(p) = β0 + β1p + · · ·+ βkpk in the semiparametric procedure
I Then test H0 : β2 = · · · = βk = 0
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B. Estimating the mtE and marginal Policy Effects  
using a normal Selection model

The traditional approach to estimating the model of equations (2) and (3) specifies 
a parametric joint distribution for ( u  0 ,  u  1 , V ), usually that ( u  0 ,  u  1 , V ) are jointly nor-
mally distributed and independent of (X, Z), and estimates the outcome and choice 
equations together using the method of maximum likelihood (e.g., Björklund and 
Moffitt 1987). Although our primary empirical results are from a semiparametric 
method, the results based on a parametric normal model are a useful benchmark 
against which to compare our estimates from less functional form dependent estima-
tors. The parametric specification is less flexible than our semiparametric specifica-
tion, but the resulting estimates are much more precise.

Maximum likelihood estimates of the parameters  δ 0 ,  δ 1 , γ and their standard errors 
are presented in Table A-6 in the online Appendix. The MTE for this model is equa-
tion (10). A simple test of whether the slope of the MTE is zero (i.e., individuals do 
not select into college based on variability in β) is a test of whether  σ 1V  −  σ 0V  = 0. 
We estimate that  σ 1V  −  σ 0V  = −0.2388 with a standard error of 0.0982, so we reject 
this hypothesis (p-value = 0.0150). This supports the conclusions in Table 4 that do 
not impose the joint normality assumption.

Figure 1 plots the estimated MTE with 90 percent confidence bands, evaluated at 
mean values of X (we obtain annualized estimates of the returns to college by divid-
ing the MTE by four, which is the average difference in years of schooling for those 
with S = 1 and those with S = 0). The MTE is declining and precisely estimated. 
The people with the highest gross returns are more likely to go to college (have low  

Table 4— Test of Linearity of E(Y | X, P = p) Using Polynomials in P; and 
Test of Equality of LATEs Over Different Intervals (H0: lAt E  j  ( u  S  

 l    j  ,  u  S  
 H  j  ) − lAt E  j+1  ( u  S  

 l   j+1  ,  u  S  
 H  j+1  ) = 0)

Panel A. Test of linearity of E(Y | X, P = p) using models with different orders of polynomials in P a

Degree of polynomial 
 for model 2 3 4 5

p-value of joint test of 
 nonlinear terms

0.035 0.049 0.086 0.122

Adjusted critical value 0.057
Outcome of test Reject

Panel B. Test of equality of LATEs (H0: lAt E  j  ( u  S  
 l    j  ,  u  S  

 H  j  ) − lAt E  j+1  ( u  S  
 l   j+1  ,  u  S  

 H  j+1  ) = 0)b

Ranges of  u  S  for LAT E  j (0, 0.04) (0.08, 0.12) (0.16, 0.20) (0.24, 0.28) (0.32, 0.36) (0.40, 0.44)
Ranges of  u  S  for LAT E  j+1 (0.08, 0.12) (0.16, 0.20) (0.24, 0.28) (0.32, 0.36) (0.40, 0.44) (0.48, 0.52)
Difference in LATEs 0.0689 0.0629 0.0577 0.0531 0.0492 0.0459
p-value 0.0240 0.0280 0.0280 0.0320 0.0320 0.0520

Ranges of  u  S  for LAT E  j (0.48, 0.52) (0.56, 0.60) (0.64, 0.68) (0.72, 0.76) (0.80, 0.84) (0.88, 0.92)
Ranges of  u  S  for LAT E  j+1 (0.56, 0.60) (0.64, 0.68) (0.72, 0.76) (0.80, 0.84) (0.88, 0.92) (0.96, 1)
Difference in LATEs 0.0431 0.0408 0.0385 0.0364 0.0339 0.0311
p-value 0.0520 0.0760 0.0960 0.1320 0.1800 0.2400

Joint p-value 0.0520

a  The size of the test is controlled using a critical value constructed by the bootstrap method of Romano and Wolf 
(2005) using a 10 percent significance level.

b  In order to compute the numbers in this table, we construct groups of values of  u  S  and average the MTE within 
these groups, by computing E(Y1 − Y0 | X =  _ x  ,  u  S  

 l    j   ≤  u  S  ≤  u  S  
 H  j  ), where  u  S  

 l    j   and  u  S  
 H  j   are the lowest and highest 

values of  u  S  defined for interval j. Then we compare the average MTE across adjacent groups and test whether the 
difference is equal to zero using the bootstrap with 250 replications.

I Panel B is a more direct (maybe less clean) test of the same null
I Tests the implication that MTE is constant over ranges of [0, 1]
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