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Past & Future

LAST CLASS
I Review of Subsampling
I Uniformity issues with Subsampling
I Parameter at the Boundary
I Asymptotic Size of Subsampling

TODAY
I Inference in MI Models
I Examples
I Confidence Regions
I LF and SS critical values
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Motivation

Partially Identified Models:
I Param. of interest is not uniquely determined by distr. of obs. data.

I Instead, limited to a set as a function of distr. of obs. data.

(i.e., the identified set)

I Due largely to pioneering work by C. Manski, now ubiquitous.

(many applications!)

Inference in Partially Identified Models:
I Focused mainly on the construction of confidence regions.

I Most well-developed for moment inequalities.

I Important practical issues remain subject of current research.
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Simplest Example: Missing Data

EXAMPLE (MISSING DATA)

Data: {Xi, Zi} i.i.d. with support [0, 1]× {0, 1}.

Missing: Xi observed if Zi = 1.

Parameter of interest: θ = E[X] = π · µ1 + (1 − π) · µ0.

Identified parameters: µ1 = E[X|Z = 1] and π = P{Zi = 1} ∈ (0, 1).

0 µ0

E[X]

1

πµ1 +(1 −π)

1

πµ1

Θ0

? E[X] = πµ1 + (1 − π)µ0

? Θ0(P) = {θ : πµ1 6 θ 6 πµ1 + (1 − π)}

Moment Inequalities:

? E[m1(W, θ)] = E[θ− XZ] > 0

? E[m2(W, θ)] = E[1 − Z + XZ − θ] > 0
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Partially Identified Models

I Obs. data X ∼ P ∈ P = {Pγ : γ ∈ Γ }: (γ is possibly infinite-dim.)

I Identified set for γ:
Γ0(P) = {γ ∈ Γ : Pγ = P} .

I Typically, only interested in θ = θ(γ).

I Identified set for θ:
Θ0(P) = {θ(γ) ∈ Θ : γ ∈ Γ0(P)} .

EXAMPLE (LINEAR MODEL)

The model P consists of
Y = θ ′X + ε ,

and a dist. Pγ specified by
γ = (θ, PX,ε) ∈ Γ ,

where (X, ε) ∼ PX,ε.
Γ restricted s.t. EPγ

[εX] = 0 and EPγ
[XX ′] invertible. Here θ = θ(γ) is identified.
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Partially Identified Models

I θ is identified relative to P if
Θ0(P) is a singleton for all P ∈ P .

I θ is unidentified relative to P if
Θ0(P) = Θ for all P ∈ P .

I Otherwise, θ is partially identified relative to P.

I Θ0(P) has been characterized in many examples ...

... can often be characterized using moment inequalities.
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Outline of Lecture

I Examples leading to moment inequalities
– Missing data

– Entry Games

– Revealed Preferences in Discrete Choice

I Confidence regions for partially identified models
– Importance of uniform asymptotic validity

I Moment inequalities: five distinct approaches
1. Least Favorable Test

2. subsampling

3. Moment Selection

4. Refined Moment Selection

5. Two-step methods

I Subvector inference for moment inequalities

I Extensions
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Example II: Entry Games

I Cross-sectional data on active firms in each market.

I Objective: estimate impact of competitors on firm profits.

I Issue: multiple equilibria

I The model is incomplete. Cannot use MLE.

I The model is actually partially identified.

I One solution is to incorporate additional restrictions:
I Equilibrium selection assumptions (Bjorn & Vuong 1984, Berry 1992).

I Ensure number of entrants unique (Bresnahan and Reiss 1990).

I These restrictions may not always be appropriate.

I Other approach is to use moment inequalities.
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Example II (cont): Entry Games

EXAMPLE (2X2 ENTRY GAME)

Players: j ∈ {1, 2} in n ∈ {1, ..., N} markets.

Actions: Yj,n ∈ {1, 0} firm j’s action (entry or not) in market n.

Payoff: πj,n = (εj,n − θjY−j,n)1{Yj,n = 1}.

Econometrician observes Yn

- εj,n ∈ [0, 1] firm j’s benefit of entry.

Econ: εj,n ∼ U[0, 1].

- θj ∈ (0, 1) firm j’s sensitivity to competition.

Econ: θ0 = (θ1, θ2).

θ2

1

θ1 1 ε1

ε2

NE: (0, 1) or (1, 0)

NE: (0, 1) NE: (1, 1)

NE: (1, 0)

Region of
Multiple equilibria

Without further assumptions:

? P(1, 1) = (1 − θ1)(1 − θ2)

? P(1, 0)θ2(1 − θ1) 6 6 θ2θ2(1 − θ1) 6 6 θ2

Moment Inequalities:

? E[Y1Y2 − (1 − θ1)(1 − θ2)] = 0

? E[Y1(1 − Y2) − θ2(1 − θ1)] > 0

? E[θ2 − Y1(1 − Y2)] > 0

θ1

θ2

Θ0(P)
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Example I (cont): Entry Games

I “Market Structure and Multiple Equilibria in Airline Markets” (Ciliberto and Tamer, 09)

I Complete information, static entry game (airlines, market = city pair)

I Simplified version with 2 firms deliver

Y1,m = I{X ′λ1 + δ1Y2,m + ε1,m > 0}

Y2,m = I{X ′λ2 + δ2Y1,m + ε2,m > 0}

I Multiple equilibria exist when εj,m in a range where both (1,0) and (0,1) satisfy these conditions.

I Model implies UB and LB on outcome probabilities for Y = (Y1, Y2):

LB(1,0)(γ, x) 6 P{Y = (1, 0)|X = x} 6 UB(1,0)(γ, x)

I LB is probability (1,0) is unique outcome of game

I UB is probability (1,0) is one outcome of game

I Both can be simulated as functions of γ = (λ, δ, Fε(e)) and X.
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Example III: Revealed Pref. in Disc. Choice

I Discrete choice demand models have revealed preference foundation
(McFadden (1974), Berry (1994), BLP (1995))

I This approach builds on Pakes(2010) and Pakes,Porter,Ho and Ishii (2015)

I Main idea is as follows:

Firms have profits πj(Yj, Y−j; X). The behavioral assumption is that

sup
y∈Y

E[πj(Yj = y, Y−j; X)|Ij] 6 E[πj(Yj = Sj, Y−j; X)|Ij] a.s. Ij

I Y: set of actions

I Sj: strategy actually played by player j

I Ij: Information set at the time of making the decision

I Leads to moment inequalities

I PPHI: analyze the number of ATMs chosen by banks.
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QUESTIONS?
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Confidence Regions

I If θ is identified relative to P (so, θ = θ(P)), then we require that

lim inf
n→∞ inf

P∈P
P{θ(P) ∈ Cn} > 1 −α .

I Now we require that
lim inf
n→∞ inf

P∈P
inf

θ∈Θ0(P)
P{θ ∈ Cn} > 1 −α .

I Refer to as conf. region for points in id. set that are uniformly consistent in level.

I Remark: May also be interested in conf. regions for identified set itself:

lim inf
n→∞ inf

P∈P
P{Θ0(P) ⊆ Cn} > 1 −α .

I See Chernozkukov et al. (2007) and Romano & Shaikh (2010).
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Test Inversion

I Duality: Cn can be constructed by inverting tests of each of the individual null hypotheses

Hθ : θ ∈ Θ0(P) .

I More specifically, suppose that for each θ a test of Hθ, φn(θ), is available that satisfies

lim sup
n→∞ sup

P∈P
sup

θ∈Θ0(P)
EP[φn(θ)] 6 α .

I It follows that Cn equal to the set of θ ∈ Θ for which Hθ is accepted is uniformly consistent in levels,

Cn = {θ ∈ Θ : φn(θ) = 0} .

I Computational note: this requires to explore the parameter space Θ.
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Confidence Regions (cont.)

UNIFORM CONSISTENCY IN LEVEL

lim inf
n→∞ inf

P∈P
inf

θ∈Θ0(P)
P{θ ∈ Cn} > 1 −α .

POINTWISE CONSISTENCY IN LEVEL

lim inf
n→∞ P{θ ∈ Cn} > 1 −α for all P ∈ P and θ ∈ Θ0(P) .

I Pointwise: possible that ∀n ∃P ∈ P and θ ∈ Θ0(P) with cov. prob.� 1 −α.

I In well-behaved prob., distinction is entirely technical issue.

I In less well-behaved prob., distinction is more important.

I Some “natural” conf. reg. may need to restrict P in non-innocuous ways.

(e.g., may need to assume model is “far” from identified.)
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Example

EXAMPLE

Let Wi = (Li, Ui), i = 1, . . . , n be i.i.d. P ∈ P with

P = {N(µ,Σ) : µ = (µL,µU) ∈ R2 with µL < µU} ,

where Σ is a known covariance matrix with unit variances.
I Suppose there is a parameter of interest θ.

I θ is known to belong to the identified set

Θ0(P) = [µL(P),µU(P)] .

I Consider the confidence region

Cn =

[
L̄n −

z1−α√
n

, Ūn +
z1−α√

n

]
where L̄n =

1
n

n∑
i=1

Li and Ūn =
1
n

n∑
i=1

Ui .
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Example

Claim: Cn is pointwise consistent in level.
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Example

Claim: Cn is not uniformly consistent in levels:

inf
P∈P

inf
θ∈Θ0(P)

P{θ ∈ Cn} = 1 − 2α < 1 −α ,
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QUESTIONS?
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Moment Inequalities

I Data: Wi, i = 1, . . . , n are i.i.d. with common distr. P ∈ P.

I Numerous examples of partially identified models give rise to moment inequalities:

Θ0(P) = {θ ∈ Θ : EP[m(Wi, θ)] 6 0} ,

where m takes values in Rk.

I Goal: Confidence regions for points in the id. set that are uniformly consistent in level.

UNIFORM INTEGRABILITY CONDITION

sup
P∈P

sup
θ∈Θ0(P)

EP

(mj(Wi, θ) − µ(θ, P)
σj(θ, P)

)2

I

{
mj(Wi, θ) − µ(θ, P)

σj(θ, P)
> t

}→ 0 ,

as t→∞.

I Mild condition that ensures CLT and LLN hold unif. over P ∈ P and θ ∈ Θ0(P).
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Moment Inequalities: Test

I How: Construct tests φn(θ) of
Hθ : EP[m(Wi, θ)] 6 0

that provide unif. asym. control of Type I error, i.e.,

lim sup
n→∞ sup

P∈P
sup

θ∈Θ0(P)
EP[φn(θ)] 6 α .

I Given such φn(θ),
Cn = {θ ∈ Θ : φn(θ) = 0}

satisfies desired coverage property.

I Below describe five different tests, all of form

φn(θ) = I{Tn(θ) > ĉn(θ, 1 −α)} .
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Notation

Some basic notation:

P̂n = empirical distribution of Wi, i = 1, . . . , n.

µ(θ, P) = EP[m(Wi, θ)].

m̄n(θ) = sample mean of m(Wi, θ).

Ω̂n(θ) = sample correlation of m(Wi, θ).

σ2
j (θ, P) = VarP[mj(Wi, θ)].

σ̂2
n,j(θ) = sample variance of mj(Wi, θ).

D̂n(θ) = diag(σ̂n,1(θ), . . . , σ̂n,k(θ)).
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Test Statistic
TEST STATISTIC

For an appropriate choice of T(x, V), we use

Tn(θ) = T
(

D̂−1
n (θ)

√
nm̄n(θ), Ω̂n(θ)

)
.

Tmmm
n (θ) =

∑
16j6k

max

{√
nm̄n,j(θ)

σ̂n,j(θ)
, 0

}2

Tmax
n (θ) = max

{
max

16j6k

√
nm̄n,j(θ)

σ̂n,j(θ)
, 0

}

Tad,qlr
n (θ) = inf

t∈Rk:t60

(
D̂−1

n (θ)
√

nm̄n(θ) − t
) ′
Ω̃n(θ)

−1
(

D̂−1
n (θ)

√
nm̄n(θ) − t

)
,

where
Ω̃n(θ) = max{ε− det(Ω̂n(θ)), 0}Ik + Ω̂n(θ)

for some fixed ε > 0, with Ik denoting the k-dimensional identity matrix.
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Critical Value I

Useful to define

Jn(x, s(θ), θ, P) = P
{

T
(

D̂−1
n (θ)Zn(θ) + D̂−1

n (θ)s(θ), Ω̂n(θ)
)
6 x
}

,

where
Zn(θ) =

√
n(m̄n(θ) − µ(θ, P)) .

Easy to estimate for a given function s(θ), e.g.,

1. Nonparametric bootstrap estimator: Jn(x, s(θ), θ, P̂n)

2. Asymptotic Approximation estimator: Jn(x, s(θ), θ, P̃n(θ)), where

Zn(θ) ∼ N(0, Σ̂n(θ)) under P̃n(θ) .

Difficult to estimate
Jn(x,

√
nµ(θ, P), θ, P) = P{Tn(θ) 6 x}

See, e.g., Andrews (2000).
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Critical Value II

I Goal: to estimate the distribution of Tn(θ),

P{Tn(θ) 6 x} = Jn(x,
√

nµ(θ, P), θ, P) .

I Problem: it is not possible to estimate
√

nµ(θ, P) consistently.

I Its natural estimator
√

nm̄n(θ) satisfies

|
√

nm̄n(θ) −
√

nµ(θ, P)| d→ |N(0,Σ(θ, P))|

under any fixed θ ∈ Θ0(P) and P ∈ P, where Σ(θ, P) = VarP[m(Wi, θ)].

I Five different tests distinguished by how they circumvent this problem.

I Trick: exploit that T(x, V) is weakly increasing in each component of its first argument.
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QUESTIONS?
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Least Favorable Test

Hθ : EP[m(Wi, θ)] = µ(θ, P) 6 0 .

I Main Idea: exploit monotonicity of T(·, V).

I
√

nµ(θ, P) 6 0 for any P ∈ P and θ ∈ Θ0(P) thus imply

J−1
n (1 −α,

√
nµ(θ, P), θ, P) 6 J−1

n (1 −α, 0, θ, P) .

I Choosing
ĉn(1 −α, θ) = estimate of J−1

n (1 −α, 0, θ, P)

therefore leads to valid tests.

I 0k is the least favorable value of the nuisance parameter
√

nµ(θ, P)

“All moments are binding”: µ(P, θ) = 0.

I See Rosen (2008) and Andrews & Guggenberger (2009).

Closely related work by Kudo (1963) and Wolak (1987, 1991).
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Least Favorable Test

LEAST FAVORABLE TEST

The least favorable test takes the form

φlf
n(θ) ≡ I{Tn(θ) > Ĵ−1

n (1 −α, 0k, θ)} ,

where Ĵn(x, 0k, θ) equals either Jn(x, 0k, θ, P̂n) or Jn(x, 0k, θ, P̃n(θ)).

I These tests are uniformly consistent in levels.

I In our simple example, this test uses

Cn =

[
L̄n −

z1−α/2√
n

, Ūn +
z1−α/2√

n

]
,

instead of

Cn =

[
L̄n −

z1−α√
n

, Ūn +
z1−α√

n

]
.

I In other words, the least favorable confidence region assumes µU(P) − µL(P) = 0 .
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Least Favorable Test

I Remark: Deemed “conservative,” but criticism not entirely fair:

– In Gaussian setting, these tests are (α- and d-) admissible.

– Some are even maximin optimal among restricted class of tests.

– See Lehmann (1952) and Canay & Shaikh (2016).

I Nevertheless, unattractive:

– Tend to have best power against alternatives with all moments > 0.

– As θ varies, many alternatives with only some moments > 0.

– May therefore not lead to smallest confidence regions.

I Following tests incorporate info. about
√

nµ(θ, P) in some way.

=⇒ better power against such alternatives.
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Subsampling

I Main Idea: Fix b = bn < n with b→∞ and b/n→ 0.

Compute Tn(θ) on each of Nn =
(n

b
)

subsamples of data.

I Denote by Ln(x, θ) the empirical distr. of these quantities,

Ln(x, θ) =
1

Nn

Nn∑
`=1

I
{

Tb,`(θ) 6 x
}

,

I Use Ln(x, θ) as estimate of distr. of Tn(θ), i.e.,

Jn(x,
√

nµ(θ, P), θ, P) .

I Critical value: choosing
ĉn(1 −α, θ) = L−1

n (1 −α, θ)

leads to valid tests.

See Romano & Shaikh (2008) and Andrews & Guggenberger (2009).
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Subsampling (cont.)

SUBSAMPLING

The subsampling test takes the form

φsub
n (θ) = I

{
Tn(θ) > L−1

n (1 −α, θ)
}

.

I Note that Ln(x) is a “good” estimator of

P{T(D̂b(θ)
−1
√

b(m̄b(θ) − µ(θ, P)) + D̂b(θ)
−1
√

bµ(θ, P), Ω̂b(θ)) 6 x} ,

which we denote by
Jb(x,

√
bµ(θ, P), θ, P) .

I Size b distribution: for any ε > 0, Ln(x, θ) satisfies

sup
x∈R

sup
P∈P

sup
θ∈Θ0(P)

P
{

sup
x∈R

∣∣∣Ln(x, θ) − Jb(x,
√

bµ(θ, P), θ, P)
∣∣∣ > ε}→ 0 .

I However, we want Jn(x,
√

nµ(θ, P), θ, P) .
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Subsampling (cont.)

I Trick: Link Jb to Jn and then account for
√

bµ(θ, P) vs
√

nµ(θ, P).

I Link Jb(x,
√

bµ(θ, P), θ, P) with Jn(x,
√

bµ(θ, P), θ, P) by exploiting

sup
P∈P

sup
θ∈Θ0(P)

sup
s60

∣∣∣Jb(x, s, θ, P) − Jn(x, s, θ, P)
∣∣∣→ 0 .

I Next note that √
nµ(θ, P) 6

√
bµ(θ, P)

for any P ∈ P and θ ∈ Θ0(P)

=⇒ J−1
n (1 −α,

√
nµ(θ, P), θ, P) 6 J−1

n (1 −α,
√

bµ(θ, P), θ, P) .

I The SS critical value is a valid upper bound.

I See general results in Romano & Shaikh (2012).

I Remark: Incorporates information about
√

nµ(θ, P) ...

... but remains unattractive because choice of b problematic.
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