ECON 481-3 LECTURE 13: INFERENCE IN MOMENT INEQUALITY MODELS

Ivan A. Canay Northwestern University

- 1. Canay, I.A. and A.M. Shaikh (2017): "Practical and Theoretical Advances for Inference in Partially Identified Models", In B. Honore, A. Pakes, M. Piazzesi, & L. Samuelson (Eds.), Advances in Economics and Econometrics: Volumen 2: Eleventh World Congress.
- 2. Ho, K. and A. M. Rosen (2017): "Partial Identification in Applied Research: Benefits and Challenges", In B. Honore, A. Pakes, M. Piazzesi, & L. Samuelson (Eds.), Advances in Economics and Econometrics: Volumen 2: Eleventh World Congress.

LAST CLASS

- Review of Subsampling
- Uniformity issues with Subsampling
- Parameter at the Boundary
- Asymptotic Size of Subsampling

TODAY

- Inference in MI Models
- Examples
- Confidence Regions
- LF and SS critical values

MOTIVATION

Partially Identified Models:

- Param. of interest is not uniquely determined by distr. of obs. data.
- Instead, limited to a set as a function of distr. of obs. data.

(i.e., the identified set)

Due largely to pioneering work by C. Manski, now ubiquitous.

(many applications!)

Inference in Partially Identified Models:

- Focused mainly on the construction of confidence regions.
- Most well-developed for moment inequalities.
- Important practical issues remain subject of current research.

EXAMPLE (MISSING DATA)

Data:	$\{X_i, Z_i\}$ i.i.d. with support $[0, 1] \times \{0, 1\}$.
Missing:	X_i observed if $Z_i = 1$.
Parameter of interest:	$\theta = E[X] = \pi \cdot \mu_1 + (1 - \pi) \cdot \mu_0.$
Identified parameters:	$\mu_1 = E[X Z = 1]$ and $\pi = P\{Z_i = 1\} \in (0, 1).$

0

EXAMPLE (MISSING DATA)

Data: Missing: Parameter of interest: Identified parameters:	$\begin{split} &\{X_i, Z_i\} \text{ i.i.d. with support } [0,1] \times \{0,1\}.\\ &X_i \text{ observed if } Z_i = 1.\\ &\theta = E[X] = \pi \cdot \mu_1 + (1-\pi) \cdot \mu_0.\\ &\mu_1 = E[X Z=1] \text{ and } \pi = P\{Z_i = 1\} \in (0,1). \end{split}$
$E[X]$ 1 $\pi\mu_1 + (1 - \pi)$	$\star E[X] = \pi \mu_1 + (1 - \pi) \mu_0$
πμ1	

EXAMPLE (MISSING DATA)

Data: Missing: Parameter of interest: Identified parameters:	$\begin{split} &\{X_i, Z_i\} \text{ i.i.d. with support } [0,1] \times \{0,1\}.\\ &X_i \text{ observed if } Z_i = 1.\\ &\theta = E[X] = \pi \cdot \mu_1 + (1-\pi) \cdot \mu_0.\\ &\mu_1 = E[X Z=1] \text{ and } \pi = P\{Z_i = 1\} \in (0,1). \end{split}$
$E[X]$ $\pi\mu_1 + (1 - \pi)$ Θ_0 $\pi\mu_1$ 0	$\star E[X] = \pi \mu_1 + (1 - \pi) \mu_0$ $\star \Theta_0(P) = \{\theta : \pi \mu_1 \le \theta \le \pi \mu_1 + (1 - \pi)\}$

EXAMPLE (MISSING DATA)

Data: Missing: Parameter of interest: Identified parameters:	$\begin{split} &\{X_i, Z_i\} \text{ i.i.d. with support } [0,1] \times \{0,1\}. \\ &X_i \text{ observed if } Z_i = 1. \\ &\theta = E[X] = \pi \cdot \mu_1 + (1-\pi) \cdot \mu_0. \\ &\mu_1 = E[X Z=1] \text{ and } \pi = P\{Z_i = 1\} \in (0,1). \end{split}$
$E[X]$ 1 $\pi\mu_1 + (1 - \pi)$ Θ_0 $\pi\mu_1$ 0	$\star E[X] = \pi \mu_1 + (1 - \pi) \mu_0$ $\star \Theta_0(P) = \{\theta : \pi \mu_1 \le \theta \le \pi \mu_1 + (1 - \pi)\}$ $\underbrace{\text{Moment Inequalities:}}_{\star E[m_1(W, \theta)] = E[\theta - XZ] \ge 0$ $\star E[m_2(W, \theta)] = E[1 - Z + XZ - \theta] \ge 0$ $1 \mu_0$

0

PARTIALLY IDENTIFIED MODELS

- ▶ Obs. data $X \sim P \in \mathbf{P} = \{P_{\gamma} : \gamma \in \Gamma\}$: (γ is possibly infinite-dim.)
- Identified set for γ:

$$\Gamma_0(P) = \{ \gamma \in \Gamma : P_\gamma = P \} \,.$$

- Typically, only interested in $\theta = \theta(\gamma)$.
- Identified set for θ:

$$\Theta_0(P) = \{ \theta(\gamma) \in \Theta : \gamma \in \Gamma_0(P) \} \,.$$

EXAMPLE (LINEAR MODEL)

The model P consists of

 $Y = \theta' X + \epsilon$,

and a dist. P_{γ} specified by

$$\gamma = (\theta, P_{X,\epsilon}) \in \Gamma$$
 ,

where $(X, \epsilon) \sim P_{X,\epsilon}$. Γ restricted s.t. $E_{P_{\gamma}}[\epsilon X] = 0$ and $E_{P_{\gamma}}[XX']$ invertible. Here $\theta = \theta(\gamma)$ is identified. \blacktriangleright θ is identified relative to **P** if

 $\Theta_0(P)$ is a singleton for all $P\in \mathbf{P}$.

 \blacktriangleright θ is unidentified relative to **P** if

 $\Theta_0(P) = \Theta$ for all $P \in \mathbf{P}$.

- Otherwise, θ is partially identified relative to **P**.
- ▶ $\Theta_0(P)$ has been characterized in many examples ...

... can often be characterized using moment inequalities.

OUTLINE OF LECTURE

- Examples leading to moment inequalities
 - Missing data
 - Entry Games
 - Revealed Preferences in Discrete Choice
- Confidence regions for partially identified models
 - Importance of uniform asymptotic validity
- Moment inequalities: five distinct approaches
 - 1. Least Favorable Test
 - 2. subsampling
 - 3. Moment Selection
 - 4. Refined Moment Selection
 - 5. Two-step methods
- Subvector inference for moment inequalities
- Extensions

EXAMPLE II: ENTRY GAMES

- Cross-sectional data on active firms in each market.
- Objective: estimate impact of competitors on firm profits.
- Issue: multiple equilibria
- The model is incomplete. Cannot use MLE.
- The model is actually partially identified.
- One solution is to incorporate additional restrictions:
 - Equilibrium selection assumptions (Bjorn & Vuong 1984, Berry 1992).
 - Ensure number of entrants unique (Bresnahan and Reiss 1990).
- These restrictions may not always be appropriate.
- Other approach is to use moment inequalities.

- Players: $j \in \{1, 2\}$ in $n \in \{1, ..., N\}$ markets.
- $Y_{i,n} \in \{1, 0\}$ firm j's action (entry or not) in market *n*. Actions:
- Ρ

€2

 θ_{2}

ayoff:
$$\pi_{j,n} = (\varepsilon_{j,n} - \theta_j Y_{-j,n}) \mathbb{1}{Y_{j,n}} = \mathbb{1}.$$

 $- \varepsilon_{j,n} \in [0, 1] \text{ firm j's benefit of entry.}$
 $- \theta_j \in (0, 1) \text{ firm j's sensitivity to competition.}$
NE: $(0, 1)$ NE: $(1, 1)$
NE: $(0, 1)$ or $(1, 0)$ NE: $(1, 0)$
 θ_1 $1 \in 1$

EXAMPLE (2X2 ENTRY GAME)

EXAMPLE (2X2 ENTRY GAME)

€2↑

1

 $\begin{array}{ll} \mbox{Players:} & j \in \{1,2\} \mbox{ in } n \in \{1,...,N\} \mbox{ markets.} \\ \mbox{Actions:} & Y_{j,n} \in \{1,0\} \mbox{ firm j's action (entry or not) in market } n. \\ \mbox{Payoff:} & \pi_{j,n} = (\varepsilon_{j,n} - \theta_j Y_{-j,n}) \mathbb{1}\{Y_{j,n} = 1\}. \mbox{ Econometrician observes } Y_n \end{array}$

- $\varepsilon_{j,n} \in [0,1]$ firm j's benefit of entry. Econ: $\varepsilon_{j,n} \sim U[0,1]$.

- $\theta_i \in (0, 1)$ firm j's sensitivity to competition. Econ: $\theta_0 = (\theta_1, \theta_2)$.

Players: $j \in \{1, 2\}$ in $n \in \{1, ..., N\}$ markets.

 θ_1

Actions: $Y_{i,n} \in \{1, 0\}$ firm j's action (entry or not) in market n.

Payoff:

1

 θ_{2}

έı

Without further assumptions:

 $\star P(1,1) = (1-\theta_1)(1-\theta_2)$ $P(1,0) \leq \theta_2$

EXAMPLE (2X2 ENTRY GAME)

Players: $j \in \{1, 2\}$ in $n \in \{1, ..., N\}$ markets. Actions: $Y_{i,n} \in \{1, 0\}$ firm j's action (entry or not) in market *n*. Payoff: $\pi_{i,n} = (\varepsilon_{i,n} - \theta_i Y_{-i,n}) \mathbb{1} \{ Y_{i,n} = 1 \}$. Econometrician observes Y_n - $\varepsilon_{i,n} \in [0, 1]$ firm j's benefit of entry. Econ: $\varepsilon_{i,n} \sim U[0, 1]$. - $\theta_i \in (0, 1)$ firm j's sensitivity to competition. Econ: $\theta_0 = (\theta_1, \theta_2)$. €2↑ Without further assumptions: $\star P(1,1) = (1-\theta_1)(1-\theta_2)$ 1 $\star \theta_2(1-\theta_1) \leqslant P(1,0) \leqslant \theta_2$ NE: (0,1) NE: (1,1) Moment Inequalities: $\star \mathbb{E}[Y_1 Y_2 - (1 - \theta_1)(1 - \theta_2)] = 0$ θ_{2} $\star \mathbb{E}[Y_1(1-Y_2) - \theta_2(1-\theta_1)] \ge 0$ NE: (0,1) or (1,0) NE: (1,0) $\mathbb{E}[\theta_2 - Y_1(1 - Y_2)] \ge 0$ * θ_1 1 É1

EXAMPLE (2X2 ENTRY GAME)

- "Market Structure and Multiple Equilibria in Airline Markets" (Ciliberto and Tamer, 09)
- Complete information, static entry game (airlines, market = city pair)
- Simplified version with 2 firms deliver

$$Y_{1,m} = I\{X'\lambda_1 + \delta_1Y_{2,m} + \epsilon_{1,m} \ge 0\}$$

$$Y_{2,m} = I\{X'\lambda_2 + \delta_2Y_{1,m} + \epsilon_{2,m} \ge 0\}$$

- **Multiple equilibria** exist when $\epsilon_{i,m}$ in a range where both (1,0) and (0,1) satisfy these conditions.
- Model implies UB and LB on outcome probabilities for $Y = (Y_1, Y_2)$:

$$LB_{(1,0)}(\gamma, x) \leq P\{Y = (1,0) | X = x\} \leq UB_{(1,0)}(\gamma, x)$$

- LB is probability (1,0) is unique outcome of game
- UB is probability (1,0) is one outcome of game
- Both can be simulated as functions of $\gamma = (\lambda, \delta, F_{\epsilon}(e))$ and *X*.

EXAMPLE III: REVEALED PREF. IN DISC. CHOICE

- Discrete choice demand models have revealed preference foundation (McFadden (1974), Berry (1994), BLP (1995))
- This approach builds on Pakes(2010) and Pakes, Porter, Ho and Ishii (2015)
- Main idea is as follows:

Firms have profits $\pi_j(Y_j, Y_{-j}; X)$. The behavioral assumption is that $\sup_{y \in \mathcal{Y}} E[\pi_j(Y_j = y, Y_{-j}; X)|I_j] \leqslant E[\pi_j(Y_j = S_j, Y_{-j}; X)|I_j] \quad a.s. \quad I_j$

- ► y: set of actions
- S_j: strategy actually played by player j
- I_i: Information set at the time of making the decision
- Leads to moment inequalities
- PPHI: analyze the number of ATMs chosen by banks.

CONFIDENCE REGIONS

▶ If θ is identified relative to **P** (so, $\theta = \theta(P)$), then we require that

 $\liminf_{n\to\infty}\inf_{P\in\mathbf{P}}P\{\theta(P)\in C_n\} \ge 1-\alpha\;.$

Now we require that

 $\liminf_{n\to\infty}\inf_{P\in\mathbf{P}}\inf_{\theta\in\Theta_0(P)}P\{\theta\in C_n\} \ge 1-\alpha \ .$

- Refer to as conf. region for points in id. set that are uniformly consistent in level.
- Remark: May also be interested in conf. regions for identified set itself:

 $\liminf_{n\to\infty}\inf_{P\in\mathbf{P}}P\{\Theta_0(P)\subseteq C_n\} \ge 1-\alpha\;.$

See Chernozkukov et al. (2007) and Romano & Shaikh (2010).

Duality: C_n can be constructed by inverting tests of each of the individual null hypotheses

 $H_{\mathbf{\theta}}: \mathbf{\theta} \in \Theta_0(P)$.

• More specifically, suppose that for each θ a test of H_{θ} , $\phi_n(\theta)$, is available that satisfies

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}} \sup_{\theta \in \Theta_0(P)} E_P[\phi_n(\theta)] \leqslant \alpha .$

lt follows that C_n equal to the set of $\theta \in \Theta$ for which H_{θ} is accepted is uniformly consistent in levels,

 $C_n = \{ \theta \in \Theta : \phi_n(\theta) = 0 \}.$

Computational note: this requires to explore the parameter space Θ .

UNIFORM CONSISTENCY IN LEVEL

$$\liminf_{n\to\infty}\inf_{P\in\mathbf{P}}\inf_{\theta\in\Theta_0(P)}P\{\theta\in C_n\} \ge 1-\alpha \ .$$

POINTWISE CONSISTENCY IN LEVEL

 $\liminf_{n\to\infty} P\{\theta\in C_n\}\geqslant 1-\alpha \text{ for all }P\in \mathbf{P} \text{ and } \theta\in \Theta_0(P) \ .$

- Pointwise: possible that $\forall n \exists P \in \mathbf{P}$ and $\theta \in \Theta_0(P)$ with cov. prob. $\ll 1 \alpha$.
- In well-behaved prob., distinction is entirely technical issue.
- In less well-behaved prob., distinction is more important.
- Some "natural" conf. reg. may need to restrict **P** in non-innocuous ways.

(e.g., may need to assume model is "far" from identified.)

EXAMPLE

EXAMPLE

Let $W_i = (L_i, U_i), i = 1, \dots, n$ be i.i.d. $P \in \mathbf{P}$ with

$$\mathbf{P} = \{N(\mu, \Sigma) : \mu = (\mu_L, \mu_U) \in \mathbf{R}^2 \text{ with } \mu_L < \mu_U\},\$$

where Σ is a known covariance matrix with unit variances.

- Suppose there is a parameter of interest θ .
- \triangleright θ is known to belong to the identified set

$$\Theta_0(P) = [\mu_L(P), \mu_U(P)] .$$

Consider the confidence region

$$C_n = \left[\bar{L}_n - \frac{z_{1-\alpha}}{\sqrt{n}}, \bar{U}_n + \frac{z_{1-\alpha}}{\sqrt{n}}\right] \quad \text{where} \quad \bar{L}_n = \frac{1}{n} \sum_{i=1}^n L_i \quad \text{and} \quad \bar{U}_n = \frac{1}{n} \sum_{i=1}^n U_i \ .$$

EXAMPLE

Claim: C_n is pointwise consistent in level.

EXAMPLE

Claim: C_n is not uniformly consistent in levels:

$$\inf_{P\in \mathbf{P}} \inf_{\mathbf{\theta}\in \Theta_0(P)} P\{\mathbf{\theta}\in C_n\} = 1-2lpha < 1-lpha$$
 ,

Moment Inequalities

Data: W_i , i = 1, ..., n are i.i.d. with common distr. $P \in \mathbf{P}$.

Numerous examples of partially identified models give rise to moment inequalities:

 $\Theta_0(P) = \{ \theta \in \Theta : E_P[m(W_i, \theta)] \leq 0 \},\$

where *m* takes values in \mathbf{R}^k .

Goal: Confidence regions for points in the id. set that are uniformly consistent in level.

UNIFORM INTEGRABILITY CONDITION

$$\sup_{P \in \mathbf{P}} \sup_{\boldsymbol{\theta} \in \Theta_0(P)} E_P\left[\left(\frac{m_j(W_i, \boldsymbol{\theta}) - \boldsymbol{\mu}(\boldsymbol{\theta}, P)}{\sigma_j(\boldsymbol{\theta}, P)}\right)^2 I\left\{\frac{m_j(W_i, \boldsymbol{\theta}) - \boldsymbol{\mu}(\boldsymbol{\theta}, P)}{\sigma_j(\boldsymbol{\theta}, P)} > t\right\}\right] \to 0$$

as $t \to \infty$.

▶ Mild condition that ensures CLT and LLN hold unif. over $P \in \mathbf{P}$ and $\theta \in \Theta_0(P)$.

MOMENT INEQUALITIES: TEST

How: Construct tests $\phi_n(\theta)$ of

 $H_{\theta}: E_P[m(W_i, \theta)] \leq 0$

that provide unif. asym. control of Type I error, i.e.,

 $\limsup_{n \to \infty} \sup_{P \in \mathbf{P}} \sup_{\theta \in \Theta_0(P)} E_P[\phi_n(\theta)] \leqslant \alpha \ .$

• Given such $\phi_n(\theta)$,

$$C_n = \{ \theta \in \Theta : \phi_n(\theta) = 0 \}$$

satisfies desired coverage property.

Below describe five different tests, all of form

$$\phi_n(\theta) = I\{T_n(\theta) > \hat{c}_n(\theta, 1-\alpha)\}.$$

NOTATION

Some basic notation:

```
\hat{P}_n = empirical distribution of W_i, i = 1, ..., n.
\mu(\theta, P) = E_P[m(W_i, \theta)].
\bar{m}_n(\theta) = sample mean of m(W_i, \theta).
\hat{\Omega}_n(\theta) = sample correlation of m(W_i, \theta).
\sigma_i^2(\theta, P) = \operatorname{Var}_P[m_i(W_i, \theta)].
\hat{\sigma}_{n,i}^2(\theta) = sample variance of m_i(W_i, \theta).
\hat{D}_n(\theta) = \operatorname{diag}(\hat{\sigma}_{n,1}(\theta), \dots, \hat{\sigma}_{n,k}(\theta)).
```

TEST STATISTIC

TEST STATISTIC

For an appropriate choice of T(x, V), we use

$$T_n(\theta) = T\left(\hat{D}_n^{-1}(\theta)\sqrt{n}\tilde{m}_n(\theta), \hat{\Omega}_n(\theta)\right)$$

$$T_n^{\mathrm{mmm}}(\theta) = \sum_{1 \leqslant j \leqslant k} \max\left\{\frac{\sqrt{n}\bar{m}_{n,j}(\theta)}{\hat{\sigma}_{n,j}(\theta)}, 0\right\}^2$$

$$T_n^{\max}(\theta) = \max\left\{\max_{1 \leqslant j \leqslant k} \frac{\sqrt{n}\bar{m}_{n,j}(\theta)}{\hat{\sigma}_{n,j}(\theta)}, 0\right\}$$

$$T_n^{\mathrm{ad},\mathrm{qlr}}(\theta) = \inf_{t \in \mathbf{R}^k: t \leqslant 0} \left(\hat{D}_n^{-1}(\theta) \sqrt{n} \tilde{m}_n(\theta) - t \right)' \tilde{\Omega}_n(\theta)^{-1} \left(\hat{D}_n^{-1}(\theta) \sqrt{n} \tilde{m}_n(\theta) - t \right) ,$$

where

$$\tilde{\Omega}_n(\theta) = \max\{\epsilon - \det(\hat{\Omega}_n(\theta)), 0\}I_k + \hat{\Omega}_n(\theta)$$

for some fixed $\epsilon > 0$, with I_k denoting the *k*-dimensional identity matrix.

Useful to define

$$J_n(x,s(\theta), heta,P) = P\left\{T\left(\hat{D}_n^{-1}(heta)Z_n(heta) + \hat{D}_n^{-1}(heta)s(heta),\hat{\Omega}_n(heta)
ight)\leqslant x
ight\}\,,$$

where

$$Z_n(\theta) = \sqrt{n}(\bar{m}_n(\theta) - \mu(\theta, P))$$

Easy to estimate for a given function $s(\theta)$, e.g.,

- 1. Nonparametric bootstrap estimator: $J_n(x, s(\theta), \theta, \hat{P}_n)$
- 2. Asymptotic Approximation estimator: $J_n(x, s(\theta), \theta, \tilde{P}_n(\theta))$, where

 $Z_n(\theta) \sim N(0, \hat{\Sigma}_n(\theta))$ under $\tilde{P}_n(\theta)$.

Difficult to estimate

 $J_n(x, \sqrt{n\mu}(\theta, P), \theta, P) = P\{T_n(\theta) \leq x\}$

See, e.g., Andrews (2000).

CRITICAL VALUE II

Goal: to estimate the distribution of $T_n(\theta)$,

 $P{T_n(\theta) \leq x} = J_n(x, \sqrt{n}\mu(\theta, P), \theta, P)$.

- **Problem:** it is not possible to estimate $\sqrt{n}\mu(\theta, P)$ consistently.
- lts natural estimator $\sqrt{n}\bar{m}_n(\theta)$ satisfies

 $|\sqrt{n}\bar{m}_n(\theta) - \sqrt{n}\mu(\theta, P)| \xrightarrow{d} |N(0, \Sigma(\theta, P))|$

under any fixed $\theta \in \Theta_0(P)$ and $P \in \mathbf{P}$, where $\Sigma(\theta, P) = \operatorname{Var}_P[m(W_i, \theta)]$.

- Five different tests distinguished by how they circumvent this problem.
- **Trick:** exploit that T(x, V) is weakly increasing in each component of its first argument.

LEAST FAVORABLE TEST

 $H_{\mathbf{\theta}}: E_P[m(W_i, \mathbf{\theta})] = \mu(\mathbf{\theta}, P) \leqslant 0$.

- Main Idea: exploit monotonicity of $T(\cdot, V)$.
- $\sqrt{n}\mu(\theta, P) \leqslant 0$ for any $P \in \mathbf{P}$ and $\theta \in \Theta_0(P)$ thus imply

 $J_n^{-1}(1-\alpha,\sqrt{n}\mu(\theta,P),\theta,P) \leq J_n^{-1}(1-\alpha,0,\theta,P) .$

```
Choosing
```

$$\hat{c}_n(1-\alpha,\theta) = \text{ estimate of } J_n^{-1}(1-\alpha,0,\theta,P)$$

therefore leads to valid tests.

▶ 0_k is the least favorable value of the nuisance parameter $\sqrt{n}\mu(\theta, P)$

"All moments are binding": $\mu(P, \theta) = 0$.

See Rosen (2008) and Andrews & Guggenberger (2009).

Closely related work by Kudo (1963) and Wolak (1987, 1991).

LEAST FAVORABLE TEST

The least favorable test takes the form

$$\Phi_n^{\rm lf}(\theta) \equiv I\{T_n(\theta) > \widehat{J}_n^{-1}(1-\alpha, 0_k, \theta)\},\,$$

where $\widehat{J}_n(x, 0_k, \theta)$ equals either $J_n(x, 0_k, \theta, \hat{P}_n)$ or $J_n(x, 0_k, \theta, \tilde{P}_n(\theta))$.

- These tests are uniformly consistent in levels.
- In our simple example, this test uses

$$C_n = \left[\bar{L}_n - \frac{z_{1-\alpha/2}}{\sqrt{n}}, \bar{U}_n + \frac{z_{1-\alpha/2}}{\sqrt{n}}\right]$$

instead of

$$C_n = \left[\bar{L}_n - \frac{z_{1-\alpha}}{\sqrt{n}}, \bar{U}_n + \frac{z_{1-\alpha}}{\sqrt{n}} \right]$$

► In other words, the least favorable confidence region assumes $\mu_U(P) - \mu_L(P) = 0$.

LEAST FAVORABLE TEST

- Remark: Deemed "conservative," but criticism not entirely fair:
 - In Gaussian setting, these tests are (α and d-) admissible.
 - Some are even maximin optimal among restricted class of tests.
 - See Lehmann (1952) and Canay & Shaikh (2016).
- Nevertheless, unattractive:
 - Tend to have best power against alternatives with **all** moments > 0.
 - As θ varies, many alternatives with only **some** moments > 0.
 - May therefore not lead to smallest confidence regions.
- Following tests incorporate info. about $\sqrt{n}\mu(\theta, P)$ in some way.

 \implies better power against such alternatives.

SUBSAMPLING

• Main Idea: Fix $b = b_n < n$ with $b \to \infty$ and $b/n \to 0$.

Compute $T_n(\theta)$ on each of $N_n = \binom{n}{b}$ subsamples of data.

▶ Denote by $L_n(x, \theta)$ the empirical distr. of these quantities,

$$L_n(x, \theta) = rac{1}{N_n} \sum_{\ell=1}^{N_n} I \Big\{ T_{b,\ell}(\theta) \leqslant x \Big\} ,$$

• Use
$$L_n(x, \theta)$$
 as estimate of distr. of $T_n(\theta)$, i.e.

 $J_n(x,\sqrt{n}\mu(\theta,P),\theta,P)$.

Critical value: choosing

$$\hat{c}_n(1-\alpha,\theta) = L_n^{-1}(1-\alpha,\theta)$$

leads to valid tests.

See Romano & Shaikh (2008) and Andrews & Guggenberger (2009).

SUBSAMPLING

The subsampling test takes the form

$$\Phi_n^{\mathrm{sub}}(\theta) = I \Big\{ T_n(\theta) > L_n^{-1}(1-\alpha,\theta) \Big\} .$$

Note that $L_n(x)$ is a "good" estimator of

$$P\{T(\hat{D}_b(\theta)^{-1}\sqrt{b}(\bar{m}_b(\theta)-\mu(\theta,P))+\hat{D}_b(\theta)^{-1}\sqrt{b}\mu(\theta,P),\hat{\Omega}_b(\theta))\leqslant x\},\$$

which we denote by

 $J_b(x, \sqrt{b}\mu(\theta, P), \theta, P)$.

Size b distribution: for any $\epsilon > 0$, $L_n(x, \theta)$ satisfies

$$\sup_{x \in \mathbf{R}} \sup_{P \in \mathbf{P}} \sup_{\theta \in \Theta_0(P)} P\left\{ \sup_{x \in \mathbf{R}} \left| L_n(x,\theta) - J_b(x,\sqrt{b}\mu(\theta,P),\theta,P) \right| > \epsilon \right\} \to 0 .$$

• However, we want $J_n(x, \sqrt{n}\mu(\theta, P), \theta, P)$.

SUBSAMPLING (CONT.)

- **Trick**: Link J_b to J_n and then account for $\sqrt{b}\mu(\theta, P)$ vs $\sqrt{n}\mu(\theta, P)$.
- ► Link $J_b(x, \sqrt{b}\mu(\theta, P), \theta, P)$ with $J_n(x, \sqrt{b}\mu(\theta, P), \theta, P)$ by exploiting

$$\sup_{P \in \mathbf{P}} \sup_{\theta \in \Theta_0(P)} \sup_{s \leqslant 0} \left| J_b(x, s, \theta, P) - J_n(x, s, \theta, P) \right| \to 0 \; .$$

Next note that

 $\sqrt{n}\mu(\theta, P) \leqslant \sqrt{b}\mu(\theta, P)$

for any $P \in \mathbf{P}$ and $\theta \in \Theta_0(P)$

 $\Longrightarrow J_n^{-1}(1-\alpha,\sqrt{n}\mu(\theta,P),\theta,P) \leqslant J_n^{-1}(1-\alpha,\sqrt{b}\mu(\theta,P),\theta,P) \; .$

- The SS critical value is a valid upper bound.
- See general results in Romano & Shaikh (2012).
- **Remark**: Incorporates information about $\sqrt{n}\mu(\theta, P)$...

... but remains unattractive because choice of b problematic.

References

- Donald W. K. Andrews and Patrik Guggenberger. Validity of subsampling and "plug-in asymptotic" inference for parameters defined by moment inequalities. *Econometric Theory*, 25(3):669–709, June 2009.
- [2] Donald W. K. Andrews and Gustavo Soares. Inference for parameters defined by moment inequalities using generalized moment selection. *Econometrica*, 78(1):119–158, January 2010.
- [3] F. A. Bugni. Bootstrap inference in partially identified models defined by moment inequalities: Coverage of the identified set. *Econometrica*, 78(2):735–753, April 2010.
- [4] Ivan Alexis Canay. El inference for partially identified models: Large deviations optimality and bootstrap validity. Journal of Econometrics, 156(2):408–425, June 2010.
- [5] Victor Chernozhukov, H. Hong, and Elie Tamer. Estimation and confidence regions for parameter sets in econometric models. *Econometrica*, 75(5):1243–1284, 2007.
- [6] G. Imbens and C. F. Manski. Confidence intervals for partially identified parameters. *Econometrica*, 72(6):1845–1857, November 2004.
- [7] Joseph P. Romano and Azeem M. Shaikh. Inference for the identified set in partially identified econometric models. *Econometrica*, 78(1):169–212, September 2010.

