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Outline of Lecture

I Examples leading to moment inequalities
– Entry Games

– Revealed Preferences in Discrete Choice

– Missing data

I Confidence regions for partially identified models
– Importance of uniform asymptotic validity

I Moment inequalities: five distinct approaches
1. Least Favorable Test

2. subsampling

3. Moment Selection

4. Refined Moment Selection

5. Two-step methods

I Subvector inference for moment inequalities (Skip today)

I Extensions
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Notation

Some basic notation:

P̂n = empirical distribution of Wi, i = 1, . . . , n.

µ(θ, P) = EP[m(Wi, θ)].

m̄n(θ) = sample mean of m(Wi, θ).

Ω̂n(θ) = sample correlation of m(Wi, θ).

σ2
j (θ, P) = VarP[mj(Wi, θ)].

σ̂2
n,j(θ) = sample variance of mj(Wi, θ).

D̂n(θ) = diag(σ̂n,1(θ), . . . , σ̂n,k(θ)).
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Recap: The auxiliary distribution
TEST STATISTIC

Tn(θ) = T
(

D̂−1
n (θ)

√
nm̄n(θ), Ω̂n(θ)

)
.

AUXILIARY DISTRIBUTION

Jn(x, s(θ), θ, P) = P
{

T
(

D̂−1
n (θ)Zn(θ) + D̂−1

n (θ)s(θ), Ω̂n(θ)
)
6 x
}

,

Consider the following derivation:
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Recap: Least Favorable and SS

P{Tn(θ) 6 x} = Jn(x,
√

nµ(θ, P), θ, P)

is hard to estimate due to presence of
√

nµ(θ, P), where

Jn(x, s(θ), θ, P) = P
{

T
(

D̂−1
n (θ)Zn(θ) + D̂−1

n (θ)s(θ), Ω̂n(θ)
)
6 x
}

,

and
Zn(θ) =

√
n(m̄n(θ) − µ(θ, P)) .

However, Jn(x, s(θ), θ, P) is easy to estimate for a given function s(θ).

I Least Favorable:
√

nµ(θ, P) 6 0 for any P ∈ P and θ ∈ Θ0(P)

=⇒ J−1
n (1 −α,

√
nµ(θ, P), θ, P) 6 J−1

n (1 −α, 0, θ, P) .

I Subsampling: implicitly uses
√

nµ(θ, P) 6
√

bµ(θ, P) as upper bound.

=⇒ J−1
n (1 −α,

√
nµ(θ, P), θ, P) 6 J−1

n (1 −α,
√

bµ(θ, P), θ, P) .
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Generalized Moment Selection

I Main Idea: Perhaps possible to estimate
√

nµ(θ, P) “well enough”?

I Selection fn: consider, e.g., ŝgms
n (θ) = (ŝgms

n,1 (θ), . . . , ŝgms
n,k (θ))′ with

ŝgms
n,j (θ) =

0 if
√

nm̄n,j(θ)

σ̂n,j(θ)
> −κn

−∞ otherwise
,

where 0 < κn →∞ and κn/
√

n→ 0.

I Choosing

ĉn(1 −α, θ) = estimate of J−1
n

(
1 −α, ŝgms

n (θ), θ, P
)

leads to valid tests.

See Andrews & Soares (2010). Related results in Bugni (2010) and Canay (2010).
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Generalized Moment Selection (cont.)

GMS
The GMS test takes the form

φ
gms
n (θ) ≡ I

{
Tn(θ) > Ĵ−1

n (1 −α, ŝgms
n (θ), θ)

}
.

I Why does it work? note that
√

nm̄n,j(θ)

σ̂n,j(θ)
=

√
n(m̄n,j(θ) − µj(θ, P))

σ̂n,j(θ)
+

√
nµj(θ, P)
σ̂n,j(θ)

.

– First term: OP(1) for θ and P s.t. µj(θ, P) 6 0.

– Second term: either is zero or diverges in probability to −∞ depending, respectively, on whether
µj(θ, P) = 0 or µj(θ, P) < 0.
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Generalized Moment Selection (cont.)

1
κn

√
nm̄n,j(θ)

σ̂n,j(θ)
=

1
κn

√
n(m̄n,j(θ) − µj(θ, P))

σ̂n,j(θ)
+

1
κn

√
nµj(θ, P)
σ̂n,j(θ)

.

ŝgms
n,j (θ) =

0 if 1
κn

√
nm̄n,j(θ)

σ̂n,j(θ)
> −1

−∞ otherwise
,

I It follows that for any sequence Pn ∈ P and θn ∈ Θ0(Pn)

ŝgms
n,j (θn) =

{
0 if

√
nµj(θn, Pn)→ c 6 0

−∞ if
√

nµj(θn, Pn)→ −∞ w.p.a.1 .

In this sense, ŝgms
n (θ) provides an asymptotic upper bound on

√
nµ(θ, P).

I Alternative Interpretation: ŝgms
n,j (θ) “selects” whether µj(θ, P) = 0 or µj(θ, P) < 0.
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Generalized Moment Selection (cont.)

I Remark: as SS, it incorporates information about
√

nµ(θ, P) ...

... and, for typical κn and b, more powerful than subsampling.

I Main drawback is choice of κn:

– In finite-samples, smaller choice always more powerful.

– First- and higher-order properties do not depend on κn.

See Bugni (2014).

– Precludes data-dependent rules for choosing κn.

I Power: tests use the same Tn(θ) so power comparison only entail comparisons of critical values

I Intuition: the method that detects non-binding moments more effectively will lead to a test with
higher power.
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Asymptotic Power - Intuition

ŝgms
n,j (θ) =

{
0 if κ−1

n
√

nm̄n,j(θ) > −1
−∞ otherwise

(no σ̂n,j(θ))

EXAMPLE

Consider a model with two moments and sequences θn and Pn such that σ2
j (θ, P) = 1 and

µ1(θn, Pn) =
h1√

n
< 0 and µ2(θn, Pn) =

π1

κ−1
n
√

n
∈ (−∞,−1) .

I GMS: first moment treated as binding,

I GMS: second moment treated as slack,
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Asymptotic Power - Intuition
Consider the following assumption to study SS:

κn

√
b
n
→ 0 . (♣)

EXAMPLE (CONT.)
I SS: first moment treated as binding,

I SS: second moment treated as binding,

(♣) holds for typical choices κn ≈ log n and bn ≈ na for a ∈ (0, 1).
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QUESTIONS?
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Refined Moment Selection
I First/second-order asymptotic properties of GMS tests do not depend on κn.

I Finite samples: a smaller choice of κn translate into better power.

I Main Idea: In order to develop data-dependent rules for choosing κn, ...

... change asymptotic framework so κn does not depend on n.

I Consider, e.g., ŝrms
n (θ) = (ŝrms

n,1 (θ), . . . , ŝrms
n,k (θ))′ with

ŝrms
n,j (θ) =

0 if
√

nm̄n,j(θ)

σ̂n,j(θ)
> −κ

−∞ otherwise
.

I Note: ŝrms
n (θ) no longer an asymptotic upper bound on

√
nµ(θ, P), so ...

... critical value replacing ŝgms
n (θ) with ŝrms

n (θ) is too small.

I For an appropriate size-correction factor η̂n(θ) > 0, choosing

ĉn(1 −α, θ) = estimate of J−1
n (1 −α, ŝrms

n (θ), θ, P) + η̂n(θ)

leads to valid tests (whose first-order properties depend on κ.)
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Refined Moment Selection

REFINED MOMENT SELECTION

Refined moment selection tests are tests of the form

φrms
n (θ) ≡ I{Tn(θ) > Ĵ−1

n (1 −α, ŝrms
n (θ), θ) + η̂n(θ)} ,

where η̂n(θ) is a size-correction factor.

I In order to determine an appropriate size-correction factor, consider the test

φ̃rms
n (θ) ≡ I{Tn(θ) > Ĵ−1

n (1 −α, ŝrms
n (θ), θ) + η}

for an arbitrary non-negative constant η.

I Arguing as before, the limiting rejection probability of this test is

P{T(Z + s∗,Ω∗) > J−1(1 −α, srms,∗(Z + s∗),Ω∗) + η} .

The appropriate size-correction factor is thus

η∗(Ω∗, κ) ≡ inf

{
η > 0 : sup

s∗∈Rk:s∗60
P{T(Z + s∗,Ω∗) > J−1(1 −α, srms,∗(Z + s∗, κ),Ω∗) + η} 6 α

}
.
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Refined Moment Selection

Remark: Incorporates information about
√

nµ(θ, P) ...

... in asymptotic framework where first-order properties depend on κ.

Main drawback is computation of η̂n(θ):

– Requires approximate maximum rejection probability over k-dimensional space.

– Andrews & Barwick (2012) simplify the problem in two ways:

– replace Ω by the smallest off diagonal element (δ)

– examine 2k − 1 extreme points, i.e., s∗ ∈ {−∞, 0}k

– Provide numerical evidence in favor of this simplification.

– More results in McCloskey (2015). Still, remains computationally infeasible for k > 10.

Precludes many applications, e.g.,

– Bajari, Benkard & Levin (2007) (k ≈ 500 or more!)

– Ciliberto & Tamer (2009) (k = 2m+1 where m = # of firms).
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Andrews and Barwick: Table
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QUESTIONS?
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Two Step Methods

Main Idea:
I First step: construct a confidence region for µ(θ, P) at some small significance level β.

I Second step: use this set to provide information about which components of µ(θ, P) are “negative”
when constructing the test.

STEP 1

Construct confidence region Mn(1 −β, θ) for
√

nµ(θ, P), s.t.

lim inf
n→∞ inf

P∈P
inf

θ∈Θ0(P)
P
{√

nµ(θ, P) ∈Mn(1 −β, θ)
}
> 1 −β ,

where 0 < β < α.
An upper-right rectangular confidence region is computationally attractive, i.e.,

Mn(1 −β, θ) =
{
µ ∈ Rk : µj 6 m̄n,j(θ) +

σ̂n,j(θ)q̂n(1 −β, θ)
√

n

}
,

where q̂n(1 −β, θ) may be easily constructed using, e.g., bootstrap.
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Two Step Methods

STEP 2
I Use Mn(1 −β, θ) to restrict possible values for

√
nµ(θ, P).

Consider “largest” s 6 0 with s ∈Mn(1 −β, θ), i.e.,

ŝts
n (θ) = (ŝts

n,1(θ), . . . , ŝts
n,k(θ))

′

with
ŝts

n,j(θ) = min
{√

nm̄n,j(θ) + σ̂n,j(θ)q̂n(1 −β, θ), 0
}

.

I Choosing
ĉn(1 −α, θ) = estimate of J−1

n (1 −α+β, ŝts
n (θ), θ, P) ,

leads to valid tests (whose first-order properties depend on β).

I Closed-form expression for ŝts
n (θ) a key feature!
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Two Step Methods

TWO STEP TEST

Two-step tests are tests of the form

φts
n (θ) ≡ I{Tn(θ) > Ĵ−1

n (1 −α+β, ŝts
n , θ)} .

I The asymptotic validity of these tests relies on

P
{

Tn(θ) > Ĵ−1
n (1 −α+β, ŝts

n (θ), θ)
}
6 P
{

Tn(θ) > Ĵ−1
n (1 −α+β,

√
nµ(θ, P), θ)

}
+ P
{√

nµ(θ, P) 6∈Mn(θ, 1 −β)
}

.

I It is straightforward to show that

lim sup
n→∞ sup

P∈P
sup

θ∈Θ0(P)
P
{

Tn(θ) > Ĵ−1
n (1 −α+β,

√
nµ(θ, P), θ)

}
6 α−β .

I In addition,
lim sup

n→∞ sup
P∈P

sup
θ∈Θ0(P)

P
{√

nµ(θ, P) 6∈Mn(θ, 1 −β)
}
6 β .



21

Two Step Methods

I Note: Argument hinges on simple Bonferroni-type inequality.

I Remark: Also incorporates information about
√

nµ(θ, P) ...

... in asymptotic framework where first-order properties depend on β.

I But, importantly:

– Remains feasible even for large values of k.

– Despite “crudeness” of inequality, remains competitive in terms of power.

I Many earlier antecedents:

– In statistics, e.g., Berger & Boos (1994) and Silvapulle (1996).

– In economics, e.g., Stock & Staiger (1997) and McCloskey (2012).

– Computational simplicity key novelty here.
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QUESTIONS?
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Outline of Lecture

I Examples leading to moment inequalities
– Entry Games

– Revealed Preferences in Discrete Choice

– Missing data

I Confidence regions for partially identified models
– Importance of uniform asymptotic validity

I Moment inequalities: five distinct approaches
1. Least Favorable Test

2. subsampling

3. Moment Selection

4. Refined Moment Selection

5. Two-step methods

I Subvector inference for moment inequalities (Skip)

I Extensions
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Subvector Inference

I Despite advances, methods not commonly employed.

I Methods difficult (infeasible?) when dim(θ) even moderately large ...

... but interest often only in few coord. of θ (or a fcn. of θ)!

I Let λ(·) : Θ→ Λ be function of θ of interest.

I Identified set for λ(θ) is
Λ0(P) = λ(Θ0(P)) = {λ(θ) : θ ∈ Θ0(P)} ,

where
Θ0(P) = {θ ∈ Θ : EP[m(Wi, θ)] 6 0} .

I Goal: Conf. reg. for points in id. set that are unif. consistent in level.

I Remark: Methods require same assumptions plus possibly others.
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Subvectors: main idea

I How: Construct tests φn(λ) of

Hλ : ∃ θ ∈ Θ with EP[m(Wi, θ)] 6 0 and λ(θ) = λ

that provide unif. asym. control of Type I error, i.e.,

lim sup
n→∞ sup

P∈P
sup

λ∈Λ0(P)
EP[φn(λ)] 6 α .

I Given such φn(λ),
Cn = {λ ∈ Λ : φn(λ) = 0}

satisfies desired coverage property.

I Below describe three different tests.
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Subvectors: projections

I Main Idea: Utilize previous tests φn(θ):

φ
proj
n (λ) = inf

θ∈Θλ

φn(θ) ,

where
Θλ = {θ ∈ Θ : λ(θ) = λ} .

I Properties of φn(θ) imply this is a valid test.

I Remark: As noted by Romano & Shaikh (2008) ...

... generally conservative, i.e., may severely over cover λ(θ).

I Computationally difficult when dim(θ) large.

I Related work by Kaido, Molinari & Stoye (2016) ...

... adjust critical value in φn(θ) to avoid over-coverage.
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Subvectors: subsampling

I Main Idea: Reject Hλ for large values of profiled test statistic:

Tprof
n (λ) = inf

θ∈Θλ

Tn(θ) ,

where Tn(θ) is one of test statistics from before.

I Use subsampling to estimate distribution of Tprof
n (λ).

I High-level conditions for validity given by Romano & Shaikh (2008).

I Remark: Less conservative than proj., but choice of b problematic.
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Subvectors: Minimum Resampling

I See Bugni, Canay & Shi (2014).

I Also rejects for large values of Tprof
n (λ).

I In order to describe critical value, useful to define

Jn(x,Θλ, s(·), λ, P) = P
{

inf
θ∈Θλ

T
(

D̂−1
n (θ)Zn(θ) + D̂−1

n (θ)s(θ), Ω̂n(θ)
)
6 x
}

.

Note
Jn(x,Θλ,

√
nµ(·, P), λ, P) = P{Tprof

n (λ) 6 x} .

I Old Idea: Replace s(·) with 0 or ŝgms
n (·).

– does not lead to valid tests.

I Indeed, for P ∈ P and λ ∈ Λ0(P),
√

nµ(θ, P) need not be 6 0 for θ ∈ Θλ .

=⇒ neither 0 nor ŝgms
n (·) provide (asymp.) upper bounds on

√
nµ(·, P).
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Failure of Naive GMS

EXAMPLE

I Let {Wi}
n
i=1 = {(W1,i, W2,i)}

n
i=1 be i.i.d. P = N(02, I2).

I Let (θ1, θ2) ∈ Θ = [−1, 1]2 and consider

µ1(θ, P) = EP[θ1 + θ2 − W1,i] 6 0

µ2(θ, P) = EP[W2,i − θ1 − θ2] 6 0 .

I In this example
Θ0(P) = {θ ∈ Θ : θ1 + θ2 = 0} .

I Interested in testing the hypotheses

H0 : θ1 = 0 vs. H1 : θ1 6= 0 ,

which corresponds to choosing λ(θ) = θ1.

I In this case,
Θλ = {θ ∈ Θ : θ1 = 0, θ2 ∈ [−1, 1]} .
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Failure of Naive GMS

EXAMPLE (TEST STATISTIC)
I The profiled test statistic Tn(λ) takes the form

Tn = inf
θ2∈[−1,1]

Tn(0, θ2) = inf
θ2∈[−1,1]

{[
θ2 − W̄n,1

σ̂n,1

]2

+

+

[
W̄n,2 − θ2

σ̂n,2

]2

+

}
,

Note: σ̂n,j(θ) does not depend on θ in this example.

I Simple algebra shows

θ?2 =
σ̂2

n,2W̄n,1 + σ̂
2
n,1W̄n,2

σ̂2
n,2 + σ̂

2
n,1

w.p.a.1 ,

and this leads to

Tn = Tn(0, θ?2 ) =
1

σ̂2
n,2 + σ̂

2
n,1

[√
nW̄n,2 −

√
nW̄n,1

]2
+

d→ 1
2
[Z2 − Z1]

2
+ ,

where (Z1, Z2) ∼ N(02, I2). Both moments are asymp. binding and correlated.
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Failure of Naive GMS

EXAMPLE (NAIVE GMS)
I The naïve GMS approximation takes the form

Tnaive
n = inf

θ2∈[−1,1]

[
−Z∗n,1 + s1(0, θ2)

]2
+
+
[
Z∗n,2 + s2(0, θ2)

]2
+

,

where
{

Z∗n,1, Z∗n,2| {Wi}
n
i=1

}
d→ Z = (Z1, Z2) ∼ N(02, I2) w.p.a.1 .

I Some algebra shows that {Tnaive
n | {Wi}

n
i=1}

d→ min{[−Z1]
2
+, [Z2]

2
+} w.p.a.1 . Follows from the fact that

the GMS selection functions depend on

κ−1
n
√

nσ̂−1
n,1m̄n,1(0, θ2) = κ

−1
n
√

n
θ2
σ̂n,1

− κ−1
n
√

n
W̄n,1

σ̂n,1

κ−1
n
√

nσ̂−1
n,2m̄n,2(0, θ2) = κ

−1
n
√

n
W̄n,2

σ̂n,2
− κ−1

n
√

n
θ2
σ̂n,2

.

I Naïve GMS: doesn’t penalize large (+) values of κ−1
n
√

nσ̂−1
n,j (θ)m̄n,j(θ) (as sj(θ) 6 0). It can afford to treat an

ineq. as slack by making the other ineq. very positive (treat it as binding).
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Subvectors: two ideas leading to one

I Lesson: naive GMS fails because s 6 0 penalizes only one direction.
I Again: for P ∈ P and λ ∈ Λ0(P),

√
nµ(θ, P) need not be 6 0 for θ ∈ Θλ .

=⇒ neither 0 nor ŝgms
n (·) provide (asymp.) upper bounds on

√
nµ(·, P).

I Main Idea:

(a) Replace Θλ with a subset, e.g.,

Θ̂n ≈ minimizers of Tn(θ) over θ ∈ Θλ ,

over which ŝgms
n (·) provides asymp. upper bound on

√
nµ(·, P).

(b) Replace s(θ) with ŝbcs
n (θ) = (ŝbcs

n,1 (θ), . . . , ŝbcs
n,k (θ))

′ with

ŝbcs
n,j (θ) =

√
nm̄n,j(θ)

κnσ̂n,j(θ)
,

which does provide asymp. upper bound on
√

nµ(·, P).
I Critical values from (a) and (b) both lead to valid tests.
I Combination of two ideas leads to even better test!
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Minimum Resampling Test

SUBVECTORS: MINIMUM RESAMPLING

Let

TDR
n (λ) ≡ inf

θ∈Θ̂n

S(Z∗n(θ) + sgms
n (θ), Ω̂n(θ)) ,

TPR
n (λ) ≡ inf

θ∈Θ(λ)
S(Z∗n(θ) + sbcs

n (θ), Ω̂n(θ)) .

Let the critical value ĉMR
n (λ, 1 −α) be the (conditional) 1 −α quantile of

TMR
n (λ) ≡ min

{
TDR

n (λ), TPR
n (λ)

}
.

The minimum resampling test (or Test MR) is

φMR
n (λ) ≡ 1

{
Tn(λ) > ĉMR

n (λ, 1 −α)
}

.

Remark: By combining both (a) and (b):
– Power advantages over both projection and subsampling
– Not true for (a) or (b) alone.

Main drawback is choice of κn.
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Outline of Lecture

I Examples leading to moment inequalities
– Entry Games

– Revealed Preferences in Discrete Choice

– Missing data

I Confidence regions for partially identified models
– Importance of uniform asymptotic validity

I Moment inequalities: five distinct approaches
1. Least Favorable Test

2. subsampling

3. Moment Selection

4. Refined Moment Selection

5. Two-step methods

I Subvector inference for moment inequalities

I Extensions
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Many Moment Inequalities

I In many applications k may be large: motivates asymp. frameworks with k = kn →∞
I Requires asymptotic approximations for normalized sums with increasing dimensions

I Recently developed by [5].

I Consider inference in models where kn ∝ exp(nδ) for some δ > 0.

I One-step tests: involve a “max”-type test statistic

T̃max
n (θ) = max

16j6k

√
nm̄n,j(θ)

σ̂n,j(θ)
,

and the following critical value

ĉcck
n,k(1 −α+ 2β, θ) =

Φ−1(1 − (α− 2β)/k)√
1 −Φ−1(1 − (α− 2β)/k)2/n

.
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Many Moment Inequalities

I Possible to improve on

ĉcck
n,k(1 −α, θ) =

Φ−1(1 −α/k)√
1 −Φ−1(1 −α/k)2/n

.

by incorporating information about
√

nµ(θ, P).

I Two-step tests: uses a preliminary “selection” step.

Step 1: the number of binding moments is estimated to be

k̂n =

k∑
j=1

ŝcck
n,j (θ) ,

where

ŝcck
n,j (θ) = I

{√
nm̄n,j(θ)

σ̂n,j(θ)
> −2ĉcck

n,k(1 −β, θ)

}
and 0 < β < α

3 .

Step 2: T̃max
n (θ) is compared with ĉcck

n,k̂n
(1 −α, θ).
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Conditional Moment Inequalities

I Many applications where the id. set involves conditional moment inequalities,

Θ0(P) = {θ ∈ Θ : EP[m(Wi, θ)|Zi] 6 0 P-a.s.} .

– see Andrews and Shi (2013) and Chernozhukov, Lee, and Rosen (2013) .

I AS: transform the cond. mom. ineq. into an infinite # of uncond. mom. ineq.
I Can be done by choosing a set of weighting functions G with the property that

Θ0,G(P) = {θ ∈ Θ : EP[m(Wi,θ)g(Zi)] 6 0 for all g ∈ G}

is equal to Θ0(P).

I CLR: “intersection bounds” interpretation. Let V ≡ {(z, j) : z ∈ Z, 1 6 j 6 k} , and

µ̃(θ, P, v) = EP[mj(Wi, θ)|Zi = z] .

I Using this notation, the null hypotheses can be written as

Hθ : sup
v∈V

µ̃(θ, P, v) 6 0 .

I CLR proposed a test based on non-parametric estimators of EP[mj(Wi, θ)|Zi = z].
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Random Set Theory

I Mathematical framework to study random objects whose realizations are sets.

I Useful for identification and inference when the object of interest is the identified set Θ0(P).

I Well-developed area of mathematics. First application to partially identified models appeared in
Beresteanu and Molinari (2006).

I Method useful when Θ0(P) is a compact and convex set that is the Aumann expectation of a
set-valued random variable.

I Hypothesis: For a given compact and convex set Ψ, the main inferential problem considered in the
paper is testing

H0 : Θ0(P) = Ψ

versus the unrestricted alternative.

I Test: reject for large values of the normalized Hausdorff distance between Ψ and a sample analog of
Θ0(P) using a bootstrap critical value.

I Random set theory is particularly useful in providing tractable characterizations of (sharp) identified
sets in partially identified models.
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Bayesian Approach

I Identified models: frequentist confidence sets and Bayesian credible sets often coincide

I Equivalence breaks down in the context of partially identified models

I Priors on θ “influence” posterior inference statements concerning θ.

I Credible sets for θ thus tend to be smaller than frequentist CS.

Result: from the Bayesian perspective, frequentist confidence sets are too wide, while from the
frequentist perspective, Bayesian credible sets are too narrow.

I The lack of asymptotic harmony between Bayesian and frequentist inference is less severe when the
object of interest is the identified set Θ0(P) rather than θ ∈ Θ0(P).

I Recent papers propose robust Bayesian methods and show that a credible sets are also a valid
frequentist confidence set for Θ0(P).

I However: All results on “equivalence” are about “pointwise” asymptotic validity (a concern).
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