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Setup

I Generic testing problem: observe data Xi, i = 1, . . . , n i.i.d. with distribution

P ∈ P = {Pθ : θ ∈ Θ}
and test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 .

I Test function: a function φn = φn(X1, . . . , Xn) that returns the probability of rejecting the null
hypothesis after observing X1, . . . , Xn.

I Example: φn might be the indicator function of a certain test statistic Tn = Tn(X1, . . . , Xn) being
greater than some critical value cn(1 −α).

DEFINITION (POINTWISE ASYMPTOTICALLY OF LEVEL α)

The test is said to be (pointwise) asymptotically of level α if,

lim sup
n→∞ Eθ [φn] 6 α, ∀θ ∈ Θ0 .

I Includes: Wald tests, quasi-likelihood ratio tests, and Lagrange multiplier tests.
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Symmetric Location Model

Question: given two different tests of the same null hypothesis, φ1,n and φ2,n, both being
(pointwise) asymptotically of level α. How can one choose between these two tests?

SYMMETRIC LOCATION MODEL

I Let Pθ be the distribution with density f (x − θ) on the real line (w.r.t. Lebesgue measure). Suppose

further that 1 f is symmetric about 0 and that 2 it’s median, 0, is unique.

I f is symmetric about 0 ⇒ f (x − θ) is symmetric about θ.

I We also have that Eθ[X] = θ and medθ[X] = θ.

I Finally, suppose that 3 the variance of P0 is positive and finite; that is, σ2
0 =
∫

x2f (x)dx ∈ (0,∞).

Testing Problem: Θ0 = {0} and Θ1 = {θ ∈ R : θ > 0}; i.e., we wish to test the null hypothesis

H0 : θ = 0 versus H1 : θ > 0 .

How could we test this null hypothesis?
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SLM: t-test

φ1,n = I
{√

nX̄n

σ̂n
> z1−α

}
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SLM: Sign-test

φ2,n = I

 2√
n

∑
16i6n

(
I{Xi > 0}−

1
2

)
> z1−α

 .
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A Naive Approach to Power

I It is natural to base comparisons of two different tests on their power functions.

I Power function: the function
πn(θ) = Eθ[φn] ,

i.e., the probability of rejecting the null hypothesis as a function of the unknown parameter θ.

I In this problem it will be difficult to compare the finite-sample power functions of the two tests

I We may try to do so in an asymptotic sense.

I To this end, let’s compute the power functions of each of the above two tests at a fixed θ > 0.
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A Naive Approach: t-test

Power function: π1,n(θ) = Eθ[φ1,n]
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A Naive Approach: sign-test
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A Naive Approach: sign-test

Sn ≡
2√
n

∑
16i6n

(
I{Xi > 0}−

1
2

)
=

2√
n

∑
16i6n

(
I{Xi > 0}−(1 − F(−θ)

)
+ 2
√

n(
1
2
− F(−θ)) .
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QUESTIONS?
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Local Asymptotic Power

I There are an innumerable number of ways of embedding our
situation with a sample of size n in a sequence of hypothetical
situations with sample sizes larger than n.

I Keep in mind: we are really interested in the finite-sample
behavior of the power function

I In our sample of size n we know that the power is not 1
uniformly for θ > 0. May be very close to 1 for θ “far” from 0, but
for θ “close” to 0 we would expect the finite-sample power
function to be < 1.

I What we mean by “far” and “close” will change with our sample
size n.

FIGURE: Exact Power Function
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Local Asymptotic Power

I Local Asymptotic Approximation: considers the behavior of the power function
evaluated at a sequence of alternatives θn, where θn tends to 0 (the null) at some rate. This provides
a local (to the null) asymptotic approximation to the power function.

I If θn tends to 0 slowly enough, then the power function will still tend to 1 as n tends to infinity.

I If θn tends to 0 quickly enough, then for asymptotic purposes it’s as if θn = 0. For any such
sequence, the power function tends to α as n tends to infinity in each of the above two examples.

I Delicate rate in between the two extremes above such that if θn tends to 0 at this rate, then the
power will tend to a limit in (α, 1). This rate may be different in different problems, but in problems
such as this one in which the distribution depends on θ in a “smooth” way it must be that

θn = O
(

1√
n

)
.

I We will consider sequences θn = h√
n , where h ∈ R.
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Local Power: t-test

Let Xi,n, i = 1, . . . , n be i.i.d. with distribution Pθn and let Yi,n = Xi,n − θn ∼ P0 .
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Local Power: sign-test

Start by studying
1
n

∑
16i6n

I{Xi,n > 0} under Pθn .
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Lindeberg-Feller Central Limit Theorem

THEOREM

For each n, let Zn,i, i = 1, ..., n be i.i.d. with distribution Pn. Suppose En[Zn,i] = 0 and Vn[Zn,i] = σ
2
n <∞.

If for each ε > 0
lim

n→∞ 1
σ2

n
En

[
Z2

n,iI
{
|Zn,i| > ε

√
nσn

}]
= 0

then √
nZ̄n,n

σn

d→ N(0, 1)

under Pn.

We would like to use this result to assert that

Sn(θn) =
1√
n

∑
16i6n

(I{Xi,n > 0}− (1 − F(−θn)))

converges in distribution under Pθn to a normal distribution.
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Lindeberg-Feller CLT Application

CLT states that √
nZ̄n,n

σn

d→ N(0, 1) if lim
n→∞ 1

σ2
n

En[Z2
n,iI{|Zn,i| > ε

√
nσn}] = 0 .

Let Zn,i = I{Xi,n > 0}− (1 − F(−θn)) with σ2
n = F(−θn)(1 − F(−θn)).
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Local Power: sign-test

Recall: Sn = 2Sn(θn) + 2
√

n
(1

2
− F(−θ)

)
and 2Sn(θn) = 2σn

Sn(θn)

σn

d→ N(0, 1)
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Local Asymptotic Power: summary

π1,n(θn) → 1 −Φ

(
z1−α −

h
σ0

)
versus π2,n(θn) → 1 −Φ

(
z1−α − 2hf (0)

)
.

I If 2f (0) > 1
σ0

: the sign test will be preferred to the t-test in a local asymptotic power sense.

I Normal case: If f is the normal density, the t-test should be uniformly most powerful for testing the
null hypothesis.
⇒ If we plug in the standard normal density for f , we find that the above analysis bears this out.

I If we consider distributions with “fatter” tails (i.e., Laplace), the situation is reversed.

I Moral of this story: if the underlying distribution is symmetric, then, the t-test, while preferred for
many distributions, is not as robust as the sign test to “fat” tails.

I Asymptotic Relative Efficiency: defined as the square of the ratio of 2f (0) to 1/σ0,

ARE2,1 = 4f (0)2σ2
0 .
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QUESTIONS?
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Limits of Local Power Approximations

π1,n(θn) → 1 −Φ

(
z1−α −

h
σ0

)
versus π2,n(θn) → 1 −Φ

(
z1−α − 2hf (0)

)
.

I The local power function is monotonic and it has essentially the same shape as the power function in
the normal location model.

I However: the accuracy of the approximation can be poor at non-local alternatives.

I Non-monotonicity: If the finite sample power curve is non-monotone, the asymptotic local power
approximation will be poor at non-local alternatives.

I We will consider one example of this phenomenon presented by Nelson and Savin (1990). Another
one, perhaps empirically more relevant, is the one in Savin and Wurtz (1999).
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Non-Monotonicity of the t-Test

I Consider the following simple model in which

P ∈ P = {Pθ : θ ∈ Θ} and Pθ = N(exp(θ), 1) .

I Suppose that Θ0 = {0} and that Θ1 = {θ : θ < 0}.

I You can think of this as a simple case of the following non-linear regression model with normal errors,

Xi = exp(Ziθ) + Ui ,

where θ ∈ R, Zi is a scalar exogenous variable, and Ui ∼ N(0, 1) i.i.d.

I Simplicity of exposition: focus on the scalar case where Xi, i = 1, . . . , n is i.i.d. with distribution P as
above and wishes to test the null hypothesis H0 : θ = θ0.
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Non-Monotonicity of the t-Test

The log-likelihood function for the model and its derivatives are the following:

`(θ) = c −
1
2

n∑
i=1

(Xi − exp(θ))2 ,

s(θ) =
n∑

i=1

(Xi − exp(θ)) exp(θ) ,

H(θ) =

n∑
i=1

(Xi − 2 exp(θ)) exp(θ) .

The Fisher’s information is then
I(θ) = −E[H(θ)] = (exp(θ))2 ,

and the MLE of θ is just θ̂ = log(X̄n).

t-STATISTIC

t(θ̂) = −

√
n(θ̂− θ0)

I(θ̂)−1/2 =
√

n(θ0 − θ̂)
[
(exp(θ̂))2

]1/2
=

√
n(θ0 − θ̂) exp(θ̂) .
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Non-Monotonicity of the t-Test

t(θ̂) =
√

n(θ0 − θ̂) exp(θ̂) .

I t-statistic is a non-monotonic function of θ̂

∂t(θ̂)
∂θ̂

=
√

n exp(θ̂)[θ0 − θ̂− 1] ,

I Has a maximum value of
√

n exp(θ0 − 1) at θ̂ = θ0 − 1 .

I Decreases to zero on the left and −∞ on the
right.

I Figure: suggests that for any sample size the
more negative the estimate of θ, the less likely
the null hypothesis will be rejected in favor of
the alternative that θ is negative!
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Power Function of the t-Test

I Power function:

πn(θ) = Pθ
{

t(θ̂) > cn(1 −α))
}

= Pθ
{
θL < θ̂ < θH

}
= Pθ

{
exp(θL) < X̄n < exp(θH)

}
,

where θL and θH are the unique solutions to

t(θL) = t(θH) = cn(1 −α) .

I non-monotonicity: two such values for any
cn(1 −α) in the interval (0,

√
n exp(θ0 − 1)).

I Exact power: X̄n ∼ N(exp(θ), n−1).

I Exact power approaches one as the true value
of θ falls from 0 to about −0.85 and then
declines for smaller values of θ.
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Power in Binary Choice Models

I Most hypotheses tested in binary response models are composite: the null hypothesis restricts only
a subset of the parameters. The remaining parameters are referred to as nuisance parameters.

I Example: one of the slope coefficients is zero.

I Savin and Wurtz (99): show that for any fixed sample size, the power goes to zero along a particular
sequence of alternatives that often occur in practice.

I The result applies to any non-randomized test with size less than one, and is derived for a finite
sample.

I Therefore: the usual asymptotic results hold meaning that consistent tests can have non-monotonic
power (in finite samples) for the sequence of alternatives of interest.
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THE END!
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