ECON 481-3 LECTURE 14: INFERENCE IN MOMENT INEQUALITY MODELS

Ivan A. Canay Northwestern University

- 1. Canay, I.A. and A.M. Shaikh (2017): "Practical and Theoretical Advances for Inference in Partially Identified Models", In B. Honore, A. Pakes, M. Piazzesi, & L. Samuelson (Eds.), Advances in Economics and Econometrics: Volumen 2: Eleventh World Congress.
- 2. Ho, K. and A. M. Rosen (2017): "Partial Identification in Applied Research: Benefits and Challenges", In B. Honore, A. Pakes, M. Piazzesi, & L. Samuelson (Eds.), Advances in Economics and Econometrics: Volumen 2: Eleventh World Congress.

OUTLINE OF LECTURE

- Examples leading to moment inequalities
 - Entry Games
 - Revealed Preferences in Discrete Choice
 - Missing data
- Confidence regions for partially identified models

 Importance of uniform asymptotic validity
- Moment inequalities: five distinct approaches
 - 1. Least Favorable Test
 - 2. subsampling
 - 3. Moment Selection
 - 4. Refined Moment Selection
 - 5. Two-step methods
- Subvector inference for moment inequalities (Skip today)
- Extensions

NOTATION

Some basic notation:

```
\hat{P}_n = empirical distribution of W_i, i = 1, ..., n.
\mu(\theta, P) = E_P[m(W_i, \theta)].
\bar{m}_n(\theta) = sample mean of m(W_i, \theta).
\hat{\Omega}_n(\theta) = sample correlation of m(W_i, \theta).
\sigma_i^2(\theta, P) = \operatorname{Var}_P[m_i(W_i, \theta)].
\hat{\sigma}_{n,i}^2(\theta) = sample variance of m_i(W_i, \theta).
\hat{D}_n(\theta) = \operatorname{diag}(\hat{\sigma}_{n,1}(\theta), \dots, \hat{\sigma}_{n,k}(\theta)).
```

RECAP: THE AUXILIARY DISTRIBUTION

TEST STATISTIC

$$T_n(\theta) = T\left(\hat{D}_n^{-1}(\theta)\sqrt{n}\bar{m}_n(\theta), \hat{\Omega}_n(\theta)\right) .$$

AUXILIARY DISTRIBUTION

$$J_n(x,s(\theta),\theta,P) = P\left\{T\left(\hat{D}_n^{-1}(\theta)Z_n(\theta) + \hat{D}_n^{-1}(\theta)s(\theta), \hat{\Omega}_n(\theta)\right) \leq x\right\},\$$

Consider the following derivation:

 $P{T_n(\theta) \leq x} = J_n(x, \sqrt{n\mu(\theta, P)}, \theta, P)$

is hard to estimate due to presence of $\sqrt{n}\mu(\theta, P)$, where

$$J_n(x,s(\theta),\theta,P) = P\left\{T\left(\hat{D}_n^{-1}(\theta)Z_n(\theta) + \hat{D}_n^{-1}(\theta)s(\theta),\hat{\Omega}_n(\theta)\right) \leqslant x\right\} ,$$

and

$$Z_n(\theta) = \sqrt{n}(\bar{m}_n(\theta) - \mu(\theta, P))$$
.

However, $J_n(x, s(\theta), \theta, P)$ is easy to estimate for a given function $s(\theta)$.

► Least Favorable: $\sqrt{n}\mu(\theta, P) \leq 0$ for any $P \in \mathbf{P}$ and $\theta \in \Theta_0(P)$

 $\Longrightarrow J_n^{-1}(1-\alpha,\sqrt{n}\mu(\theta,P),\theta,P) \leqslant J_n^{-1}(1-\alpha,0,\theta,P) \ .$

Subsampling: implicitly uses $\sqrt{n}\mu(\theta, P) \leq \sqrt{b}\mu(\theta, P)$ as upper bound.

$$\implies J_n^{-1}(1-\alpha,\sqrt{n}\mu(\theta,P),\theta,P) \leqslant J_n^{-1}(1-\alpha,\sqrt{b}\mu(\theta,P),\theta,P)$$

GENERALIZED MOMENT SELECTION

- Main Idea: Perhaps possible to estimate $\sqrt{n}\mu(\theta, P)$ "well enough"?
- ► Selection fn: consider, e.g., $\hat{s}_n^{gms}(\theta) = (\hat{s}_{n,1}^{gms}(\theta), \dots, \hat{s}_{n,k}^{gms}(\theta))'$ with

$$\hat{s}_{n,j}^{\text{gms}}(\theta) = egin{cases} 0 & ext{if } rac{\sqrt{n} \tilde{m}_{n,j}(heta)}{\hat{\sigma}_{n,j}(heta)} > -\kappa_n \ -\infty & ext{otherwise} \end{cases}$$

where
$$0 < \kappa_n \to \infty$$
 and $\kappa_n / \sqrt{n} \to 0$.

Choosing

$$\hat{c}_n(1-\alpha,\theta) = \text{ estimate of } J_n^{-1} \Big(1-\alpha, \hat{s}_n^{\text{gms}}(\theta), \theta, P \Big)$$

leads to valid tests.

See Andrews & Soares (2010). Related results in Bugni (2010) and Canay (2010).

GMS

The GMS test takes the form

$$\Phi_n^{\mathrm{gms}}(\theta) \equiv I \Big\{ T_n(\theta) > \widehat{J}_n^{-1}(1-\alpha, \hat{s}_n^{\mathrm{gms}}(\theta), \theta) \Big\} .$$

Why does it work? note that

$$\frac{\sqrt{n}\bar{m}_{n,j}(\theta)}{\hat{\sigma}_{n,j}(\theta)} = \frac{\sqrt{n}(\bar{m}_{n,j}(\theta) - \mu_j(\theta, P))}{\hat{\sigma}_{n,j}(\theta)} + \frac{\sqrt{n}\mu_j(\theta, P)}{\hat{\sigma}_{n,j}(\theta)}$$

- First term: $O_P(1)$ for θ and P s.t. $\mu_i(\theta, P) \leq 0$.

- Second term: either is zero or diverges in probability to $-\infty$ depending, respectively, on whether $\mu_j(\theta, P) = 0$ or $\mu_j(\theta, P) < 0$.

$$\frac{1}{\kappa_n} \frac{\sqrt{n} \bar{m}_{n,j}(\theta)}{\hat{\sigma}_{n,j}(\theta)} = \frac{1}{\kappa_n} \frac{\sqrt{n} (\bar{m}_{n,j}(\theta) - \mu_j(\theta, P))}{\hat{\sigma}_{n,j}(\theta)} + \frac{1}{\kappa_n} \frac{\sqrt{n} \mu_j(\theta, P)}{\hat{\sigma}_{n,j}(\theta)}$$

$$S_{n,j}^{\text{gms}}(\theta) = \begin{cases} 0 & \text{if } rac{1}{\kappa_n} rac{\sqrt{n} ilde{m}_{n,j}(\theta)}{\hat{\sigma}_{n,j}(\theta)} > -1 \\ -\infty & \text{otherwise} \end{cases}$$

► It follows that for any sequence $P_n \in \mathbf{P}$ and $\theta_n \in \Theta_0(P_n)$

$$\hat{s}_{n,j}^{\text{gms}}(\theta_n) = \begin{cases} 0 & \text{if } \sqrt{n}\mu_j(\theta_n, P_n) \to c \leqslant 0 \\ -\infty & \text{if } \sqrt{n}\mu_j(\theta_n, P_n) \to -\infty \end{cases}$$
 w.p.a.1.

In this sense, $\hat{s}_n^{\text{gms}}(\theta)$ provides an asymptotic upper bound on $\sqrt{n}\mu(\theta, P)$.

Alternative Interpretation: $\hat{s}_{n,j}^{gms}(\theta)$ "selects" whether $\mu_j(\theta, P) = 0$ or $\mu_j(\theta, P) < 0$.

GENERALIZED MOMENT SELECTION (CONT.)

Remark: as SS, it incorporates information about $\sqrt{n}\mu(\theta, P)$...

... and, for typical κ_n and b, more powerful than subsampling.

- Main drawback is choice of κ_n:
 - In finite-samples, smaller choice always more powerful.
 - First- and higher-order properties do not depend on κ_n .

See Bugni (2014).

- Precludes data-dependent rules for choosing κ_n .
- **Power**: tests use the same $T_n(\theta)$ so power comparison only entail comparisons of critical values
- Intuition: the method that detects non-binding moments more effectively will lead to a test with higher power.

Asymptotic Power - Intuition

$$\hat{s}_{n,j}^{\text{gms}}(\theta) = \begin{cases} 0 & \text{if } \kappa_n^{-1} \sqrt{n} \bar{m}_{n,j}(\theta) > -1 \\ -\infty & \text{otherwise} \end{cases} \quad (\text{no } \hat{\sigma}_{n,j}(\theta))$$

EXAMPLE

Consider a model with two moments and sequences θ_n and P_n such that $\sigma_i^2(\theta, P) = 1$ and

$$\mu_1(\theta_n, P_n) = \frac{h_1}{\sqrt{n}} < 0 \text{ and } \mu_2(\theta_n, P_n) = \frac{\pi_1}{\kappa_n^{-1}\sqrt{n}} \in (-\infty, -1).$$

GMS: first moment treated as binding,

GMS: second moment treated as slack,

Asymptotic Power - Intuition

Consider the following assumption to study SS:

$$\kappa_n \sqrt{\frac{b}{n}} \to 0 \; .$$

EXAMPLE (CONT.

SS: first moment treated as binding,

SS: second moment treated as binding,

(\clubsuit) holds for typical choices $\kappa_n \approx \log n$ and $b_n \approx n^a$ for $a \in (0, 1)$.

(♣)

REFINED MOMENT SELECTION

- First/second-order asymptotic properties of GMS tests do not depend on κ_n.
- Finite samples: a smaller choice of κ_n translate into better power.
- Main Idea: In order to develop data-dependent rules for choosing κ_n, \dots

... change asymptotic framework so κ_n does not depend on n.

• Consider, e.g., $\hat{s}_n^{rms}(\theta) = (\hat{s}_{n,1}^{rms}(\theta), \dots, \hat{s}_{n,k}^{rms}(\theta))'$ with

$$\hat{s}_{n,j}^{rms}(\theta) = \begin{cases} 0 & \text{ if } \frac{\sqrt{n}\tilde{m}_{n,j}(\theta)}{\hat{\sigma}_{n,j}(\theta)} > -\kappa \\ -\infty & \text{ otherwise} \end{cases}$$

- Note: $\hat{s}_n^{rms}(\theta)$ no longer an asymptotic upper bound on $\sqrt{n}\mu(\theta, P)$, so critical value replacing $\hat{s}_n^{gms}(\theta)$ with $\hat{s}_n^{rms}(\theta)$ is too small.
- For an appropriate size-correction factor $\hat{\eta}_n(\theta) > 0$, choosing

$$\hat{c}_n(1-\alpha,\theta) = \text{ estimate of } J_n^{-1}(1-\alpha,\hat{s}_n^{\text{rms}}(\theta),\theta,P) + \hat{\eta}_n(\theta)$$

leads to valid tests (whose first-order properties depend on κ .)

REFINED MOMENT SELECTION

REFINED MOMENT SELECTION

Refined moment selection tests are tests of the form

$$\Phi_n^{\rm rms}(\theta) \equiv I\{T_n(\theta) > \widehat{J}_n^{-1}(1-\alpha, \hat{s}_n^{\rm rms}(\theta), \theta) + \hat{\eta}_n(\theta)\},\$$

where $\hat{\eta}_n(\theta)$ is a size-correction factor.

In order to determine an appropriate size-correction factor, consider the test

$$\tilde{\Phi}_n^{\mathrm{rms}}(\theta) \equiv I\{T_n(\theta) > \hat{J}_n^{-1}(1-\alpha, \hat{s}_n^{\mathrm{rms}}(\theta), \theta) + \eta\}$$

for an arbitrary non-negative constant η .

Arguing as before, the limiting rejection probability of this test is

$$P\{T(Z+s^*, \Omega^*) > J^{-1}(1-\alpha, s^{\mathrm{rms},*}(Z+s^*), \Omega^*) + \eta\}$$

The appropriate size-correction factor is thus

$$\eta^*(\Omega^*,\kappa) \equiv \inf\left\{\eta > 0: \sup_{s^* \in \mathbf{R}^k: s^* \leqslant 0} P\{T(Z+s^*,\Omega^*) > J^{-1}(1-\alpha,s^{\mathrm{rms},*}(Z+s^*,\kappa),\Omega^*) + \eta\} \leqslant \alpha\right\}$$

REFINED MOMENT SELECTION

Remark: Incorporates information about $\sqrt{n}\mu(\theta, P)$...

... in asymptotic framework where first-order properties depend on $\kappa.$

Main drawback is **computation of** $\hat{\eta}_n(\theta)$:

- Requires approximate maximum rejection probability over *k*-dimensional space.
- Andrews & Barwick (2012) simplify the problem in two ways:

– replace Ω by the smallest off diagonal element (δ)

– examine $2^k - 1$ extreme points, i.e., $s^* \in \{-\infty, 0\}^k$

- Provide numerical evidence in favor of this simplification.

– More results in McCloskey (2015). Still, remains computationally infeasible for k > 10.

Precludes many applications, e.g.,

- Bajari, Benkard & Levin (2007) ($k \approx 500$ or more!)
- Ciliberto & Tamer (2009) ($k = 2^{m+1}$ where m = # of firms).

ANDREWS AND BARWICK: TABLE

TABLE I

Moment Selection Tuning Parameters $\kappa(\delta)$ and Size-Correction Factors $\eta_1(\delta)$ and $\eta_2(p)$ for $\alpha=.05^a$

δ	κ(δ) $\eta_1(\delta)$		δ	$\kappa(\delta)$	$\eta_1(\delta)$	δ	$\kappa(\delta)$	$\eta_1(\delta)$
[-1,97	5) 2.9	.025	[3	0,25)	2.1	.111	[.45, .50)	0.8	.023
[975, -	.95) 2.9	.026	[2	(5,20)	2.1	.082	[.50, .55)	0.6	.033
[95,9	90) 2.9	.021	[2	(0,15)	2.0	.083	[.55, .60)	0.6	.013
[90,8]	35) 2.8	.027	[1	5,10)	2.0	.074	[.60, .65)	0.4	.016
[85,8	30) 2.7	.062	[1	0,05)	1.9	.082	[.65, .70)	0.4	.000
[80,7	75) 2.6	5.104	[05,.00)	1.8	.075	[.70, .75)	0.2	.003
[75,7	70) 2.6	5 .103	[.0	(0, .05)	1.5	.114	[.75, .80)	0.0	.002
[70,6]	55) 2.5	.131	[.0	(5, .10)	1.4	.112	[.80, .85)	0.0	.000
[65,6]	50) 2.5	.122	[.1	0, .15)	1.4	.083	[.85, .90)	0.0	.000
[60,	55) 2.5	.113	[.1	5,.20)	1.3	.089	[.90, .95)	0.0	.000
55,5	50) 2.5	.104	[.2	(0, .25)	1.3	.058	[.95, .975)	0.0	.000
50,4	45) 2.4	.124	ī.2	5,.30)	1.2	.055	[.975, .99)	0.0	.000
	10) 2.2	.158	Ĩ.3	0, .35)	1.1	.044	[.99, 1.0]	0.0	.000
[40,3]	35) 2.2	.133	[.3	5,.40)	1.0	.040	. , ,		
[35,3	30) 2.1	.138	[.4	0, .45)	0.8	.051			
р	2	3	4	5	6	7	8	9	10
$\eta_2(p)$.00	.15	.17	.24	.31	.33	.37	.45	.50

^aThe values in this table are obtained by simulating asymptotic formulae using 40,000 critical-value and 40,000 rejection-probability simulation repetitions; see Section S7.5 of the Supplemental Material for details.

Two Step Methods

Main Idea:

- First step: construct a confidence region for $\mu(\theta, P)$ at some small significance level β .
- Second step: use this set to provide information about which components of μ(θ, P) are "negative" when constructing the test.

STEP 1

Construct confidence region $M_n(1-\beta,\theta)$ for $\sqrt{n}\mu(\theta,P)$, s.t.

$$\liminf_{n \to \infty} \inf_{P \in \mathbf{P}} \inf_{\theta \in \Theta_0(P)} P\left\{\sqrt{n}\mu(\theta, P) \in M_n(1 - \beta, \theta)\right\} \ge 1 - \beta$$

where $0 < \beta < \alpha$. An upper-right rectangular confidence region is computationally attractive, i.e.,

$$M_n(1-\beta,\theta) = \left\{ \mu \in \mathbf{R}^k : \mu_j \leqslant \tilde{m}_{n,j}(\theta) + \frac{\hat{\sigma}_{n,j}(\theta)\hat{q}_n(1-\beta,\theta)}{\sqrt{n}} \right\} ,$$

where $\hat{q}_n(1-\beta,\theta)$ may be easily constructed using, e.g., bootstrap.

STEP 2

• Use $M_n(1-\beta,\theta)$ to restrict possible values for $\sqrt{n}\mu(\theta, P)$.

Consider "largest" $s \leq 0$ with $s \in M_n(1 - \beta, \theta)$, i.e.,

$$\hat{s}_n^{\mathrm{ts}}(\theta) = (\hat{s}_{n,1}^{\mathrm{ts}}(\theta), \dots, \hat{s}_{n,k}^{\mathrm{ts}}(\theta))'$$

with

$$\hat{s}_{n,j}^{\rm ts}(\boldsymbol{\theta}) = \min\left\{\sqrt{n}\bar{m}_{n,j}(\boldsymbol{\theta}) + \hat{\sigma}_{n,j}(\boldsymbol{\theta})\hat{q}_n(1-\beta,\boldsymbol{\theta}), 0\right\}\,.$$

Choosing

$$\hat{c}_n(1-lpha, \theta) =$$
estimate of $J_n^{-1}(1-lpha+eta, \hat{s}_n^{ ext{ts}}(\theta), \theta, P)$,

leads to valid tests (whose first-order properties depend on β).

Closed-form expression for $\hat{s}_n^{ts}(\theta)$ a key feature!

Two Step Methods

TWO STEP TEST

Two-step tests are tests of the form

$$\Phi_n^{\mathrm{ts}}(\theta) \equiv I\{T_n(\theta) > \hat{J}_n^{-1}(1 - \alpha + \beta, \hat{s}_n^{\mathrm{ts}}, \theta)\}.$$

The asymptotic validity of these tests relies on

$$\begin{split} P\Big\{T_n(\theta) > \hat{J}_n^{-1}(1-\alpha+\beta, \hat{s}_n^{\mathrm{ts}}(\theta), \theta)\Big\} &\leq P\Big\{T_n(\theta) > \hat{J}_n^{-1}(1-\alpha+\beta, \sqrt{n}\mu(\theta, P), \theta)\Big\} \\ &+ P\Big\{\sqrt{n}\mu(\theta, P) \notin M_n(\theta, 1-\beta)\Big\} \;. \end{split}$$

It is straightforward to show that

$$\limsup_{n\to\infty}\sup_{P\in\mathbf{P}}\sup_{\theta\in\Theta_0(P)}P\Big\{T_n(\theta)>\hat{J}_n^{-1}(1-\alpha+\beta,\sqrt{n}\mu(\theta,P),\theta)\Big\}\leqslant \alpha-\beta\;.$$

In addition,

$$\limsup_{n\to\infty}\sup_{P\in\mathbf{P}}\sup_{\theta\in\Theta_0(P)}P\Big\{\sqrt{n}\mu(\theta,P)\not\in M_n(\theta,1-\beta)\Big\}\leqslant\beta\;.$$

Two Step Methods

- Note: Argument hinges on simple Bonferroni-type inequality.
- **Remark**: Also incorporates information about $\sqrt{n}\mu(\theta, P)$...

... in asymptotic framework where first-order properties depend on β .

- But, importantly:
 - Remains feasible even for large values of k.
 - Despite "crudeness" of inequality, remains competitive in terms of power.
- Many earlier antecedents:
 - In statistics, e.g., Berger & Boos (1994) and Silvapulle (1996).
 - In economics, e.g., Stock & Staiger (1997) and McCloskey (2012).
 - Computational simplicity key novelty here.

OUTLINE OF LECTURE

- Examples leading to moment inequalities
 - Entry Games
 - Revealed Preferences in Discrete Choice
 - Missing data
- Confidence regions for partially identified models

 Importance of uniform asymptotic validity
- Moment inequalities: five distinct approaches
 - 1. Least Favorable Test
 - 2. subsampling
 - 3. Moment Selection
 - 4. Refined Moment Selection
 - 5. Two-step methods
- Subvector inference for moment inequalities (Skip)

SUBVECTOR INFERENCE

- Despite advances, methods not commonly employed.
- Methods difficult (infeasible?) when dim(θ) even moderately large ...

... but interest often only in few coord. of θ (or a fcn. of θ)!

- Let $\lambda(\cdot): \Theta \to \Lambda$ be function of θ of interest.
- ldentified set for $\lambda(\theta)$ is

 $\Lambda_0(P) = \lambda(\Theta_0(P)) = \{\lambda(\theta) : \theta \in \Theta_0(P)\},\$

where

 $\Theta_0(P) = \{ \theta \in \Theta : E_P[m(W_i, \theta)] \leq 0 \}.$

- **Goal**: Conf. reg. for points in id. set that are unif. consistent in level.
- Remark: Methods require same assumptions plus possibly others.

How: Construct tests $\phi_n(\lambda)$ of

 H_{λ} : $\exists \theta \in \Theta$ with $E_P[m(W_i, \theta)] \leq 0$ and $\lambda(\theta) = \lambda$

that provide unif. asym. control of Type I error, i.e.,

 $\limsup_{n\to\infty}\sup_{P\in\mathbf{P}}\sup_{\lambda\in\Lambda_0(P)}E_P[\phi_n(\lambda)]\leqslant\alpha.$

• Given such $\phi_n(\lambda)$,

 $C_n = \{\lambda \in \Lambda : \phi_n(\lambda) = 0\}$

satisfies desired coverage property.

Below describe three different tests.

SUBVECTORS: PROJECTIONS

Main Idea: Utilize previous tests $\phi_n(\theta)$:

$$\phi_n^{\operatorname{proj}}(\lambda) = \inf_{\theta \in \Theta_\lambda} \phi_n(\theta) ,$$

where

$$\Theta_{\lambda} = \{ \theta \in \Theta : \lambda(\theta) = \lambda \}.$$

- Properties of $\phi_n(\theta)$ imply this is a valid test.
- Remark: As noted by Romano & Shaikh (2008) ...

... generally conservative, i.e., may severely over cover $\lambda(\theta)$.

- Computationally difficult when dim(θ) large.
- Related work by Kaido, Molinari & Stoye (2016) ...

... adjust critical value in $\phi_n(\theta)$ to avoid over-coverage.

Main Idea: Reject H_{λ} for large values of profiled test statistic:

$$T_n^{\mathrm{prof}}(\lambda) = \inf_{\theta \in \Theta_\lambda} T_n(\theta) ,$$

where $T_n(\theta)$ is one of test statistics from before.

- Use subsampling to estimate distribution of $T_n^{\text{prof}}(\lambda)$.
- High-level conditions for validity given by Romano & Shaikh (2008).
- **Remark**: Less conservative than proj., but choice of *b* problematic.

SUBVECTORS: MINIMUM RESAMPLING

- See Bugni, Canay & Shi (2014).
- Also rejects for large values of $T_n^{\text{prof}}(\lambda)$.
- In order to describe critical value, useful to define

$$J_n(x,\Theta_{\lambda},s(\cdot),\lambda,P) = P\left\{\inf_{\theta\in\Theta_{\lambda}} T\left(\hat{D}_n^{-1}(\theta)Z_n(\theta) + \hat{D}_n^{-1}(\theta)s(\theta),\hat{\Omega}_n(\theta)\right) \leq x\right\}.$$

Note

$$J_n(x,\Theta_{\lambda},\sqrt{n}\mu(\cdot,P),\lambda,P)=P\{T_n^{\text{prot}}(\lambda)\leqslant x\}.$$

- Old Idea: Replace $s(\cdot)$ with 0 or $\hat{s}_n^{gms}(\cdot)$.
 - does not lead to valid tests.
- lndeed, for $P \in \mathbf{P}$ and $\lambda \in \Lambda_0(P)$,

 $\sqrt{n}\mu(\theta,P)$ need not be $\leqslant 0$ for $\theta\in\Theta_\lambda$.

 \implies neither 0 nor $\hat{s}_n^{\text{gms}}(\cdot)$ provide (asymp.) upper bounds on $\sqrt{n}\mu(\cdot, P)$.

FAILURE OF NAIVE GMS

EXAMPLE

▶ Let
$$\{W_i\}_{i=1}^n = \{(W_{1,i}, W_{2,i})\}_{i=1}^n$$
 be i.i.d. $P = N(\mathbf{0}_2, I_2)$.

▶ Let $(\theta_1, \theta_2) \in \Theta = [-1, 1]^2$ and consider

$$\mu_1(\theta, P) = E_P[\theta_1 + \theta_2 - W_{1,i}] \leq 0$$

$$\mu_2(\theta, P) = E_P[W_{2,i} - \theta_1 - \theta_2] \leq 0$$

In this example

$$\Theta_0(P) = \{ \theta \in \Theta : \theta_1 + \theta_2 = 0 \} \,.$$

Interested in testing the hypotheses

 $H_0: heta_1=0$ vs. $H_1: heta_1
eq 0$,

which corresponds to choosing $\lambda(\theta)=\theta_1.$

In this case,

$$\Theta_{\lambda} = \{ \theta \in \Theta : \theta_1 = 0, \theta_2 \in [-1, 1] \}$$

EXAMPLE (TEST STATISTIC)

• The profiled test statistic $T_n(\lambda)$ takes the form

$$T_{n} = \inf_{\theta_{2} \in [-1,1]} T_{n}(0,\theta_{2}) = \inf_{\theta_{2} \in [-1,1]} \left\{ \left[\frac{\theta_{2} - \bar{W}_{n,1}}{\hat{\sigma}_{n,1}} \right]_{+}^{2} + \left[\frac{\bar{W}_{n,2} - \theta_{2}}{\hat{\sigma}_{n,2}} \right]_{+}^{2} \right\},$$

Note: $\hat{\sigma}_{n,j}(\theta)$ does not depend on θ in this example.

Simple algebra shows

$$\theta_2^{\star} = \frac{\hat{\sigma}_{n,2}^2 \bar{W}_{n,1} + \hat{\sigma}_{n,1}^2 \bar{W}_{n,2}}{\hat{\sigma}_{n,2}^2 + \hat{\sigma}_{n,1}^2} \ \text{w.p.a.1} \ ,$$

and this leads to

$$T_n = T_n(0, \theta_2^{\star}) = \frac{1}{\hat{\sigma}_{n,2}^2 + \hat{\sigma}_{n,1}^2} \left[\sqrt{n} \bar{W}_{n,2} - \sqrt{n} \bar{W}_{n,1} \right]_+^2 \xrightarrow{d} \frac{1}{2} [Z_2 - Z_1]_+^2 ,$$

where $(Z_1, Z_2) \sim N(\mathbf{0}_2, I_2)$. Both moments are asymp. binding and correlated.

FAILURE OF NAIVE GMS

EXAMPLE (NAIVE GMS)

The naïve GMS approximation takes the form

$$T_n^{\text{naive}} = \inf_{\theta_2 \in [-1,1]} \left[-Z_{n,1}^* + s_1(0,\theta_2) \right]_+^2 + \left[Z_{n,2}^* + s_2(0,\theta_2) \right]_+^2$$

where $\left\{Z_{n,1}^*, Z_{n,2}^* | \{W_i\}_{i=1}^n\right\} \xrightarrow{d} Z = (Z_1, Z_2) \sim N(\mathbf{0}_2, I_2)$ w.p.a.1.

Some algebra shows that $\{T_n^{naive} | \{W_i\}_{i=1}^n\} \xrightarrow{d} \min\{[-Z_1]_+^2, [Z_2]_+^2\}$ w.p.a.1. Follows from the fact that the GMS selection functions depend on

$$\begin{aligned} \kappa_n^{-1} \sqrt{n} \hat{\sigma}_{n,1}^{-1} \bar{m}_{n,1}(0,\theta_2) &= \kappa_n^{-1} \sqrt{n} \frac{\theta_2}{\hat{\sigma}_{n,1}} - \kappa_n^{-1} \sqrt{n} \frac{\bar{W}_{n,1}}{\hat{\sigma}_{n,1}} \\ \kappa_n^{-1} \sqrt{n} \hat{\sigma}_{n,2}^{-1} \bar{m}_{n,2}(0,\theta_2) &= \kappa_n^{-1} \sqrt{n} \frac{\bar{W}_{n,2}}{\hat{\sigma}_{n,2}} - \kappa_n^{-1} \sqrt{n} \frac{\theta_2}{\hat{\sigma}_{n,2}} \end{aligned}$$

Naïve GMS: doesn't penalize large (+) values of κ_n⁻¹√n σ̂_{n,j}⁻¹(θ)m̃_{n,j}(θ) (as s_j(θ) ≤ 0). It can afford to treat an ineq. as slack by making the other ineq. very positive (treat it as binding).

SUBVECTORS: TWO IDEAS LEADING TO ONE

- **Lesson:** naive GMS fails because $s \leq 0$ penalizes only one direction.
- Again: for $P \in \mathbf{P}$ and $\lambda \in \Lambda_0(P)$,

 $\sqrt{n}\mu(\theta,P)$ need not be $\leqslant 0$ for $\theta\in\Theta_\lambda$.

 \implies neither 0 nor $\hat{s}_n^{\text{gms}}(\cdot)$ provide (asymp.) upper bounds on $\sqrt{n}\mu(\cdot, P)$.

Main Idea:

```
(a) Replace \Theta_{\lambda} with a subset, e.g.,
```

 $\hat{\Theta}_n pprox \,$ minimizers of $T_n(heta)$ over $heta \in \Theta_\lambda$,

over which $\hat{s}_n^{\text{gms}}(\cdot)$ provides asymp. upper bound on $\sqrt{n}\mu(\cdot, P)$. (b) Replace $s(\theta)$ with $\hat{s}_n^{\text{bcs}}(\theta) = (\hat{s}_{n,1}^{\text{bcs}}(\theta), \dots, \hat{s}_{n,k}^{\text{bcs}}(\theta))'$ with

$$\hat{s}_{n,j}^{\mathrm{bcs}}(\theta) = rac{\sqrt{n} \bar{m}_{n,j}(\theta)}{\kappa_n \hat{\sigma}_{n,j}(\theta)} ,$$

which does provide asymp. upper bound on $\sqrt{n}\mu(\cdot, P)$.

- Critical values from (a) and (b) both lead to valid tests.
- Combination of two ideas leads to even better test!

SUBVECTORS: MINIMUM RESAMPLING

Let

$$\begin{split} T_n^{DR}(\lambda) &\equiv \inf_{\substack{\boldsymbol{\theta} \in \boldsymbol{\Theta}_n}} S(Z_n^*(\boldsymbol{\theta}) + s_n^{\mathrm{gms}}(\boldsymbol{\theta}), \hat{\Omega}_n(\boldsymbol{\theta})) \ , \\ T_n^{PR}(\lambda) &\equiv \inf_{\substack{\boldsymbol{\theta} \in \boldsymbol{\Theta}(\lambda)}} S(Z_n^*(\boldsymbol{\theta}) + s_n^{\mathrm{bcs}}(\boldsymbol{\theta}), \hat{\Omega}_n(\boldsymbol{\theta})) \ . \end{split}$$

Let the critical value $\hat{c}_n^{MR}(\lambda,1-\alpha)$ be the (conditional) $1-\alpha$ quantile of

$$T_n^{MR}(\lambda) \equiv \min\left\{T_n^{DR}(\lambda), T_n^{PR}(\lambda)\right\} \; .$$

The minimum resampling test (or Test MR) is

$$\Phi_n^{MR}(\lambda) \equiv 1 \left\{ T_n(\lambda) > \hat{c}_n^{MR}(\lambda, 1-\alpha) \right\} \; .$$

Remark: By combining both (a) and (b):

- Power advantages over both projection and subsampling

- Not true for (a) or (b) alone.

Main drawback is choice of κ_n .

OUTLINE OF LECTURE

- Examples leading to moment inequalities
 - Entry Games
 - Revealed Preferences in Discrete Choice
 - Missing data
- Confidence regions for partially identified models

 Importance of uniform asymptotic validity
- Moment inequalities: five distinct approaches
 - 1. Least Favorable Test
 - 2. subsampling
 - 3. Moment Selection
 - 4. Refined Moment Selection
 - 5. Two-step methods
- Subvector inference for moment inequalities

Extensions

MANY MOMENT INEQUALITIES

- ▶ In many applications *k* may be large: motivates asymp. frameworks with $k = k_n \rightarrow \infty$
- Requires asymptotic approximations for normalized sums with increasing dimensions
- Recently developed by [5].
- Consider inference in models where $k_n \propto \exp(n^{\delta})$ for some $\delta > 0$.
- One-step tests: involve a "max"-type test statistic

$$\tilde{T}_n^{\max}(\theta) = \max_{1\leqslant j\leqslant k} rac{\sqrt{n} \bar{m}_{n,j}(\theta)}{\hat{\sigma}_{n,j}(\theta)}$$
 ,

and the following critical value

$$\hat{c}_{n,k}^{cck}(1-\alpha+2\beta,\theta) = rac{\Phi^{-1}(1-(\alpha-2\beta)/k)}{\sqrt{1-\Phi^{-1}(1-(\alpha-2\beta)/k)^2/n}} \; .$$

MANY MOMENT INEQUALITIES

Possible to improve on

$$\hat{c}_{n,k}^{cck}(1-lpha, \theta) = rac{\Phi^{-1}(1-lpha/k)}{\sqrt{1-\Phi^{-1}(1-lpha/k)^2/n}} \; .$$

by incorporating information about $\sqrt{n}\mu(\theta, P)$.

Two-step tests: uses a preliminary "selection" step.

Step 1: the number of binding moments is estimated to be

$$\hat{k}_n = \sum_{j=1}^k \hat{s}_{n,j}^{ ext{cck}}(heta)$$
 ,

where

$$\hat{s}_{n,j}^{\mathrm{cck}}(\boldsymbol{\theta}) = I\left\{\frac{\sqrt{n}\bar{m}_{n,j}(\boldsymbol{\theta})}{\hat{\sigma}_{n,j}(\boldsymbol{\theta})} > -2\hat{c}_{n,k}^{\mathrm{cck}}(1-\beta,\boldsymbol{\theta})\right\}$$

and $0 < \beta < \frac{\alpha}{3}$.

Step 2:
$$\tilde{T}_n^{\max}(\theta)$$
 is compared with $\hat{c}_{n,\hat{k}_n}^{cck}(1-\alpha,\theta)$.

CONDITIONAL MOMENT INEQUALITIES

Many applications where the id. set involves conditional moment inequalities,

 $\Theta_0(P) = \{ \theta \in \Theta : E_P[m(W_i, \theta) | Z_i] \leq 0 \text{ } P\text{-}a.s. \}.$

- see Andrews and Shi (2013) and Chernozhukov, Lee, and Rosen (2013) .

AS: transform the cond. mom. ineq. into an infinite # of uncond. mom. ineq.

Ean be done by choosing a set of weighting functions \mathcal{G} with the property that

 $\Theta_{0,\mathfrak{G}}(P) = \{ \theta \in \Theta : E_P[m(W_i, \theta)g(Z_i)] \leq 0 \text{ for all } g \in \mathfrak{G} \}$

is equal to $\Theta_0(P)$.

▶ CLR: "intersection bounds" interpretation. Let $\mathcal{V} \equiv \{(z, j) : z \in \mathbb{Z}, 1 \leq j \leq k\}$, and

 $\tilde{\mu}(\theta, P, v) = E_P[m_i(W_i, \theta) | Z_i = z] .$

Using this notation, the null hypotheses can be written as

 $H_{\theta}: \sup_{v \in \mathcal{V}} \tilde{\mu}(\theta, P, v) \leqslant 0 \; .$

► CLR proposed a test based on non-parametric estimators of $E_P[m_j(W_i, \theta)|Z_i = z]$.

RANDOM SET THEORY

- Mathematical framework to study random objects whose realizations are sets.
- ▶ Useful for identification and inference when the object of interest is the identified set $\Theta_0(P)$.
- Well-developed area of mathematics. First application to partially identified models appeared in Beresteanu and Molinari (2006).
- ▶ Method useful when $\Theta_0(P)$ is a compact and convex set that is the Aumann expectation of a set-valued random variable.
- Hypothesis: For a given compact and convex set Ψ, the main inferential problem considered in the paper is testing

$$H_0:\Theta_0(P)=\Psi$$

versus the unrestricted alternative.

- Test: reject for large values of the normalized Hausdorff distance between Ψ and a sample analog of $\Theta_0(P)$ using a bootstrap critical value.
- Random set theory is particularly useful in providing tractable characterizations of (sharp) identified sets in partially identified models.

BAYESIAN APPROACH

- Identified models: frequentist confidence sets and Bayesian credible sets often coincide
- Equivalence breaks down in the context of partially identified models
- Priors on θ "influence" posterior inference statements concerning θ .
- Credible sets for θ thus tend to be **smaller** than frequentist CS.

Result: from the Bayesian perspective, frequentist confidence sets are too wide, while from the frequentist perspective, Bayesian credible sets are too narrow.

- The lack of asymptotic harmony between Bayesian and frequentist inference is less severe when the object of interest is the identified set $\Theta_0(P)$ rather than $\theta \in \Theta_0(P)$.
- Recent papers propose robust Bayesian methods and show that a credible sets are also a valid frequentist confidence set for $\Theta_0(P)$.
- ► However: All results on "equivalence" are about "pointwise" asymptotic validity (a concern).

References

- [1] Donald W. K. Andrews and P. Jia Barwick. Inference for parameters defined by moment inequalities: A recommended moment selection procedure. *Econometrica*, 80(6):2805–2826, November 2012.
- [2] Donald W. K. Andrews and Xiaoxia Shi. Inference based on conditional moment inequalities. *Econometrica*, 81(2):609–666, 2013.
- [3] Arie Beresteanu and Francesca Molinari. Asymptotic properties for a class of partially identified models. *Econometrica*, 76(4):763–814, July 2008.
- [4] F.A. Bugni, Ivan A. Canay, and X. Shi. Inference for subvectors and other functions of partially identified parameters in moment inequality models. *Quantitative Economics*, 8(1):1–38, 2017.
- [5] Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Testing many moment inequalities. *arXiv preprint arXiv:1312.7614*, 2013.
- [6] Victor Chernozhukov, Sokbae Lee, and Adam M Rosen. Intersection bounds: Estimation and inference. *Econometrica*, 81(2):667–737, 2013.
- [7] Hyungsik R. Moon and Frank Schorfheide. Bayesian and frequentist inference in partially identified models. *Econometrica*, 80(2):755–782, 2012.
- [8] Joseph P. Romano and Azeem M. Shaikh. Inference for identifiable parameters in partially identified econometric models. *Journal of Statistical Planning and Inference*, 138(9):2786–2807, September 2008.
- [9] Joseph P. Romano, Azeem M. Shaikh, and Michael Wolf. A practical two-step method for testing moment inequalities. *Econometrica*, 82(5):1979–2002, 2014.

