ECDN 481-3
 LECTURE 1 3: INFERENCE IN MOMENT INEDUALITY MODELS

Ivan A. Canay
Northwestern University

1. Canay, I.A. and A.M. Shaikh (2017): "Practical and Theoretical Advances for Inference in Partially Identified Models", In B. Honore, A. Pakes, M. Piazzesi, \& L. Samuelson (Eds.), Advances in Economics and Econometrics: Volumen 2: Eleventh World Congress.
2. Ho, K. and A. M. Rosen (2017): "Partial Identification in Applied Research: Benefits and Challenges", In B. Honore, A. Pakes, M. Piazzesi, \& L. Samuelson (Eds.), Advances in Economics and Econometrics: Volumen 2: Eleventh World Congress.

LAST CLASS

- Review of Subsampling
- Uniformity issues with Subsampling
- Parameter at the Boundary
- Asymptotic Size of Subsampling

TODAY

- Inference in MI Models
- Examples
- Confidence Regions
- LF and SS critical values

Partially Identified Models:

- Param. of interest is not uniquely determined by distr. of obs. data.
- Instead, limited to a set as a function of distr. of obs. data.
(i.e., the identified set)
- Due largely to pioneering work by C. Manski, now ubiquitous.
(many applications!)

Inference in Partially Identified Models:

- Focused mainly on the construction of confidence regions.
- Most well-developed for moment inequalities.
- Important practical issues remain subject of current research.

Simplest Example: Missing Data

EXAMPLE (MIssing Data)

Data:
Missing:
Parameter of interest:
Identified parameters:
$\left\{X_{i}, Z_{i}\right\}$ i.i.d. with support $[0,1] \times\{0,1\}$.
X_{i} observed if $Z_{i}=1$.
$\theta=E[X]=\pi \cdot \mu_{1}+(1-\pi) \cdot \mu_{0}$.
$\mu_{1}=E[X \mid Z=1]$ and $\pi=P\left\{Z_{i}=1\right\} \in(0,1)$.

Simplest Example: Missing Data

EXAMPLE (MIssing Data)

$$
\begin{array}{ll}
\text { Data: } & \left\{X_{i}, Z_{i}\right\} \text { i.i.d. with support }[0,1] \times\{0,1\} . \\
\text { Missing: } & X_{i} \text { observed if } Z_{i}=1 . \\
\text { Parameter of interest: } & \theta=E[X]=\pi \cdot \mu_{1}+(1-\pi) \cdot \mu_{0} . \\
\text { Identified parameters: } & \mu_{1}=E[X \mid Z=1] \text { and } \pi=P\left\{Z_{i}=1\right\} \in(0,1) .
\end{array}
$$

Simplest Example: Missing Data

EXAMPLE (MIssing Data)

Data:
Missing:
Parameter of interest:
Identified parameters:
$\left\{X_{i}, Z_{i}\right\}$ i.i.d. with support $[0,1] \times\{0,1\}$.
X_{i} observed if $Z_{i}=1$.
$\theta=E[X]=\pi \cdot \mu_{1}+(1-\pi) \cdot \mu_{0}$.
$\mu_{1}=E[X \mid Z=1]$ and $\pi=P\left\{Z_{i}=1\right\} \in(0,1)$.

Simplest Example: Missing Data

EXAMPLE (MIssing Data)

Data:
Missing:
Parameter of interest:
Identified parameters:
$\left\{X_{i}, Z_{i}\right\}$ i.i.d. with support $[0,1] \times\{0,1\}$.
X_{i} observed if $Z_{i}=1$.
$\theta=E[X]=\pi \cdot \mu_{1}+(1-\pi) \cdot \mu_{0}$.
$\mu_{1}=E[X \mid Z=1]$ and $\pi=P\left\{Z_{i}=1\right\} \in(0,1)$.

- Obs. data $X \sim P \in \mathbf{P}=\left\{P_{\gamma}: \gamma \in \Gamma\right\}:(\gamma$ is possibly infinite-dim. $)$
- Identified set for γ :

$$
\Gamma_{0}(P)=\left\{\gamma \in \Gamma: P_{\gamma}=P\right\}
$$

- Typically, only interested in $\theta=\theta(\gamma)$.
- Identified set for θ :

$$
\Theta_{0}(P)=\left\{\theta(\gamma) \in \Theta: \gamma \in \Gamma_{0}(P)\right\}
$$

EXAMPLE (LINEAR MODEL)

The model \mathbf{P} consists of

$$
Y=\theta^{\prime} X+\epsilon,
$$

and a dist. P_{γ} specified by

$$
\gamma=\left(\theta, P_{X, \epsilon}\right) \in \Gamma
$$

where $(X, \epsilon) \sim P_{X, \epsilon}$.
Γ restricted s.t. $E_{P_{\gamma}}[\epsilon X]=0$ and $E_{P_{\gamma}}\left[X X^{\prime}\right]$ invertible. Here $\theta=\theta(\gamma)$ is identified.

- θ is identified relative to \mathbf{P} if

$$
\Theta_{0}(P) \text { is a singleton for all } P \in \mathbf{P} \text {. }
$$

- θ is unidentified relative to \mathbf{P} if

$$
\Theta_{0}(P)=\Theta \text { for all } P \in \mathbf{P}
$$

- Otherwise, θ is partially identified relative to \mathbf{P}.
- $\Theta_{0}(P)$ has been characterized in many examples ..
... can often be characterized using moment inequalities.
- Examples leading to moment inequalities
- Missing data
- Entry Games
- Revealed Preferences in Discrete Choice
- Confidence regions for partially identified models - Importance of uniform asymptotic validity
- Moment inequalities: five distinct approaches

1. Least Favorable Test
2. subsampling
3. Moment Selection
4. Refined Moment Selection
5. Two-step methods

- Subvector inference for moment inequalities
- Extensions

Example II: Entiry Games

- Cross-sectional data on active firms in each market.
- Objective: estimate impact of competitors on firm profits.
- Issue: multiple equilibria
- The model is incomplete. Cannot use MLE.
- The model is actually partially identified.
- One solution is to incorporate additional restrictions:
- Equilibrium selection assumptions (Bjorn \& Vuong 1984, Berry 1992).
- Ensure number of entrants unique (Bresnahan and Reiss 1990).
- These restrictions may not always be appropriate.
- Other approach is to use moment inequalities.

Example II (COnt): Entry Games

EXAMPLE (2×2 ENTRY GAME)

Players: $\quad j \in\{1,2\}$ in $n \in\{1, \ldots, N\}$ markets.
Actions: $\quad Y_{j, n} \in\{1,0\}$ firm j's action (entry or not) in market n.
Payoff: $\quad \pi_{j, n}=\left(\varepsilon_{j, n}-\theta_{j} Y_{-j, n}\right) 1\left\{Y_{j, n}=1\right\}$.
$-\varepsilon_{j, n} \in[0,1]$ firm j's benefit of entry.

- $\theta_{j} \in(0,1)$ firm j's sensitivity to competition.

Example II (COnt): Entry Games

EXAMPLE (2×2 ENTRY GAME)

Players: $\quad j \in\{1,2\}$ in $n \in\{1, \ldots, N\}$ markets.
Actions: $\quad Y_{j, n} \in\{1,0\}$ firm j's action (entry or not) in market n.
Payoff: $\quad \pi_{j, n}=\left(\varepsilon_{j, n}-\theta_{j} Y_{-j, n}\right) 1\left\{Y_{j, n}=1\right\}$. Econometrician observes Y_{n}
$-\varepsilon_{j, n} \in[0,1]$ firm j's benefit of entry. Econ: $\varepsilon_{j, n} \sim U[0,1]$.

- $\theta_{j} \in(0,1)$ firm j's sensitivity to competition. Econ: $\theta_{0}=\left(\theta_{1}, \theta_{2}\right)$.

Example II (COnt): Entry Games

EXAMPLE (2×2 ENTRY GAME)

Players: $\quad j \in\{1,2\}$ in $n \in\{1, \ldots, N\}$ markets.
Actions: $\quad Y_{j, n} \in\{1,0\}$ firm j's action (entry or not) in market n.
Payoff: $\quad \pi_{j, n}=\left(\varepsilon_{j, n}-\theta_{j} Y_{-j, n}\right) 1\left\{Y_{j, n}=1\right\}$. Econometrician observes Y_{n}
$-\varepsilon_{j, n} \in[0,1]$ firm j's benefit of entry. Econ: $\varepsilon_{j, n} \sim U[0,1]$.

- $\theta_{j} \in(0,1)$ firm j's sensitivity to competition. Econ: $\theta_{0}=\left(\theta_{1}, \theta_{2}\right)$.

Without further assumptions:
$\star P(1,1)=\left(1-\theta_{1}\right)\left(1-\theta_{2}\right)$
$\star \theta_{2}\left(1-\theta_{1}\right) \leqslant P(1,0)$

Example II (COnt): Entry Games

EXAMPLE (2×2 ENTRY GAME)

Players: $\quad j \in\{1,2\}$ in $n \in\{1, \ldots, N\}$ markets.
Actions: $\quad Y_{j, n} \in\{1,0\}$ firm j's action (entry or not) in market n.
Payoff: $\quad \pi_{j, n}=\left(\varepsilon_{j, n}-\theta_{j} Y_{-j, n}\right) 1\left\{Y_{j, n}=1\right\}$. Econometrician observes Y_{n}
$-\varepsilon_{j, n} \in[0,1]$ firm j's benefit of entry. Econ: $\varepsilon_{j, n} \sim U[0,1]$.

- $\theta_{j} \in(0,1)$ firm j's sensitivity to competition. Econ: $\theta_{0}=\left(\theta_{1}, \theta_{2}\right)$.

Without further assumptions:
$\star P(1,1)=\left(1-\theta_{1}\right)\left(1-\theta_{2}\right)$

$$
P(1,0) \leqslant \theta_{2}
$$

Example II (COnt): Entry Games

EXAMPLE (2X2 ENTRY GAME)

Players: $\quad j \in\{1,2\}$ in $n \in\{1, \ldots, N\}$ markets.
Actions: $\quad Y_{j, n} \in\{1,0\}$ firm j's action (entry or not) in market n.
Payoff: $\quad \pi_{j, n}=\left(\varepsilon_{j, n}-\theta_{j} Y_{-j, n}\right) 1\left\{Y_{j, n}=1\right\}$. Econometrician observes Y_{n}
$-\varepsilon_{j, n} \in[0,1]$ firm j's benefit of entry. Econ: $\varepsilon_{j, n} \sim U[0,1]$.

- $\theta_{j} \in(0,1)$ firm j's sensitivity to competition. Econ: $\theta_{0}=\left(\theta_{1}, \theta_{2}\right)$.

Without further assumptions:
$\star P(1,1)=\left(1-\theta_{1}\right)\left(1-\theta_{2}\right)$
$\star \theta_{2}\left(1-\theta_{1}\right) \leqslant P(1,0) \leqslant \theta_{2}$
Moment Inequalities:
$\star \mathbb{E}\left[Y_{1} Y_{2}-\left(1-\theta_{1}\right)\left(1-\theta_{2}\right)\right]=0$
$\star \mathbb{E}\left[Y_{1}\left(1-Y_{2}\right)-\theta_{2}\left(1-\theta_{1}\right)\right] \geqslant 0$
$\mathbb{E}\left[\theta_{2}-Y_{1}\left(1-Y_{2}\right)\right] \geqslant 0$

Example II (COnt): Entry Games

EXAMPLE (2×2 ENTRY GAME)

Players: $\quad j \in\{1,2\}$ in $n \in\{1, \ldots, N\}$ markets.
Actions: $\quad Y_{j, n} \in\{1,0\}$ firm j's action (entry or not) in market n.
Payoff: $\quad \pi_{j, n}=\left(\varepsilon_{j, n}-\theta_{j} Y_{-j, n}\right) 1\left\{Y_{j, n}=1\right\}$. Econometrician observes Y_{n}
$-\varepsilon_{j, n} \in[0,1]$ firm j's benefit of entry. Econ: $\varepsilon_{j, n} \sim U[0,1]$.

- $\theta_{j} \in(0,1)$ firm j's sensitivity to competition. Econ: $\theta_{0}=\left(\theta_{1}, \theta_{2}\right)$.

Example I (Cont): Entry Games

- "Market Structure and Multiple Equilibria in Airline Markets" (Ciliberto and Tamer, 09)
- Complete information, static entry game (airlines, market = city pair)
- Simplified version with 2 firms deliver

$$
\begin{aligned}
& \Upsilon_{1, m}=I\left\{X^{\prime} \lambda_{1}+\delta_{1} \Upsilon_{2, m}+\epsilon_{1, m} \geqslant 0\right\} \\
& \Upsilon_{2, m}=I\left\{X^{\prime} \lambda_{2}+\delta_{2} \Upsilon_{1, m}+\epsilon_{2, m} \geqslant 0\right\}
\end{aligned}
$$

- Multiple equilibria exist when $\epsilon_{j, m}$ in a range where both $(1,0)$ and $(0,1)$ satisfy these conditions.
- Model implies UB and LB on outcome probabilities for $Y=\left(Y_{1}, Y_{2}\right)$:

$$
L B_{(1,0)}(\gamma, x) \leqslant P\{Y=(1,0) \mid X=x\} \leqslant U B_{(1,0)}(\gamma, x)
$$

- LB is probability $(1,0)$ is unique outcome of game
- UB is probability $(1,0)$ is one outcome of game
- Both can be simulated as functions of $\gamma=\left(\lambda, \delta, F_{\epsilon}(e)\right)$ and X.

Example ill: Revealed Pref. in Disc. Choice

- Discrete choice demand models have revealed preference foundation
(McFadden (1974), Berry (1994), BLP (1995))
- This approach builds on Pakes(2010) and Pakes,Porter,Ho and Ishii (2015)
- Main idea is as follows:

Firms have profits $\pi_{j}\left(Y_{j}, Y_{-j} ; X\right)$. The behavioral assumption is that

$$
\sup _{y \in \mathcal{y}} E\left[\pi_{j}\left(Y_{j}=y, Y_{-j} ; X\right) \mid I_{j}\right] \leqslant E\left[\pi_{j}\left(Y_{j}=S_{j}, Y_{-j} ; X\right) \mid I_{j}\right] \quad \text { a.s. } \quad I_{j}
$$

- y : set of actions
- S_{j} : strategy actually played by player j
- I_{j} : Information set at the time of making the decision
- Leads to moment inequalities
- PPHI: analyze the number of ATMs chosen by banks.
$\overline{3}$
- If θ is identified relative to \mathbf{P} (so, $\theta=\theta(P)$), then we require that

$$
\liminf _{n \rightarrow \infty} \inf _{P \in \mathbf{P}} P\left\{\theta(P) \in C_{n}\right\} \geqslant 1-\alpha
$$

- Now we require that

$$
\liminf _{n \rightarrow \infty} \inf _{P \in \mathbf{P}} \inf _{\theta \in \Theta_{0}(P)} P\left\{\theta \in C_{n}\right\} \geqslant 1-\alpha
$$

- Refer to as conf. region for points in id. set that are uniformly consistent in level.
- Remark: May also be interested in conf. regions for identified set itself:

$$
\liminf _{n \rightarrow \infty} \inf _{P \in \mathbf{P}} P\left\{\Theta_{0}(P) \subseteq C_{n}\right\} \geqslant 1-\alpha
$$

- See Chernozkukov et al. (2007) and Romano \& Shaikh (2010).
- Duality: C_{n} can be constructed by inverting tests of each of the individual null hypotheses

$$
H_{\theta}: \theta \in \Theta_{0}(P) .
$$

- More specifically, suppose that for each θ a test of $H_{\theta}, \phi_{n}(\theta)$, is available that satisfies

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}} \sup _{\theta \in \Theta_{0}(P)} E_{P}\left[\phi_{n}(\theta)\right] \leqslant \alpha .
$$

- It follows that C_{n} equal to the set of $\theta \in \Theta$ for which H_{θ} is accepted is uniformly consistent in levels,

$$
C_{n}=\left\{\theta \in \Theta: \phi_{n}(\theta)=0\right\} .
$$

- Computational note: this requires to explore the parameter space Θ.

Confidence Regions (COnt.)

UNIFORM CONSISTENCY IN LEVEL

$$
\liminf _{n \rightarrow \infty} \inf _{P \in \mathbf{P}} \inf _{\theta \in \Theta_{0}(P)} P\left\{\theta \in C_{n}\right\} \geqslant 1-\alpha .
$$

POINTWISE CONSISTENCY IN LEVEL

$$
\liminf _{n \rightarrow \infty} P\left\{\theta \in C_{n}\right\} \geqslant 1-\alpha \text { for all } P \in \mathbf{P} \text { and } \theta \in \Theta_{0}(P) .
$$

- Pointwise: possible that $\forall n \exists P \in \mathbf{P}$ and $\theta \in \Theta_{0}(P)$ with cov. prob. $\ll 1-\alpha$.
- In well-behaved prob., distinction is entirely technical issue.
- In less well-behaved prob., distinction is more important.
- Some "natural" conf. reg. may need to restrict \mathbf{P} in non-innocuous ways.
(e.g., may need to assume model is "far" from identified.)

ExAMPIE

EXAMPLE

Let $W_{i}=\left(L_{i}, U_{i}\right), i=1, \ldots, n$ be i.i.d. $P \in \mathbf{P}$ with

$$
\mathbf{P}=\left\{N(\mu, \Sigma): \mu=\left(\mu_{L}, \mu_{U}\right) \in \mathbf{R}^{2} \text { with } \mu_{L}<\mu_{U}\right\}
$$

where Σ is a known covariance matrix with unit variances.

- Suppose there is a parameter of interest θ.
- θ is known to belong to the identified set

$$
\Theta_{0}(P)=\left[\mu_{L}(P), \mu_{U}(P)\right]
$$

- Consider the confidence region

$$
C_{n}=\left[\bar{L}_{n}-\frac{z_{1-\alpha}}{\sqrt{n}}, \bar{U}_{n}+\frac{z_{1-\alpha}}{\sqrt{n}}\right] \quad \text { where } \quad \bar{L}_{n}=\frac{1}{n} \sum_{i=1}^{n} L_{i} \quad \text { and } \quad \bar{U}_{n}=\frac{1}{n} \sum_{i=1}^{n} U_{i}
$$

ExAmple

Claim: C_{n} is pointwise consistent in level.

ExAmple

Claim: C_{n} is not uniformly consistent in levels:

$$
\inf _{P \in \mathbf{P}} \inf _{\theta \in \Theta_{0}(P)} P\left\{\theta \in C_{n}\right\}=1-2 \alpha<1-\alpha
$$

$\overline{3}$

Moment Inequalities

- Data: $W_{i}, i=1, \ldots, n$ are i.i.d. with common distr. $P \in \mathbf{P}$.
- Numerous examples of partially identified models give rise to moment inequalities:

$$
\Theta_{0}(P)=\left\{\theta \in \Theta: E_{P}\left[m\left(W_{i}, \theta\right)\right] \leqslant 0\right\},
$$

where m takes values in \mathbf{R}^{k}.

- Goal: Confidence regions for points in the id. set that are uniformly consistent in level.

UNIFORM INTEGRABILITY CONDITION

$$
\sup _{P \in \mathbf{P}} \sup _{\theta \in \Theta_{0}(P)} E_{P}\left[\left(\frac{m_{j}\left(W_{i}, \theta\right)-\mu(\theta, P)}{\sigma_{j}(\theta, P)}\right)^{2} I\left\{\frac{m_{j}\left(W_{i}, \theta\right)-\mu(\theta, P)}{\sigma_{j}(\theta, P)}>t\right\}\right] \rightarrow 0
$$

as $t \rightarrow \infty$.

- Mild condition that ensures CLT and LLN hold unif. over $P \in \mathbf{P}$ and $\theta \in \Theta_{0}(P)$.

Moment Inequalities: Test

- How: Construct tests $\phi_{n}(\theta)$ of

$$
H_{\theta}: E_{P}\left[m\left(W_{i}, \theta\right)\right] \leqslant 0
$$

that provide unif. asym. control of Type I error, i.e.,

$$
\limsup _{n \rightarrow \infty} \sup _{P \in \mathbf{P}} \sup _{\theta \in \Theta_{0}(P)} E_{P}\left[\phi_{n}(\theta)\right] \leqslant \alpha
$$

- Given such $\phi_{n}(\theta)$,

$$
C_{n}=\left\{\theta \in \Theta: \phi_{n}(\theta)=0\right\}
$$

satisfies desired coverage property.

- Below describe five different tests, all of form

$$
\phi_{n}(\theta)=I\left\{T_{n}(\theta)>\hat{c}_{n}(\theta, 1-\alpha)\right\} .
$$

Notation

Some basic notation:

$$
\begin{aligned}
& \hat{P}_{n}=\text { empirical distribution of } W_{i}, i=1, \ldots, n \\
& \mu(\theta, P)=E_{P}\left[m\left(W_{i}, \theta\right)\right] \\
& \bar{m}_{n}(\theta)=\text { sample mean of } m\left(W_{i}, \theta\right) \\
& \hat{\Omega}_{n}(\theta)=\text { sample correlation of } m\left(W_{i}, \theta\right) . \\
& \sigma_{j}^{2}(\theta, P)=\operatorname{Var}_{P}\left[m_{j}\left(W_{i}, \theta\right)\right] . \\
& \hat{\sigma}_{n, j}^{2}(\theta)=\text { sample variance of } m_{j}\left(W_{i}, \theta\right) . \\
& \hat{D}_{n}(\theta)=\operatorname{diag}\left(\hat{\sigma}_{n, 1}(\theta), \ldots, \hat{\sigma}_{n, k}(\theta)\right) .
\end{aligned}
$$

Test Statistic

TEST STATISTIC

For an appropriate choice of $T(x, V)$, we use

$$
\begin{gathered}
T_{n}(\theta)=T\left(\hat{D}_{n}^{-1}(\theta) \sqrt{n} \bar{m}_{n}(\theta), \hat{\Omega}_{n}(\theta)\right) \\
T_{n}^{\operatorname{mmm}}(\theta)=\sum_{1 \leqslant j \leqslant k} \max \left\{\frac{\sqrt{n} \bar{m}_{n, j}(\theta)}{\hat{\sigma}_{n, j}(\theta)}, 0\right\}^{2} \\
T_{n}^{\max }(\theta)=\max \left\{\max _{1 \leqslant j \leqslant k} \frac{\sqrt{n} \bar{m}_{n, j}(\theta)}{\hat{\sigma}_{n, j}(\theta)}, 0\right\} \\
T_{n}^{\text {ad,qla }}(\theta)=\inf _{t \in \mathbf{R}^{k}: t \leqslant 0}\left(\hat{D}_{n}^{-1}(\theta) \sqrt{n} \bar{m}_{n}(\theta)-t\right)^{\prime} \tilde{\Omega}_{n}(\theta)^{-1}\left(\hat{D}_{n}^{-1}(\theta) \sqrt{n} \bar{m}_{n}(\theta)-t\right),
\end{gathered}
$$

where

$$
\tilde{\Omega}_{n}(\theta)=\max \left\{\epsilon-\operatorname{det}\left(\hat{\Omega}_{n}(\theta)\right), 0\right\} I_{k}+\hat{\Omega}_{n}(\theta)
$$

for some fixed $\epsilon>0$, with I_{k} denoting the k-dimensional identity matrix.

Useful to define

$$
J_{n}(x, s(\theta), \theta, P)=P\left\{T\left(\hat{D}_{n}^{-1}(\theta) Z_{n}(\theta)+\hat{D}_{n}^{-1}(\theta) s(\theta), \hat{\Omega}_{n}(\theta)\right) \leqslant x\right\}
$$

where

$$
Z_{n}(\theta)=\sqrt{n}\left(\bar{m}_{n}(\theta)-\mu(\theta, P)\right)
$$

Easy to estimate for a given function $s(\theta)$, e.g.,

1. Nonparametric bootstrap estimator: $J_{n}\left(x, s(\theta), \theta, \hat{P}_{n}\right)$
2. Asymptotic Approximation estimator: $J_{n}\left(x, s(\theta), \theta, \tilde{P}_{n}(\theta)\right)$, where

$$
Z_{n}(\theta) \sim N\left(0, \hat{\Sigma}_{n}(\theta)\right) \quad \text { under } \quad \tilde{P}_{n}(\theta) .
$$

Difficult to estimate

$$
J_{n}(x, \sqrt{n} \mu(\theta, P), \theta, P)=P\left\{T_{n}(\theta) \leqslant x\right\}
$$

See, e.g., Andrews (2000).

- Goal: to estimate the distribution of $T_{n}(\theta)$,

$$
P\left\{T_{n}(\theta) \leqslant x\right\}=J_{n}(x, \sqrt{n} \mu(\theta, P), \theta, P) .
$$

- Problem: it is not possible to estimate $\sqrt{n} \mu(\theta, P)$ consistently.
- Its natural estimator $\sqrt{n} \bar{m}_{n}(\theta)$ satisfies

$$
\left|\sqrt{n} \bar{m}_{n}(\theta)-\sqrt{n} \mu(\theta, P)\right| \xrightarrow{d}|N(0, \Sigma(\theta, P))|
$$

under any fixed $\theta \in \Theta_{0}(P)$ and $P \in \mathbf{P}$, where $\Sigma(\theta, P)=\operatorname{Var}_{P}\left[m\left(W_{i}, \theta\right)\right]$.

- Five different tests distinguished by how they circumvent this problem.
- Trick: exploit that $T(x, V)$ is weakly increasing in each component of its first argument.
$\overline{3}$

$$
H_{\theta}: E_{P}\left[m\left(W_{i}, \theta\right)\right]=\mu(\theta, P) \leqslant 0 .
$$

- Main Idea: exploit monotonicity of $T(\cdot, V)$.
- $\sqrt{n} \mu(\theta, P) \leqslant 0$ for any $P \in \mathbf{P}$ and $\theta \in \Theta_{0}(P)$ thus imply

$$
J_{n}^{-1}(1-\alpha, \sqrt{n} \mu(\theta, P), \theta, P) \leqslant J_{n}^{-1}(1-\alpha, 0, \theta, P)
$$

- Choosing

$$
\hat{c}_{n}(1-\alpha, \theta)=\text { estimate of } J_{n}^{-1}(1-\alpha, 0, \theta, P)
$$

therefore leads to valid tests.
0_{k} is the least favorable value of the nuisance parameter $\sqrt{n} \mu(\theta, P)$
"All moments are binding": $\mu(P, \theta)=0$.

- See Rosen (2008) and Andrews \& Guggenberger (2009).

Closely related work by Kudo (1963) and Wolak $(1987,1991)$.

Least Favorable Test

The least favorable test takes the form

$$
\phi_{n}^{\mathrm{lf}}(\theta) \equiv I\left\{T_{n}(\theta)>\widehat{J}_{n}^{-1}\left(1-\alpha, 0_{k}, \theta\right)\right\}
$$

where $\widehat{J}_{n}\left(x, 0_{k}, \theta\right)$ equals either $J_{n}\left(x, 0_{k}, \theta, \hat{P}_{n}\right)$ or $J_{n}\left(x, 0_{k}, \theta, \tilde{P}_{n}(\theta)\right)$.

- These tests are uniformly consistent in levels.
- In our simple example, this test uses

$$
C_{n}=\left[\bar{L}_{n}-\frac{z_{1-\alpha / 2}}{\sqrt{n}}, \bar{U}_{n}+\frac{z_{1-\alpha / 2}}{\sqrt{n}}\right]
$$

instead of

$$
C_{n}=\left[\bar{L}_{n}-\frac{z_{1-\alpha}}{\sqrt{n}}, \bar{U}_{n}+\frac{z_{1-\alpha}}{\sqrt{n}}\right] .
$$

- In other words, the least favorable confidence region assumes $\mu_{U}(P)-\mu_{L}(P)=0$.
- Remark: Deemed "conservative," but criticism not entirely fair:
- In Gaussian setting, these tests are (α - and d-) admissible.
- Some are even maximin optimal among restricted class of tests.
- See Lehmann (1952) and Canay \& Shaikh (2016).
- Nevertheless, unattractive:
- Tend to have best power against alternatives with all moments >0.
- As θ varies, many alternatives with only some moments >0.
- May therefore not lead to smallest confidence regions.
- Following tests incorporate info. about $\sqrt{n} \mu(\theta, P)$ in some way.
\Longrightarrow better power against such alternatives.
- Main Idea: Fix $b=b_{n}<n$ with $b \rightarrow \infty$ and $b / n \rightarrow 0$.

Compute $T_{n}(\theta)$ on each of $N_{n}=\binom{n}{b}$ subsamples of data.

- Denote by $L_{n}(x, \theta)$ the empirical distr. of these quantities,

$$
L_{n}(x, \theta)=\frac{1}{N_{n}} \sum_{\ell=1}^{N_{n}} I\left\{T_{b, \ell}(\theta) \leqslant x\right\}
$$

- Use $L_{n}(x, \theta)$ as estimate of distr. of $T_{n}(\theta)$, i.e.,

$$
J_{n}(x, \sqrt{n} \mu(\theta, P), \theta, P)
$$

- Critical value: choosing

$$
\hat{c}_{n}(1-\alpha, \theta)=L_{n}^{-1}(1-\alpha, \theta)
$$

leads to valid tests.
See Romano \& Shaikh (2008) and Andrews \& Guggenberger (2009).

SUBSAMPLING

The subsampling test takes the form

$$
\phi_{n}^{\mathrm{sub}}(\theta)=I\left\{T_{n}(\theta)>L_{n}^{-1}(1-\alpha, \theta)\right\} .
$$

- Note that $L_{n}(x)$ is a "good" estimator of

$$
P\left\{T\left(\hat{D}_{b}(\theta)^{-1} \sqrt{b}\left(\bar{m}_{b}(\theta)-\mu(\theta, P)\right)+\hat{D}_{b}(\theta)^{-1} \sqrt{b} \mu(\theta, P), \hat{\Omega}_{b}(\theta)\right) \leqslant x\right\},
$$

which we denote by

$$
J_{b}(x, \sqrt{b} \mu(\theta, P), \theta, P) .
$$

- Size b distribution: for any $\epsilon>0, L_{n}(x, \theta)$ satisfies

$$
\sup _{x \in \mathbf{R}} \sup _{P \in \mathbf{P}} \sup _{\theta \in \Theta_{0}(P)} P\left\{\sup _{x \in \mathbf{R}}\left|L_{n}(x, \theta)-J_{b}(x, \sqrt{b} \mu(\theta, P), \theta, P)\right|>\epsilon\right\} \rightarrow 0
$$

- However, we want $J_{n}(x, \sqrt{n} \mu(\theta, P), \theta, P)$.
- Trick: Link J_{b} to J_{n} and then account for $\sqrt{b} \mu(\theta, P)$ vs $\sqrt{n} \mu(\theta, P)$.
- Link $J_{b}(x, \sqrt{b} \mu(\theta, P), \theta, P)$ with $J_{n}(x, \sqrt{b} \mu(\theta, P), \theta, P)$ by exploiting

$$
\sup _{P \in \mathbf{P}} \sup _{\theta \in \Theta_{0}(P)} \sup _{s \leqslant 0}\left|J_{b}(x, s, \theta, P)-J_{n}(x, s, \theta, P)\right| \rightarrow 0 .
$$

- Next note that

$$
\sqrt{n} \mu(\theta, P) \leqslant \sqrt{b} \mu(\theta, P)
$$

for any $P \in \mathbf{P}$ and $\theta \in \Theta_{0}(P)$

$$
\Longrightarrow J_{n}^{-1}(1-\alpha, \sqrt{n} \mu(\theta, P), \theta, P) \leqslant J_{n}^{-1}(1-\alpha, \sqrt{b} \mu(\theta, P), \theta, P) .
$$

- The SS critical value is a valid upper bound.
- See general results in Romano \& Shaikh (2012).
- Remark: Incorporates information about $\sqrt{n} \mu(\theta, P)$...
... but remains unattractive because choice of b problematic.
[1] Donald W. K. Andrews and Patrik Guggenberger. Validity of subsampling and "plug-in asymptotic" inference for parameters defined by moment inequalities. Econometric Theory, 25(3):669-709, June 2009.
[2] Donald W. K. Andrews and Gustavo Soares. Inference for parameters defined by moment inequalities using generalized moment selection. Econometrica, 78(1):119-158, January 2010.
[3] F. A. Bugni. Bootstrap inference in partially identified models defined by moment inequalities: Coverage of the identified set. Econometrica, 78(2):735-753, April 2010.
[4] Ivan Alexis Canay. El inference for partially identified models: Large deviations optimality and bootstrap validity. Journal of Econometrics, 156(2):408-425, June 2010.
[5] Victor Chernozhukov, H. Hong, and Elie Tamer. Estimation and confidence regions for parameter sets in econometric models. Econometrica, 75(5):1243-1284, 2007.
[6] G. Imbens and C. F. Manski. Confidence intervals for partially identified parameters. Econometrica, 72(6):1845-1857, November 2004.
[7] Joseph P. Romano and Azeem M. Shaikh. Inference for the identified set in partially identified econometric models. Econometrica, 78(1):169-212, September 2010.
3

