ECON 481 LECTURE 6: Local Asymptotics

Ivan A. Canay Northwestern University

Generic testing problem: observe data X_i , i = 1, ..., n i.i.d. with distribution

 $P \in \mathbf{P} = \{P_{\theta} : \theta \in \Theta\}$

and test

$$H_0: \theta \in \Theta_0$$
 versus $H_1: \theta \in \Theta_1$.

- ► Test function: a function $\phi_n = \phi_n(X_1, ..., X_n)$ that returns the probability of rejecting the null hypothesis after observing $X_1, ..., X_n$.
- Example: ϕ_n might be the indicator function of a certain test statistic $T_n = T_n(X_1, \dots, X_n)$ being greater than some critical value $c_n(1 \alpha)$.

DEFINITION (POINTWISE ASYMPTOTICALLY OF LEVEL α)

The test is said to be (pointwise) asymptotically of level α if,

 $\limsup_{n\to\infty} E_{\theta} \left[\phi_n \right] \leqslant \alpha, \quad \forall \theta \in \Theta_0 \; .$

Includes: Wald tests, quasi-likelihood ratio tests, and Lagrange multiplier tests.

Question: given two different tests of the same null hypothesis, $\phi_{1,n}$ and $\phi_{2,n}$, both being (pointwise) asymptotically of level α . How can one choose between these two tests?

SYMMETRIC LOCATION MODEL

- Let P_{θ} be the distribution with density $f(x \theta)$ on the real line (w.r.t. Lebesgue measure). Suppose further that (1)f is symmetric about 0 and that (2) it's median, 0, is unique.
- ▶ *f* is symmetric about $0 \Rightarrow f(x \theta)$ is symmetric about θ .
- We also have that $E_{\theta}[X] = \theta$ and $med_{\theta}[X] = \theta$.

Finally, suppose that (3) the variance of P_0 is positive and finite; that is, $\sigma_0^2 = \int x^2 f(x) dx \in (0, \infty)$.

Testing Problem: $\Theta_0 = \{0\}$ and $\Theta_1 = \{\theta \in \mathbf{R} : \theta > 0\}$; i.e., we wish to test the null hypothesis

 $H_0: \theta = 0$ versus $H_1: \theta > 0$.

How could we test this null hypothesis?

SLM: T-TEST

$$\phi_{1,n} = I\left\{\frac{\sqrt{n}\bar{X}_n}{\hat{\sigma}_n} > z_{1-\alpha}\right\}$$

SLM: SIGN-TEST

$$\Phi_{2,n} = I\left\{\frac{2}{\sqrt{n}}\sum_{1\leqslant i\leqslant n} \left(I\{X_i>0\}-\frac{1}{2}\right) > z_{1-\alpha}\right\}.$$

It is natural to base comparisons of two different tests on their power functions.

Power function: the function

$$\pi_n(\theta) = E_{\theta}[\phi_n] ,$$

i.e., the probability of rejecting the null hypothesis as a function of the unknown parameter θ .

- In this problem it will be difficult to compare the finite-sample power functions of the two tests
- We may try to do so in an asymptotic sense.
- ▶ To this end, let's compute the power functions of each of the above two tests at a fixed $\theta > 0$.

A NAIVE APPROACH: T-TEST

Power function: $\pi_{1,n}(\theta) = E_{\theta}[\phi_{1,n}]$

A NAIVE APPROACH: SIGN-TEST

A NAIVE APPROACH: SIGN-TEST

$$S_n \equiv \frac{2}{\sqrt{n}} \sum_{1 \leq i \leq n} \left(I\{X_i > 0\} - \frac{1}{2} \right) = \frac{2}{\sqrt{n}} \sum_{1 \leq i \leq n} \left(I\{X_i > 0\} - (1 - F(-\theta)) + 2\sqrt{n}(\frac{1}{2} - F(-\theta)) \right)$$

LOCAL ASYMPTOTIC POWER

- There are an innumerable number of ways of embedding our situation with a sample of size n in a sequence of hypothetical situations with sample sizes larger than n.
- Keep in mind: we are really interested in the finite-sample behavior of the power function
- In our sample of size *n* we know that the power is not 1 uniformly for $\theta > 0$. May be very close to 1 for θ "far" from 0, but for θ "close" to 0 we would expect the finite-sample power function to be < 1.
- What we mean by "far" and "close" will change with our sample size n.

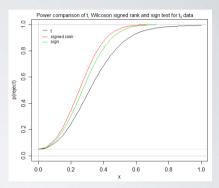


FIGURE: Exact Power Function

LOCAL ASYMPTOTIC POWER

- ► Local Asymptotic Approximation: considers the behavior of the power function evaluated at a sequence of alternatives θ_n , where θ_n tends to 0 (the null) at some rate. This provides a local (to the null) asymptotic approximation to the power function.
- If θ_n tends to 0 slowly enough, then the power function will still tend to 1 as n tends to infinity.
- If θ_n tends to 0 quickly enough, then for asymptotic purposes it's as if $\theta_n = 0$. For any such sequence, the power function tends to α as *n* tends to infinity in each of the above two examples.
- **Delicate rate** in between the two extremes above such that if θ_n tends to 0 at this rate, then the power will tend to a limit in (α , 1). This rate may be different in different problems, but in problems such as this one in which the distribution depends on θ in a "smooth" way it must be that

$$\theta_n = O\left(\frac{1}{\sqrt{n}}\right) .$$

► We will consider sequences $\theta_n = \frac{h}{\sqrt{n}}$, where $h \in \mathbf{R}$.

LOCAL POWER: T-TEST

Let $X_{i,n}$, i = 1, ..., n be i.i.d. with distribution P_{θ_n} and let $Y_{i,n} = X_{i,n} - \theta_n \sim P_0$.

LOCAL POWER: SIGN-TEST

Start by studying
$$rac{1}{n}\sum_{1\leqslant i\leqslant n}I\{X_{i,n}>0\}$$
 under $P_{m{ heta}_n}$.

THEOREM

For each *n*, let $Z_{n,i}$, i = 1, ..., n be i.i.d. with distribution P_n . Suppose $E_n[Z_{n,i}] = 0$ and $V_n[Z_{n,i}] = \sigma_n^2 < \infty$. If for each $\epsilon > 0$ $\lim_{n \to \infty} \frac{1}{2} E_n \left[Z^2 \cdot J \left\{ |Z_{n,i}| > \epsilon \sqrt{n} \sigma_n \right\} \right] = 0$

$$\lim_{n \to \infty} \frac{1}{\sigma_n^2} E_n \Big[Z_{n,i}^2 I \Big\{ |Z_{n,i}| > \epsilon \sqrt{n} \sigma_n \Big\} \Big] = 0$$

then

$$\frac{\sqrt{n}\bar{Z}_{n,n}}{\sigma_n} \xrightarrow{d} N(0,1)$$

under P_n .

We would like to use this result to assert that

$$S_n(\theta_n) = \frac{1}{\sqrt{n}} \sum_{1 \leq i \leq n} (I\{X_{i,n} > 0\} - (1 - F(-\theta_n)))$$

converges in distribution under P_{θ_n} to a normal distribution.

LINDEBERG-FELLER CLT APPLICATION

CLT states that

$$\frac{\sqrt{n}\bar{Z}_{n,n}}{\sigma_n} \xrightarrow{d} N(0,1) \quad \text{ if } \quad \lim_{n \to \infty} \frac{1}{\sigma_n^2} E_n[Z_{n,i}^2 I\{|Z_{n,i}| > \varepsilon \sqrt{n}\sigma_n\}] = 0 \; .$$

Let $Z_{n,i} = I\{X_{i,n} > 0\} - (1 - F(-\theta_n))$ with $\sigma_n^2 = F(-\theta_n)(1 - F(-\theta_n))$.

LOCAL POWER: SIGN-TEST

$$\text{Recall:} \quad S_n = 2S_n(\theta_n) + 2\sqrt{n} \Big(\frac{1}{2} - F(-\theta) \Big) \quad \text{ and } \quad 2S_n(\theta_n) = 2\sigma_n \frac{S_n(\theta_n)}{\sigma_n} \xrightarrow{d} N(0,1)$$

LOCAL ASYMPTOTIC POWER: SUMMARY

$$\pi_{1,n}(\theta_n) \to 1 - \Phi\left(z_{1-\alpha} - \frac{h}{\sigma_0}\right) \quad \text{ versus } \quad \pi_{2,n}(\theta_n) \to 1 - \Phi\left(z_{1-\alpha} - 2hf(0)\right) \,.$$

- If $2f(0) > \frac{1}{\sigma_0}$: the sign test will be preferred to the t-test in a local asymptotic power sense.
- Normal case: If *f* is the normal density, the *t*-test should be uniformly most powerful for testing the null hypothesis.
 ⇒ If we plug in the standard normal density for *f*, we find that the above analysis bears this out.
- If we consider distributions with "fatter" tails (i.e., Laplace), the situation is reversed.
- Moral of this story: if the underlying distribution is symmetric, then, the t-test, while preferred for many distributions, is not as robust as the sign test to "fat" tails.
- Asymptotic Relative Efficiency: defined as the square of the ratio of 2f(0) to $1/\sigma_0$,

$$ARE_{2,1} = 4f(0)^2\sigma_0^2$$

LIMITS OF LOCAL POWER APPROXIMATIONS

$$\pi_{1,n}(\theta_n) \to 1 - \Phi\left(z_{1-\alpha} - \frac{h}{\sigma_0}\right) \quad \text{ versus } \quad \pi_{2,n}(\theta_n) \to 1 - \Phi\left(z_{1-\alpha} - 2hf(0)\right) \,.$$

- The local power function is monotonic and it has essentially the same shape as the power function in the normal location model.
- However: the accuracy of the approximation can be poor at non-local alternatives.
- Non-monotonicity: If the finite sample power curve is non-monotone, the asymptotic local power approximation will be poor at non-local alternatives.
- We will consider one example of this phenomenon presented by Nelson and Savin (1990). Another one, perhaps empirically more relevant, is the one in Savin and Wurtz (1999).

NON-MONOTONICITY OF THE *t*-Test

Consider the following simple model in which

$$P \in \mathbf{P} = \{P_{\theta} : \theta \in \Theta\} \text{ and } P_{\theta} = N(\exp(\theta), 1) .$$

- Suppose that $\Theta_0 = \{0\}$ and that $\Theta_1 = \{\theta : \theta < 0\}$.
- You can think of this as a simple case of the following non-linear regression model with normal errors,

 $X_i = \exp(Z_i \theta) + U_i ,$

where $\theta \in \mathbf{R}$, Z_i is a scalar exogenous variable, and $U_i \sim N(0, 1)$ i.i.d.

Simplicity of exposition: focus on the scalar case where X_i , i = 1, ..., n is i.i.d. with distribution P as above and wishes to test the null hypothesis $H_0: \theta = \theta_0$.

NON-MONOTONICITY OF THE *t*-Test

The log-likelihood function for the model and its derivatives are the following:

$$\begin{split} \ell(\theta) &= c - \frac{1}{2} \sum_{i=1}^{n} (X_i - \exp(\theta))^2 \;, \\ s(\theta) &= \sum_{i=1}^{n} (X_i - \exp(\theta)) \exp(\theta) \;, \\ H(\theta) &= \sum_{i=1}^{n} (X_i - 2 \exp(\theta)) \exp(\theta) \;. \end{split}$$

The Fisher's information is then

$$I(\theta) = -E[H(\theta)] = (\exp(\theta))^2$$
,

and the MLE of θ is just $\hat{\theta} = \log(\bar{X}_n)$.

t-statistic

$$t(\hat{\theta}) = -\frac{\sqrt{n}(\hat{\theta} - \theta_0)}{I(\hat{\theta})^{-1/2}} = \sqrt{n}(\theta_0 - \hat{\theta}) \left[(\exp(\hat{\theta}))^2 \right]^{1/2} = \sqrt{n}(\theta_0 - \hat{\theta}) \exp(\hat{\theta})$$

NON-MONOTONICITY OF THE *t*-Test

 $t(\hat{\theta}) = \sqrt{n}(\theta_0 - \hat{\theta})\exp(\hat{\theta})$.

• *t*-statistic is a **non-monotonic function** of $\hat{\theta}$

$$rac{\partial t(\hat{ heta})}{\partial \hat{ heta}} = \sqrt{n} \exp(\hat{ heta}) [heta_0 - \hat{ heta} - 1] \; ,$$

Has a maximum value of

 $\sqrt{n} \exp(\theta_0 - 1)$ at $\hat{\theta} = \theta_0 - 1$.

- ► Decreases to zero on the left and -∞ on the right.
- Figure: suggests that for any sample size the more negative the estimate of θ, the less likely the null hypothesis will be rejected in favor of the alternative that θ is negative!

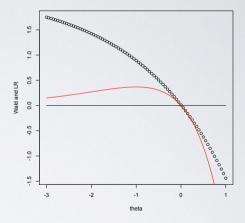


FIGURE: Wald test (line) versus signed \sqrt{LR} (dots)

Power function:

$$\begin{split} \pi_n(\theta) &= P_{\theta} \left\{ t(\hat{\theta}) > c_n(1-\alpha) \right) \right\} \\ &= P_{\theta} \left\{ \theta_L < \hat{\theta} < \theta_H \right\} \\ &= P_{\theta} \left\{ \exp(\theta_L) < \bar{X}_n < \exp(\theta_H) \right\} \;, \end{split}$$

where θ_L and θ_H are the unique solutions to

 $t(\theta_L) = t(\theta_H) = c_n(1-\alpha) .$

- ▶ non-monotonicity: two such values for any $c_n(1-\alpha)$ in the interval $(0, \sqrt{n} \exp(\theta_0 1))$.
- **Exact power**: $\bar{X}_n \sim N(\exp(\theta), n^{-1})$.
- Exact power approaches one as the true value of θ falls from 0 to about -0.85 and then declines for smaller values of θ.

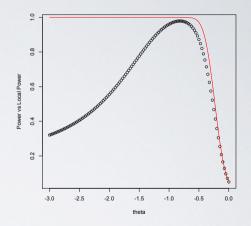


FIGURE: Exact Power (dots) versus local approximation (line)

Power in Binary Choice Models

- Most hypotheses tested in binary response models are composite: the null hypothesis restricts only a subset of the parameters. The remaining parameters are referred to as nuisance parameters.
- **Example**: one of the slope coefficients is zero.
- Savin and Wurtz (99): show that for any fixed sample size, the power goes to zero along a particular sequence of alternatives that often occur in practice.
- The result applies to any non-randomized test with size less than one, and is derived for a finite sample.
- Therefore: the usual asymptotic results hold meaning that consistent tests can have non-monotonic power (in finite samples) for the sequence of alternatives of interest.

