# ECDN 481-3 <br> LECTURE 14: INFERENCE IN MOMENT INEDUALITY MODELS 

Ivan A. Canay<br>Northwestern University



1. Canay, I.A. and A.M. Shaikh (2017): "Practical and Theoretical Advances for Inference in Partially Identified Models", In B. Honore, A. Pakes, M. Piazzesi, \& L. Samuelson (Eds.), Advances in Economics and Econometrics: Volumen 2: Eleventh World Congress.
2. Ho, K. and A. M. Rosen (2017): "Partial Identification in Applied Research: Benefits and Challenges", In B. Honore, A. Pakes, M. Piazzesi, \& L. Samuelson (Eds.), Advances in Economics and Econometrics: Volumen 2: Eleventh World Congress.

- Examples leading to moment inequalities
- Entry Games
- Revealed Preferences in Discrete Choice
- Missing data
- Confidence regions for partially identified models
- Importance of uniform asymptotic validity
- Moment inequalities: five distinct approaches

1. Least Favorable Test
2. subsampling
3. Moment Selection
4. Refined Moment Selection
5. Two-step methods

- Subvector inference for moment inequalities (Skip today)
- Extensions


## Notation

Some basic notation:

$$
\begin{aligned}
& \hat{P}_{n}=\text { empirical distribution of } W_{i}, i=1, \ldots, n \\
& \mu(\theta, P)=E_{P}\left[m\left(W_{i}, \theta\right)\right] \\
& \bar{m}_{n}(\theta)=\text { sample mean of } m\left(W_{i}, \theta\right) \\
& \hat{\Omega}_{n}(\theta)=\text { sample correlation of } m\left(W_{i}, \theta\right) . \\
& \sigma_{j}^{2}(\theta, P)=\operatorname{Var}_{P}\left[m_{j}\left(W_{i}, \theta\right)\right] . \\
& \hat{\sigma}_{n, j}^{2}(\theta)=\text { sample variance of } m_{j}\left(W_{i}, \theta\right) . \\
& \hat{D}_{n}(\theta)=\operatorname{diag}\left(\hat{\sigma}_{n, 1}(\theta), \ldots, \hat{\sigma}_{n, k}(\theta)\right) .
\end{aligned}
$$

## RECAP: THE AUXILIARY DISTREBBUTIDN

## Test Statistic

$$
T_{n}(\theta)=T\left(\hat{D}_{n}^{-1}(\theta) \sqrt{n} \bar{m}_{n}(\theta), \hat{\Omega}_{n}(\theta)\right) .
$$

## AUXILIARY DISTRIBUTION

$$
J_{n}(x, s(\theta), \theta, P)=P\left\{T\left(\hat{D}_{n}^{-1}(\theta) Z_{n}(\theta)+\hat{D}_{n}^{-1}(\theta) s(\theta), \hat{\Omega}_{n}(\theta)\right) \leqslant x\right\},
$$

Consider the following derivation:

## RECAP: LEAST FAVDRABLE AND SS

$$
P\left\{T_{n}(\theta) \leqslant x\right\}=J_{n}(x, \sqrt{n} \mu(\theta, P), \theta, P)
$$

is hard to estimate due to presence of $\sqrt{n} \mu(\theta, P)$, where

$$
J_{n}(x, s(\theta), \theta, P)=P\left\{T\left(\hat{D}_{n}^{-1}(\theta) Z_{n}(\theta)+\hat{D}_{n}^{-1}(\theta) s(\theta), \hat{\Omega}_{n}(\theta)\right) \leqslant x\right\},
$$

and

$$
Z_{n}(\theta)=\sqrt{n}\left(\bar{m}_{n}(\theta)-\mu(\theta, P)\right) .
$$

However, $J_{n}(x, s(\theta), \theta, P)$ is easy to estimate for a given function $s(\theta)$.

- Least Favorable: $\sqrt{n} \mu(\theta, P) \leqslant 0$ for any $P \in \mathbf{P}$ and $\theta \in \Theta_{0}(P)$

$$
\Longrightarrow J_{n}^{-1}(1-\alpha, \sqrt{n} \mu(\theta, P), \theta, P) \leqslant J_{n}^{-1}(1-\alpha, 0, \theta, P) .
$$

- Subsampling: implicitly uses $\sqrt{n} \mu(\theta, P) \leqslant \sqrt{b} \mu(\theta, P)$ as upper bound.

$$
\Longrightarrow J_{n}^{-1}(1-\alpha, \sqrt{n} \mu(\theta, P), \theta, P) \leqslant J_{n}^{-1}(1-\alpha, \sqrt{b} \mu(\theta, P), \theta, P) .
$$

## Generalized Moment Selection

- Main Idea: Perhaps possible to estimate $\sqrt{n} \mu(\theta, P)$ "well enough"?
- Selection fn: consider, e.g., $\hat{s}_{n}^{\mathrm{gms}}(\theta)=\left(\hat{s}_{n, 1}^{\mathrm{gms}}(\theta), \ldots, \hat{s}_{n, k}^{\mathrm{gms}}(\theta)\right)^{\prime}$ with

$$
\hat{s}_{n, j}^{\mathrm{gms}}(\theta)= \begin{cases}0 & \text { if } \frac{\sqrt{n} \bar{m}_{n, j}(\theta)}{\hat{\sigma}_{n, j}(\theta)}>-\kappa_{n} \\ -\infty & \text { otherwise }\end{cases}
$$

where $0<\kappa_{n} \rightarrow \infty$ and $\kappa_{n} / \sqrt{n} \rightarrow 0$.

- Choosing

$$
\hat{c}_{n}(1-\alpha, \theta)=\text { estimate of } J_{n}^{-1}\left(1-\alpha, \hat{s}_{n}^{\mathrm{gms}}(\theta), \theta, P\right)
$$

leads to valid tests.

See Andrews \& Soares (2010). Related results in Bugni (2010) and Canay (2010).

## Generfalizeid Moment Selectidn (CDNT.)

## GMS

The GMS test takes the form

$$
\phi_{n}^{\mathrm{gms}}(\theta) \equiv I\left\{T_{n}(\theta)>\widehat{J}_{n}^{-1}\left(1-\alpha, \hat{\mathrm{s}}_{n}^{\mathrm{gms}}(\theta), \theta\right)\right\}
$$

- Why does it work? note that

$$
\frac{\sqrt{n} \bar{m}_{n, j}(\theta)}{\hat{\sigma}_{n, j}(\theta)}=\frac{\sqrt{n}\left(\bar{m}_{n, j}(\theta)-\mu_{j}(\theta, P)\right)}{\hat{\sigma}_{n, j}(\theta)}+\frac{\sqrt{n} \mu_{j}(\theta, P)}{\hat{\sigma}_{n, j}(\theta)} .
$$

- First term: $O_{P}(1)$ for $\theta$ and $P$ s.t. $\mu_{j}(\theta, P) \leqslant 0$.
- Second term: either is zero or diverges in probability to $-\infty$ depending, respectively, on whether $\mu_{j}(\theta, P)=0$ or $\mu_{j}(\theta, P)<0$.


## Generalized Moment Selection (Cont.)

$$
\begin{gathered}
\frac{1}{\kappa_{n}} \frac{\sqrt{n} \bar{m}_{n, j}(\theta)}{\hat{\sigma}_{n, j}(\theta)}=\frac{1}{\kappa_{n}} \frac{\sqrt{n}\left(\bar{m}_{n, j}(\theta)-\mu_{j}(\theta, P)\right)}{\hat{\sigma}_{n, j}(\theta)}+\frac{1}{\kappa_{n}} \frac{\sqrt{n} \mu_{j}(\theta, P)}{\hat{\sigma}_{n, j}(\theta)} \\
\hat{s}_{n, j}^{\mathrm{gms}}(\theta)= \begin{cases}0 & \text { if } \frac{1}{\kappa_{n}} \frac{\sqrt{n} \bar{m}_{n, j}(\theta)}{\hat{\sigma}_{n, j}(\theta)}>-1 \\
-\infty & \text { otherwise }\end{cases}
\end{gathered}
$$

- It follows that for any sequence $P_{n} \in \mathbf{P}$ and $\theta_{n} \in \Theta_{0}\left(P_{n}\right)$

$$
\hat{s}_{n, j}^{\mathrm{gms}}\left(\theta_{n}\right)=\left\{\begin{array}{ll}
0 & \text { if } \sqrt{n} \mu_{j}\left(\theta_{n}, P_{n}\right) \rightarrow c \leqslant 0 \\
-\infty & \text { if } \sqrt{n} \mu_{j}\left(\theta_{n}, P_{n}\right) \rightarrow-\infty
\end{array} \text { w.p.a. } 1\right.
$$

In this sense, $\hat{s}_{n}^{\mathrm{gms}}(\theta)$ provides an asymptotic upper bound on $\sqrt{n} \mu(\theta, P)$.

- Alternative Interpretation: $\hat{s}_{n, j}^{\mathrm{gms}}(\theta)$ "selects" whether $\mu_{j}(\theta, P)=0$ or $\mu_{j}(\theta, P)<0$.
- Remark: as SS, it incorporates information about $\sqrt{n} \mu(\theta, P) \ldots$
... and, for typical $\kappa_{n}$ and $b$, more powerful than subsampling.
- Main drawback is choice of $k_{n}$ :
- In finite-samples, smaller choice always more powerful.
- First- and higher-order properties do not depend on $\kappa_{n}$.

See Bugni (2014).

- Precludes data-dependent rules for choosing $\kappa_{n}$.
- Power: tests use the same $T_{n}(\theta)$ so power comparison only entail comparisons of critical values
- Intuition: the method that detects non-binding moments more effectively will lead to a test with higher power.


## ASYMIPTOTIC POMNER = \|NTUUTION

$$
\hat{s}_{n, j}^{\mathrm{gms}}(\theta)=\left\{\begin{array}{ll}
0 & \text { if } \kappa_{n}^{-1} \sqrt{n} \bar{m}_{n, j}(\theta)>-1 \\
-\infty & \text { otherwise }
\end{array} \quad\left(\text { no } \hat{\sigma}_{n, j}(\theta)\right)\right.
$$

## EXAMPLE

Consider a model with two moments and sequences $\theta_{n}$ and $P_{n}$ such that $\sigma_{j}^{2}(\theta, P)=1$ and

$$
\mu_{1}\left(\theta_{n}, P_{n}\right)=\frac{h_{1}}{\sqrt{n}}<0 \quad \text { and } \quad \mu_{2}\left(\theta_{n}, P_{n}\right)=\frac{\pi_{1}}{\kappa_{n}^{-1} \sqrt{n}} \in(-\infty,-1) .
$$

- GMS: first moment treated as binding,
- GMS: second moment treated as slack,


## Asymptotic Power - Intuition

Consider the following assumption to study SS:

$$
\kappa_{n} \sqrt{\frac{b}{n}} \rightarrow 0 .
$$

## EXAMPLE (CONT.)

- SS: first moment treated as binding,
- SS: second moment treated as binding,
(\&) holds for typical choices $\kappa_{n} \approx \log n$ and $b_{n} \approx n^{a}$ for $a \in(0,1)$.
$\overline{3}$


## Refined Moment Selection

- First/second-order asymptotic properties of GMS tests do not depend on $\kappa_{n}$.
- Finite samples: a smaller choice of $\kappa_{n}$ translate into better power.
- Main Idea: In order to develop data-dependent rules for choosing $\kappa_{n}, \ldots$
... change asymptotic framework so $\kappa_{n}$ does not depend on $n$.
- Consider, e.g., $\hat{s}_{n}^{\mathrm{rms}}(\theta)=\left(\hat{s}_{n, 1}^{\mathrm{rms}}(\theta), \ldots, \hat{s}_{n, k}^{\mathrm{rms}}(\theta)\right)^{\prime}$ with

$$
\hat{s}_{n, j}^{\mathrm{rms}}(\theta)=\left\{\begin{array}{ll}
0 & \text { if } \frac{\sqrt{n} \bar{m}_{n, j}(\theta)}{\hat{\sigma}_{n, j}(\theta)}>-\kappa \\
-\infty & \text { otherwise }
\end{array} .\right.
$$

- Note: $\hat{s}_{n}^{\text {rms }}(\theta)$ no longer an asymptotic upper bound on $\sqrt{n} \mu(\theta, P)$, so $\ldots$
$\ldots$ critical value replacing $\hat{s}_{n}^{g m s}(\theta)$ with $\hat{s}_{n}^{\text {rms }}(\theta)$ is too small.
- For an appropriate size-correction factor $\hat{\eta}_{n}(\theta)>0$, choosing

$$
\hat{c}_{n}(1-\alpha, \theta)=\text { estimate of } J_{n}^{-1}\left(1-\alpha, \hat{s}_{n}^{\text {rms }}(\theta), \theta, P\right)+\hat{\eta}_{n}(\theta)
$$

leads to valid tests (whose first-order properties depend on к.)

## Refinet Moment Selection

## Refined Moment Selection

## Refined moment selection tests are tests of the form

$$
\phi_{n}^{\mathrm{rms}}(\theta) \equiv I\left\{T_{n}(\theta)>\widehat{J}_{n}^{-1}\left(1-\alpha, \hat{s}_{n}^{\mathrm{rms}}(\theta), \theta\right)+\hat{\eta}_{n}(\theta)\right\}
$$

where $\hat{\eta}_{n}(\theta)$ is a size-correction factor.

- In order to determine an appropriate size-correction factor, consider the test

$$
\tilde{\phi}_{n}^{\mathrm{rms}}(\theta) \equiv I\left\{T_{n}(\theta)>\hat{J}_{n}^{-1}\left(1-\alpha, \hat{s}_{n}^{\mathrm{rms}}(\theta), \theta\right)+\eta\right\}
$$

for an arbitrary non-negative constant $\eta$.

- Arguing as before, the limiting rejection probability of this test is

$$
P\left\{T\left(Z+s^{*}, \Omega^{*}\right)>J^{-1}\left(1-\alpha, s^{\mathrm{rms}, *}\left(Z+s^{*}\right), \Omega^{*}\right)+\eta\right\} .
$$

The appropriate size-correction factor is thus

$$
\eta^{*}\left(\Omega^{*}, \kappa\right) \equiv \inf \left\{\eta>0: \sup _{s^{*} \in \mathbf{R}^{k}: s^{*} \leqslant 0} P\left\{T\left(Z+s^{*}, \Omega^{*}\right)>J^{-1}\left(1-\alpha, s^{\mathrm{rms}, *}\left(Z+s^{*}, \kappa\right), \Omega^{*}\right)+\eta\right\} \leqslant \alpha\right\}
$$

## Refinet Moment Selection

Remark: Incorporates information about $\sqrt{n} \mu(\theta, P) \ldots$
... in asymptotic framework where first-order properties depend on $\kappa$.
Main drawback is computation of $\hat{\eta}_{n}(\theta)$ :

- Requires approximate maximum rejection probability over $k$-dimensional space.
- Andrews \& Barwick (2012) simplify the problem in two ways:
- replace $\Omega$ by the smallest off diagonal element ( $\delta$ )
- examine $2^{k}-1$ extreme points, i.e., $s^{*} \in\{-\infty, 0\}^{k}$
- Provide numerical evidence in favor of this simplification.
- More results in McCloskey (2015). Still, remains computationally infeasible for $k>10$.

Precludes many applications, e.g.,

- Bajari, Benkard \& Levin (2007) ( $k \approx 500$ or more!)
- Ciliberto \& Tamer (2009) $\left(k=2^{m+1}\right.$ where $m=\#$ of firms $)$.


## Andrews and Barwick: Table

## TABLE I

Moment Selection Tuning Parameters $\boldsymbol{\kappa}(\boldsymbol{\delta})$ and Size-Correction Factors $\eta_{1}(\delta)$ and $\eta_{2}(p)$ FOR $\alpha=.05^{\mathrm{a}}$

| $\delta$ | $\kappa(\delta)$ | $\eta_{1}(\delta)$ | $\delta$ | $\kappa(\delta)$ | $\eta_{1}(\delta)$ | $\delta$ | $\kappa(\delta)$ | $\eta_{1}(\delta)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[-1,-.975)$ | 2.9 | .025 | $[-.30,-.25)$ | 2.1 | .111 | $[.45, .50)$ | 0.8 | .023 |
| $[-.975,-.95)$ | 2.9 | .026 | $[-.25,-.20)$ | 2.1 | .082 | $[.50, .55)$ | 0.6 | .033 |
| $[-.95,-.90)$ | 2.9 | .021 | $[-.20,-.15)$ | 2.0 | .083 | $[.55, .60)$ | 0.6 | .013 |
| $[-.90,-.85)$ | 2.8 | .027 | $[-.15,-.10)$ | 2.0 | .074 | $[.60, .65)$ | 0.4 | .016 |
| $[-.85,-.80)$ | 2.7 | .062 | $[-.10,-.05)$ | 1.9 | .082 | $[.65, .70)$ | 0.4 | .000 |
| $[-.80,-.75)$ | 2.6 | .104 | $[-.05, .00)$ | 1.8 | .075 | $[.70, .75)$ | 0.2 | .003 |
| $[-.75,-.70)$ | 2.6 | .103 | $[.00, .05)$ | 1.5 | .114 | $[.75, .80)$ | 0.0 | .002 |
| $[-.70,-.65)$ | 2.5 | .131 | $[.05, .10)$ | 1.4 | .112 | $[.80, .85)$ | 0.0 | .000 |
| $[-.65,-.60)$ | 2.5 | .122 | $[.10, .15)$ | 1.4 | .083 | $[.85, .90)$ | 0.0 | .000 |
| $[-.60,-.55)$ | 2.5 | .113 | $[.15, .20)$ | 1.3 | .089 | $[.90, .95)$ | 0.0 | .000 |
| $[-.55,-.50)$ | 2.5 | .104 | $[.20, .25)$ | 1.3 | .058 | $[.95, .975)$ | 0.0 | .000 |
| $[-.50,-.45)$ | 2.4 | .124 | $[.25, .30)$ | 1.2 | .055 | $[.975, .99)$ | 0.0 | .000 |
| $[-.45,-.40)$ | 2.2 | .158 | $[.30, .35)$ | 1.1 | .044 | $[.99,1.0]$ | 0.0 | .000 |
| $[-.40,-.35)$ | 2.2 | .133 | $[.35, .40)$ | 1.0 | .040 |  |  |  |
| $[-.35,-.30)$ | 2.1 | .138 | $[.40, .45)$ | 0.8 | .051 |  |  |  |


| $p$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\eta_{2}(p)$ | .00 | .15 | .17 | .24 | .31 | .33 | .37 | .45 | .50 |

${ }^{\text {a }}$ The values in this table are obtained by simulating asymptotic formulae using 40,000 critical-value and 40,000 rejection-probability simulation repetitions; see Section S7.5 of the Supplemental Material for details.
$\overline{3}$

## Main Idea:

- First step: construct a confidence region for $\mu(\theta, P)$ at some small significance level $\beta$.
- Second step: use this set to provide information about which components of $\mu(\theta, P)$ are "negative" when constructing the test.


## STEP 1

Construct confidence region $M_{n}(1-\beta, \theta)$ for $\sqrt{n} \mu(\theta, P)$, s.t.

$$
\liminf _{n \rightarrow \infty} \inf _{P \in \mathbf{P}} \inf _{\theta \in \Theta_{0}(P)} P\left\{\sqrt{n} \mu(\theta, P) \in M_{n}(1-\beta, \theta)\right\} \geqslant 1-\beta
$$

where $0<\beta<\alpha$.
An upper-right rectangular confidence region is computationally attractive, i.e.,

$$
M_{n}(1-\beta, \theta)=\left\{\mu \in \mathbf{R}^{k}: \mu_{j} \leqslant \bar{m}_{n, j}(\theta)+\frac{\hat{\sigma}_{n, j}(\theta) \hat{q}_{n}(1-\beta, \theta)}{\sqrt{n}}\right\}
$$

where $\hat{q}_{n}(1-\beta, \theta)$ may be easily constructed using, e.g., bootstrap.

## STEP 2

- Use $M_{n}(1-\beta, \theta)$ to restrict possible values for $\sqrt{n} \mu(\theta, P)$.

Consider "largest" $s \leqslant 0$ with $s \in M_{n}(1-\beta, \theta)$, i.e.,

$$
\hat{s}_{n}^{\text {ts }}(\theta)=\left(\hat{s}_{n, 1}^{\mathrm{ts}}(\theta), \ldots, \hat{s}_{n, k}^{\mathrm{ts}}(\theta)\right)^{\prime}
$$

with

$$
\hat{s}_{n, j}^{\text {ts }}(\theta)=\min \left\{\sqrt{n} \bar{m}_{n, j}(\theta)+\hat{\sigma}_{n, j}(\theta) \hat{q}_{n}(1-\beta, \theta), 0\right\} .
$$

- Choosing

$$
\hat{c}_{n}(1-\alpha, \theta)=\text { estimate of } J_{n}^{-1}\left(1-\alpha+\beta, \hat{s}_{n}^{\text {ts }}(\theta), \theta, P\right),
$$

leads to valid tests (whose first-order properties depend on $\beta$ ).

- Closed-form expression for $\hat{s}_{n}^{\text {ts }}(\theta)$ a key feature!


## Two Step Test

Two-step tests are tests of the form

$$
\phi_{n}^{\mathrm{ts}}(\theta) \equiv I\left\{T_{n}(\theta)>\hat{J}_{n}^{-1}\left(1-\alpha+\beta, \hat{s}_{n}^{\mathrm{ts}}, \theta\right)\right\}
$$

- The asymptotic validity of these tests relies on

$$
\begin{aligned}
P\left\{T_{n}(\theta)>\hat{J}_{n}^{-1}\left(1-\alpha+\beta, \hat{s}_{n}^{\text {ts }}(\theta), \theta\right)\right\} & \leqslant P\left\{T_{n}(\theta)>\hat{J}_{n}^{-1}(1-\alpha+\beta, \sqrt{n} \mu(\theta, P), \theta)\right\} \\
& +P\left\{\sqrt{n} \mu(\theta, P) \notin M_{n}(\theta, 1-\beta)\right\}
\end{aligned}
$$

- It is straightforward to show that

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}} \sup _{\theta \in \Theta_{0}(P)} P\left\{T_{n}(\theta)>\hat{J}_{n}^{-1}(1-\alpha+\beta, \sqrt{n} \mu(\theta, P), \theta)\right\} \leqslant \alpha-\beta
$$

- In addition,

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}} \sup _{\theta \in \Theta_{0}(P)} P\left\{\sqrt{n} \mu(\theta, P) \notin M_{n}(\theta, 1-\beta)\right\} \leqslant \beta
$$

- Note: Argument hinges on simple Bonferroni-type inequality.
- Remark: Also incorporates information about $\sqrt{n} \mu(\theta, P) \ldots$
... in asymptotic framework where first-order properties depend on $\beta$.
- But, importantly:
- Remains feasible even for large values of $k$.
- Despite "crudeness" of inequality, remains competitive in terms of power.
- Many earlier antecedents:
- In statistics, e.g., Berger \& Boos (1994) and Silvapulle (1996).
- In economics, e.g., Stock \& Staiger (1997) and McCloskey (2012).
- Computational simplicity key novelty here.
$\overline{3}$
- Examples leading to moment inequalities
- Entry Games
- Revealed Preferences in Discrete Choice
- Missing data
- Confidence regions for partially identified models
- Importance of uniform asymptotic validity
- Moment inequalities: five distinct approaches

1. Least Favorable Test
2. subsampling
3. Moment Selection
4. Refined Moment Selection
5. Two-step methods

- Subvector inference for moment inequalities (Skip)
- Despite advances, methods not commonly employed.
- Methods difficult (infeasible?) when $\operatorname{dim}(\theta)$ even moderately large
... but interest often only in few coord. of $\theta$ (or a fon. of $\theta$ )!
Let $\lambda(\cdot): \Theta \rightarrow \Lambda$ be function of $\theta$ of interest.
- Identified set for $\lambda(\theta)$ is

$$
\Lambda_{0}(P)=\lambda\left(\Theta_{0}(P)\right)=\left\{\lambda(\theta): \theta \in \Theta_{0}(P)\right\},
$$

where

$$
\Theta_{0}(P)=\left\{\theta \in \Theta: E_{P}\left[m\left(W_{i}, \theta\right)\right] \leqslant 0\right\} .
$$

- Goal: Conf. reg. for points in id. set that are unif. consistent in level.
- Remark: Methods require same assumptions plus possibly others.
- How: Construct tests $\phi_{n}(\lambda)$ of

$$
H_{\lambda}: \exists \theta \in \Theta \text { with } E_{P}\left[m\left(W_{i}, \theta\right)\right] \leqslant 0 \text { and } \lambda(\theta)=\lambda
$$

that provide unif. asym. control of Type I error, i.e.,

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}} \sup _{\lambda \in \Lambda_{0}(P)} E_{P}\left[\phi_{n}(\lambda)\right] \leqslant \alpha .
$$

- Given such $\phi_{n}(\lambda)$,

$$
C_{n}=\left\{\lambda \in \Lambda: \phi_{n}(\lambda)=0\right\}
$$

satisfies desired coverage property.

- Below describe three different tests.
- Main Idea: Utilize previous tests $\phi_{n}(\theta)$ :

$$
\phi_{n}^{\mathrm{proj}}(\lambda)=\inf _{\theta \in \Theta_{\lambda}} \phi_{n}(\theta)
$$

where

$$
\Theta_{\lambda}=\{\theta \in \Theta: \lambda(\theta)=\lambda\} .
$$

- Properties of $\phi_{n}(\theta)$ imply this is a valid test.
- Remark: As noted by Romano \& Shaikh (2008) ...
... generally conservative, i.e., may severely over cover $\lambda(\theta)$.
- Computationally difficult when $\operatorname{dim}(\theta)$ large.
- Related work by Kaido, Molinari \& Stoye (2016) ...
... adjust critical value in $\phi_{n}(\theta)$ to avoid over-coverage.
- Main Idea: Reject $H_{\lambda}$ for large values of profiled test statistic:

$$
T_{n}^{\text {prof }}(\lambda)=\inf _{\theta \in \Theta_{\lambda}} T_{n}(\theta)
$$

where $T_{n}(\theta)$ is one of test statistics from before.

- Use subsampling to estimate distribution of $T_{n}^{\text {prof }}(\lambda)$.
- High-level conditions for validity given by Romano \& Shaikh (2008).
- Remark: Less conservative than proj., but choice of $b$ problematic.
- See Bugni, Canay \& Shi (2014).
- Also rejects for large values of $T_{n}^{\text {prof }}(\lambda)$.
- In order to describe critical value, useful to define

$$
J_{n}\left(x, \Theta_{\lambda}, s(\cdot), \lambda, P\right)=P\left\{\inf _{\theta \in \Theta_{\lambda}} T\left(\hat{D}_{n}^{-1}(\theta) Z_{n}(\theta)+\hat{D}_{n}^{-1}(\theta) s(\theta), \hat{\Omega}_{n}(\theta)\right) \leqslant x\right\}
$$

Note

$$
J_{n}\left(x, \Theta_{\lambda}, \sqrt{n} \mu(\cdot, P), \lambda, P\right)=P\left\{T_{n}^{\text {prof }}(\lambda) \leqslant x\right\}
$$

- Old Idea: Replace $s(\cdot)$ with 0 or $\hat{s}_{n}^{\text {gms }}(\cdot)$.
- does not lead to valid tests.
- Indeed, for $P \in \mathbf{P}$ and $\lambda \in \Lambda_{0}(P)$,

$$
\sqrt{n} \mu(\theta, P) \text { need not be } \leqslant 0 \text { for } \theta \in \Theta_{\lambda}
$$

$\Longrightarrow$ neither 0 nor $\hat{s}_{n}^{\text {gms }}(\cdot)$ provide (asymp.) upper bounds on $\sqrt{n} \mu(\cdot, P)$.

## Failure of Naive GMS

## EXAMPLE

Let $\left\{W_{i}\right\}_{i=1}^{n}=\left\{\left(W_{1, i}, W_{2, i}\right)\right\}_{i=1}^{n}$ be i.i.d. $P=N\left(\mathbf{0}_{2}, I_{2}\right)$.

- Let $\left(\theta_{1}, \theta_{2}\right) \in \Theta=[-1,1]^{2}$ and consider

$$
\begin{aligned}
& \mu_{1}(\theta, P)=E_{P}\left[\theta_{1}+\theta_{2}-W_{1, i}\right] \leqslant 0 \\
& \mu_{2}(\theta, P)=E_{P}\left[W_{2, i}-\theta_{1}-\theta_{2}\right] \leqslant 0 .
\end{aligned}
$$

- In this example

$$
\Theta_{0}(P)=\left\{\theta \in \Theta: \theta_{1}+\theta_{2}=0\right\} .
$$

- Interested in testing the hypotheses

$$
H_{0}: \theta_{1}=0 \text { vs. } H_{1}: \theta_{1} \neq 0
$$

which corresponds to choosing $\lambda(\theta)=\theta_{1}$.

- In this case,

$$
\Theta_{\lambda}=\left\{\theta \in \Theta: \theta_{1}=0, \theta_{2} \in[-1,1]\right\} .
$$

## Failure of Naive GMS

## EXAMPLE (TEST STATISTIC)

- The profiled test statistic $T_{n}(\lambda)$ takes the form

$$
T_{n}=\inf _{\theta_{2} \in[-1,1]} T_{n}\left(0, \theta_{2}\right)=\inf _{\theta_{2} \in[-1,1]}\left\{\left[\frac{\theta_{2}-\bar{W}_{n, 1}}{\hat{\sigma}_{n, 1}}\right]_{+}^{2}+\left[\frac{\bar{W}_{n, 2}-\theta_{2}}{\hat{\sigma}_{n, 2}}\right]_{+}^{2}\right\}
$$

Note: $\hat{\sigma}_{n, j}(\theta)$ does not depend on $\theta$ in this example.

- Simple algebra shows

$$
\theta_{2}^{\star}=\frac{\hat{\sigma}_{n, 2}^{2} \bar{W}_{n, 1}+\hat{\sigma}_{n, 1}^{2} \bar{W}_{n, 2}}{\hat{\sigma}_{n, 2}^{2}+\hat{\sigma}_{n, 1}^{2}} \text { w.p.a.1, }
$$

and this leads to

$$
T_{n}=T_{n}\left(0, \theta_{2}^{\star}\right)=\frac{1}{\hat{\sigma}_{n, 2}^{2}+\hat{\sigma}_{n, 1}^{2}}\left[\sqrt{n} \bar{W}_{n, 2}-\sqrt{n} \bar{W}_{n, 1}\right]_{+}^{2} \xrightarrow{d} \frac{1}{2}\left[Z_{2}-Z_{1}\right]_{+}^{2}
$$

where $\left(Z_{1}, Z_{2}\right) \sim N\left(0_{2}, I_{2}\right)$. Both moments are asymp. binding and correlated.

## Example (Naive GMS)

- The naïve GMS approximation takes the form

$$
T_{n}^{\text {naive }}=\inf _{\theta_{2} \in[-1,1]}\left[-Z_{n, 1}^{*}+s_{1}\left(0, \theta_{2}\right)\right]_{+}^{2}+\left[Z_{n, 2}^{*}+s_{2}\left(0, \theta_{2}\right)\right]_{+}^{2}
$$

where $\left\{Z_{n, 1}^{*}, Z_{n, 2}^{*} \mid\left\{W_{i}\right\}_{i=1}^{n}\right\} \xrightarrow{d} Z=\left(Z_{1}, Z_{2}\right) \sim N\left(\mathbf{0}_{2}, I_{2}\right)$ w.p.a. 1 .

- Some algebra shows that $\left\{T_{n}^{\text {naive }} \mid\left\{W_{i}\right\}_{i=1}^{n}\right\} \xrightarrow{d} \min \left\{\left[-Z_{1}\right]_{+}^{2},\left[Z_{2}\right]_{+}^{2}\right\}$ w.p.a. 1 . Follows from the fact that the GMS selection functions depend on

$$
\begin{aligned}
& \kappa_{n}^{-1} \sqrt{n} \hat{\sigma}_{n, 1}^{-1} \bar{m}_{n, 1}\left(0, \theta_{2}\right)=\kappa_{n}^{-1} \sqrt{n} \frac{\theta_{2}}{\hat{\sigma}_{n, 1}}-\kappa_{n}^{-1} \sqrt{n} \frac{\bar{W}_{n, 1}}{\hat{\sigma}_{n, 1}} \\
& \kappa_{n}^{-1} \sqrt{n} \hat{\sigma}_{n, 2}^{-1} \bar{m}_{n, 2}\left(0, \theta_{2}\right)=\kappa_{n}^{-1} \sqrt{n} \frac{\bar{W}_{n, 2}}{\hat{\sigma}_{n, 2}}-\kappa_{n}^{-1} \sqrt{n} \frac{\theta_{2}}{\hat{\sigma}_{n, 2}} .
\end{aligned}
$$

- Naïve GMS: doesn't penalize large (+) values of $\kappa_{n}^{-1} \sqrt{n} \hat{\sigma}_{n, j}^{-1}(\theta) \bar{m}_{n, j}(\theta)$ (as $\left.s_{j}(\theta) \leqslant 0\right)$. It can afford to treat an ineq. as slack by making the other ineq. very positive (treat it as binding).
- Lesson: naive GMS fails because $s \leqslant 0$ penalizes only one direction.
- Again: for $P \in \mathbf{P}$ and $\lambda \in \Lambda_{0}(P)$,

$$
\sqrt{n} \mu(\theta, P) \text { need not be } \leqslant 0 \text { for } \theta \in \Theta_{\lambda}
$$

$\Longrightarrow$ neither 0 nor $\hat{s}_{n}^{\text {gms }}(\cdot)$ provide (asymp.) upper bounds on $\sqrt{n} \mu(\cdot, P)$.

- Main Idea:
(a) Replace $\Theta_{\lambda}$ with a subset, e.g.,

$$
\hat{\Theta}_{n} \approx \text { minimizers of } T_{n}(\theta) \text { over } \theta \in \Theta_{\lambda}
$$

over which $\hat{s}_{n}^{\text {gms }}(\cdot)$ provides asymp. upper bound on $\sqrt{n} \mu(\cdot, P)$.
(b) Replace $s(\theta)$ with $\hat{s}_{n}^{\text {bcs }}(\theta)=\left(\hat{s}_{n, 1}^{\mathrm{bcs}}(\theta), \ldots, \hat{s}_{n, k}^{\mathrm{bcs}}(\theta)\right)^{\prime}$ with

$$
\hat{s}_{n, j}^{\mathrm{bcs}}(\theta)=\frac{\sqrt{n} \bar{m}_{n, j}(\theta)}{\kappa_{n} \hat{\sigma}_{n, j}(\theta)}
$$

which does provide asymp. upper bound on $\sqrt{n} \mu(\cdot, P)$.

- Critical values from (a) and (b) both lead to valid tests.
- Combination of two ideas leads to even better test!


## Minimum Resampling Test

## Subvectors: Minimum Resampling

Let

$$
\begin{aligned}
& T_{n}^{D R}(\lambda) \equiv \inf _{\theta \in \Theta_{n}} S\left(Z_{n}^{*}(\theta)+s_{n}^{\mathrm{gms}}(\theta), \hat{\Omega}_{n}(\theta)\right), \\
& T_{n}^{P R}(\lambda) \equiv \inf _{\theta \in \Theta(\lambda)} S\left(Z_{n}^{*}(\theta)+s_{n}^{\mathrm{bcs}}(\theta), \hat{\Omega}_{n}(\theta)\right) .
\end{aligned}
$$

Let the critical value $\hat{c}_{n}^{M R}(\lambda, 1-\alpha)$ be the (conditional) $1-\alpha$ quantile of

$$
T_{n}^{M R}(\lambda) \equiv \min \left\{T_{n}^{D R}(\lambda), T_{n}^{P R}(\lambda)\right\}
$$

The minimum resampling test (or Test MR) is

$$
\phi_{n}^{M R}(\lambda) \equiv 1\left\{T_{n}(\lambda)>\hat{c}_{n}^{M R}(\lambda, 1-\alpha)\right\}
$$

Remark: By combining both (a) and (b):

- Power advantages over both projection and subsampling
- Not true for (a) or (b) alone.

Main drawback is choice of $k_{n}$.

- Examples leading to moment inequalities
- Entry Games
- Revealed Preferences in Discrete Choice
- Missing data
- Confidence regions for partially identified models
- Importance of uniform asymptotic validity
- Moment inequalities: five distinct approaches

1. Least Favorable Test
2. subsampling
3. Moment Selection
4. Refined Moment Selection
5. Two-step methods

- Subvector inference for moment inequalities
- Extensions


## Many Moment Inequalities

- In many applications $k$ may be large: motivates asymp. frameworks with $k=k_{n} \rightarrow \infty$
- Requires asymptotic approximations for normalized sums with increasing dimensions
- Recently developed by [5].
- Consider inference in models where $k_{n} \propto \exp \left(n^{\delta}\right)$ for some $\delta>0$.
- One-step tests: involve a "max"-type test statistic

$$
\tilde{T}_{n}^{\max }(\theta)=\max _{1 \leqslant j \leqslant k} \frac{\sqrt{n} \bar{m}_{n, j}(\theta)}{\hat{\sigma}_{n, j}(\theta)}
$$

and the following critical value

$$
\hat{c}_{n, k}^{c c k}(1-\alpha+2 \beta, \theta)=\frac{\Phi^{-1}(1-(\alpha-2 \beta) / k)}{\sqrt{1-\Phi^{-1}(1-(\alpha-2 \beta) / k)^{2} / n}}
$$

## Many Moment Inequalities

- Possible to improve on

$$
\hat{c}_{n, k}^{c k}(1-\alpha, \theta)=\frac{\Phi^{-1}(1-\alpha / k)}{\sqrt{1-\Phi^{-1}(1-\alpha / k)^{2} / n}}
$$

by incorporating information about $\sqrt{n} \mu(\theta, P)$.

- Two-step tests: uses a preliminary "selection" step.

Step 1: the number of binding moments is estimated to be

$$
\hat{k}_{n}=\sum_{j=1}^{k} \hat{s}_{n, j}^{c c k}(\theta)
$$

where

$$
\hat{s}_{n, j}^{\mathrm{cck}}(\theta)=I\left\{\frac{\sqrt{n} \bar{m}_{n, j}(\theta)}{\hat{\sigma}_{n, j}(\theta)}>-2 \hat{c}_{n, k}^{c c k}(1-\beta, \theta)\right\}
$$

and $0<\beta<\frac{\alpha}{3}$.
Step 2: $\tilde{T}_{n}^{\max }(\theta)$ is compared with $\hat{c}_{n, \hat{k}_{n}}^{c c k}(1-\alpha, \theta)$.

## Conditional Moment Inequalities

- Many applications where the id. set involves conditional moment inequalities,

$$
\Theta_{0}(P)=\left\{\theta \in \Theta: E_{P}\left[m\left(W_{i}, \theta\right) \mid Z_{i}\right] \leqslant 0 \text { P-a.s. }\right\} .
$$

- see Andrews and Shi (2013) and Chernozhukov, Lee, and Rosen (2013) .
- AS: transform the cond. mom. ineq. into an infinite \# of uncond. mom. ineq.
- Can be done by choosing a set of weighting functions $\mathcal{G}$ with the property that

$$
\Theta_{0, \mathcal{G}}(P)=\left\{\theta \in \Theta: E_{P}\left[m\left(W_{i}, \theta\right) g\left(Z_{i}\right)\right] \leqslant 0 \text { for all } g \in \mathcal{G}\right\}
$$

is equal to $\Theta_{0}(P)$.

- CLR: "intersection bounds" interpretation. Let $\mathcal{V} \equiv\{(z, j): z \in \mathcal{Z}, 1 \leqslant j \leqslant k\}$, and

$$
\tilde{\mu}(\theta, P, v)=E_{P}\left[m_{j}\left(W_{i}, \theta\right) \mid Z_{i}=z\right] .
$$

- Using this notation, the null hypotheses can be written as

$$
H_{\theta}: \sup _{v \in \mathcal{V}} \tilde{\mu}(\theta, P, v) \leqslant 0
$$

- CLR proposed a test based on non-parametric estimators of $E_{P}\left[m_{j}\left(W_{i}, \theta\right) \mid Z_{i}=z\right]$.
- Mathematical framework to study random objects whose realizations are sets.
- Useful for identification and inference when the object of interest is the identified set $\Theta_{0}(P)$.
- Well-developed area of mathematics. First application to partially identified models appeared in Beresteanu and Molinari (2006).
- Method useful when $\Theta_{0}(P)$ is a compact and convex set that is the Aumann expectation of a set-valued random variable.
- Hypothesis: For a given compact and convex set $\Psi$, the main inferential problem considered in the paper is testing

$$
H_{0}: \Theta_{0}(P)=\Psi
$$

versus the unrestricted alternative.

- Test: reject for large values of the normalized Hausdorff distance between $\Psi$ and a sample analog of $\Theta_{0}(P)$ using a bootstrap critical value.
- Random set theory is particularly useful in providing tractable characterizations of (sharp) identified sets in partially identified models.
- Identified models: frequentist confidence sets and Bayesian credible sets often coincide
- Equivalence breaks down in the context of partially identified models
- Priors on $\theta$ "influence" posterior inference statements concerning $\theta$.
- Credible sets for $\theta$ thus tend to be smaller than frequentist CS.

Result: from the Bayesian perspective, frequentist confidence sets are too wide, while from the frequentist perspective, Bayesian credible sets are too narrow.

- The lack of asymptotic harmony between Bayesian and frequentist inference is less severe when the object of interest is the identified set $\Theta_{0}(P)$ rather than $\theta \in \Theta_{0}(P)$.
- Recent papers propose robust Bayesian methods and show that a credible sets are also a valid frequentist confidence set for $\Theta_{0}(P)$.
- However: All results on "equivalence" are about "pointwise" asymptotic validity (a concern).
[1] Donald W. K. Andrews and P. Jia Barwick. Inference for parameters defined by moment inequalities: A recommended moment selection procedure. Econometrica, 80(6):2805-2826, November 2012.
[2] Donald W. K. Andrews and Xiaoxia Shi. Inference based on conditional moment inequalities. Econometrica, 81(2):609-666, 2013.
[3] Arie Beresteanu and Francesca Molinari. Asymptotic properties for a class of partially identified models. Econometrica, 76(4):763-814, July 2008.
[4] F.A. Bugni, Ivan A. Canay, and X. Shi. Inference for subvectors and other functions of partially identified parameters in moment inequality models. Quantitative Economics, 8(1):1-38, 2017.
[5] Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Testing many moment inequalities. arXiv preprint arXiv:1312.7614, 2013.
[6] Victor Chernozhukov, Sokbae Lee, and Adam M Rosen. Intersection bounds: Estimation and inference. Econometrica, 81(2):667-737, 2013.
[7] Hyungsik R. Moon and Frank Schorfheide. Bayesian and frequentist inference in partially identified models. Econometrica, 80(2):755-782, 2012.
[8] Joseph P. Romano and Azeem M. Shaikh. Inference for identifiable parameters in partially identified econometric models. Journal of Statistical Planning and Inference, 138(9):2786-2807, September 2008.
[9] Joseph P. Romano, Azeem M. Shaikh, and Michael Wolf. A practical two-step method for testing moment inequalities. Econometrica, 82(5):1979-2002, 2014.
$3$

