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Past & Future

SO FAR

I Absolute Continuity and LR
I Contiguity and Le Cam’s 1st Lemma
I Le Cam’s 3rd Lemma
I Wilcoxon Signed Ranked Test

TODAY
I Local Asymptotic Normality
I Differentiability in Quadratic Mean
I Limit Distribution under Contig. Alt.
I Symmetric Location Model
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Statistical Experiment

I Observed data: a sample X1, . . . , Xn from a distribution Pθ on some measurable space (X,A)
indexed by a parameter θ in Θ open.

I The sample is a single observation from the product Pn
θ of n copies of Pθ and the statistical model

(also called statistical experiment) is completely described as the collection of probability measures

P = {Pn
θ : θ ∈ Θ} .

I Today: study conditions under which a statistical experiment can be approximated by a Gaussian
experiment after a suitable reparametrization.

I Starting Point: understand the properties of a Gaussian experiment.
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Normal Location Model
EXAMPLE (NORMAL LOCATION MODEL)

Suppose Pθ = N(θ,σ2), where σ2 is known. In this case,
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where
∆n = n1/2(X̄n − θ0)/σ

2 ∼ N(0, Iθ0) and Iθ0 = 1/σ2 ,

under Pθ0 . It follows that
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Local Asymptotic Normality

I Traditional regularity conditions for maximum likelihood theory involve existence of two or three
derivatives of the density function, together with domination assumptions to justify differentiation
under integrals.

I Le Cam (1970) noted that such conditions are unnecessarily stringent. He showed that the traditional
conditions can be replaced by a simple assumption of differentiability in quadratic mean (QMD).

I Le Cam showed that QMD implies a quadratic approximation property for the log-likelihoods known
as Local Asymptotic Normality (LAN).

DEFINITION (LAN)

The statistical experiment is called LAN at θ0 ∈ Θ if there exist a sequence of stochastic vectors ∆n,θ0

and a nonsingular (k× k) matrix Iθ0 such that ∆n,θ0

d→ N(0, Iθ0) under Pn
θ0

and such that,

log

[
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θ0+h/

√
n
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]
= h∆n,θ0 −

1
2

h ′Iθ0 h + oPθ0
(1) .
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Traditional Arguments

I Let X1, . . . , Xn be i.i.d. from a density pθ = dPθ/dµ st θ 7→ pθ is twice differentiable.

I Let `θ(x) = log(pθ(x)), with derivatives ˙̀
θ(x) and ῭

θ(x) with respect to θ. Taylor expansion at x:

log
(

pθ+h/
√

n(x)
)
= log(pθ(x)) +

h√
n

˙̀
θ(x) +

h2

2n
῭
θ(x) + ox(h2/n) ,

where the subscript x in the reminder term denotes its dependence on x. It then follows,

n∑
i=1

log
(pθ+h/

√
n

pθ
(Xi)

)
= h

1√
n

n∑
i=1

˙̀
θ(Xi) −

h2

2

(
−

1
n

n∑
i=1

῭
θ(Xi)

)
+ opθ(1) ,

(assuming n reminders ox(h2/n) are negligible (i.e., opθ(1))).

I Expected score: Eθ ˙̀
θ = 0. Fisher information: −Eθ ῭

θ = Eθ ˙̀2
θ = Iθ.

I First term: can be rewritten as h∆n,θ, where ∆n,θ
d→ N(0, Iθ) under Pθ by the CLT.

Second Term: is asymptotically equivalent to − h2

2 Iθ by the LLN.
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QUESTIONS?
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Differentiability in Quadratic Mean

Le Cam: all you need to get LAN is a single condition that only involves a first derivative.

DEFINITION (QMD)

A model P = {Pθ : θ ∈ Θ} is called differentiable in quadratic mean (or Hellinger differentiable or QMD)
at θ if there exists a vector of measurable functions ηθ = (ηθ,1, . . . ,ηθ,k)

′ such that, as h→ 0,∫ [
√

pθ+h −
√

pθ −
1
2

h ′ηθ
√

pθ

]2
dµ = o(||h||2) ,

where pθ is the density of Pθ w.r.t. some measure µ.

Usually, 1
2 h ηθ(x)

√
pθ(x) is the derivative of the map h 7→

√
pθ+h(x) at h = 0 for (almost) every x:

∂

∂θ

√
pθ =

1
2
√pθ

∂

∂θ
pθ =

1
2

(
∂

∂θ
log pθ

)
√

pθ ,

so the function ηθ(x) is ˙̀
θ(x) = ( ∂∂θ log pθ), the score function of the model.
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A Distribution that is not QMD

∫ [
√

pθ+h −
√

pθ −
1
2

h ηθ
√

pθ

]2
dµ = o(h2) .

EXAMPLE (UNIFORM DISTRIBUTION)

The family of uniform distributions on [0, θ] is nowhere differentiable in quadratic mean. The reason is that
the support depends too much on the parameter.
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Local Asymptotic Normality

I Le Cam: QMD is exactly what we need to get LAN.

THEOREM

Suppose that Θ is an open subset of Rk and that the model (Pθ : θ ∈ Θ) is differentiable in quadratic
mean at θ. Then 1 Eθ ˙̀

θ = 0, 2 the Fisher information matrix Iθ = Eθ ˙̀
θ

˙̀
θ
′ exists, and 3

log
n∏

i=1

pθ+h/
√

n

pθ
(Xi) =

1√
n

n∑
i=1

h ′ ˙̀
θ(Xi) −

1
2

h ′Iθh + opθ(1) .

I Okay, but QMD looks like hard to check. Are there simple sufficient conditions for QMD to hold?

I Usually one proceeds by showing differentiability of the map θ 7→
√

pθ(x) for almost every x plus
µ-equi-integrability (which in turn will imply a convergence theorem for integrals).

I These conditions are stated in the following lemma.
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Useful Lemma

LEMMA

For every θ in an open subset of Rk let pθ be a µ-probability density. Assume that the map
θ 7→ sθ ≡

√
pθ(x) is continuously differentiable for every x. Assume the elements of the matrix

Iθ =

∫
(ṗθ/pθ)(ṗθ/pθ) ′pθdµ

are well defined and continuous in θ, then the map θ 7→ √pθ is differentiable in quadratic mean with
ηθ = ṗθ/pθ.

I We will prove this result in 2 steps

I Step 1. Argue that ṗθ exists and find expression for ṡθ

I Step 2. Invoke Vitali’s theorem to show QMD.
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Step 1: ṗθ exists and find ṡθ

sθ ≡
√

pθ(x) and ηθ = ṗθ/pθ
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Step 2: use Vitali’s theorem

THEOREM (VITALI’S)

If 1 fn(x)→ f (x) for µ-almost every x (both real-valued measurable functions) and

2 lim sup
n→∞

∫
f 2
n (x)dµ(x) 6

∫
f 2(x)dµ(x) <∞ ,

it follows that

lim
n→∞

∫
|fn(x) − f (x)|2dµ(x) = 0 .

I Need to check the two conditions.

I First: θ 7→ sθ =
√pθ is continuously differentiable, so

fh(x) =
1
h

(
sθ+h(x) − sθ(x)

)
→ f (x) = ṡθ(x) as h→ 0 . (3)

I Second: to prove 2 we need to do some work.
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Step 2: use Vitali’s theorem

2 lim sup
h→0

∫
f 2
h (x)dµ(x) 6

∫
f 2(x)dµ(x) <∞ with fh(x) =

1
h

(
sθ+h(x) − sθ(x)

)
and f (x) = ṡθ(x) .
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Step 2: use Vitali’s theorem

2 lim sup
h→0

∫
f 2
h (x)dµ(x) 6

∫
f 2(x)dµ(x) <∞ with fh(x) =

1
h

(
sθ+h(x) − sθ(x)

)
and f (x) = ṡθ(x) .
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Complete the proof

Final Step: Apply Vitali’s Theorem with fh(x) = 1
h (sθ+h(x) − sθ(x)) and f (x) = ṡθ(x),

lim
h→0

∫ [
1
h
(sθ+h(x) − sθ(x)) − ṡθ(x)

]2
dµ = 0 .

Replacing sθ =
√pθ and ṡθ(x) = 1

2ηθ(x)
√pθ completes the proof.
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Example: Location Model

EXAMPLE (LOCATION MODEL)

Let {pθ(x) = f (x − θ) : θ ∈ Θ} be a location model, where f (·) is continuously differentiable. Let

˙̀
θ(x) =

ṗθ
pθ

=
−f ′(x − θ)

f (x − θ)

if f (x − θ) > 0 and f ′(x − θ) exists and zero otherwise. Assume

I0 =

∫
˙̀2
0(x)f (x)dx <∞ .

Since in this model the Fisher information is equal to I0 for all θ (just set y = x − θ in the integral for Iθ),
and thus continuous in θ, it follows that the family is QMD.
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QUESTIONS?
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Limit Dist. under Contiguous Alternatives

I LAN: convenient tool in the study of the behavior of statistics under contiguous alternatives.

I LAN. dPn
θ+h/

√
n and dPn

θ are mutually contiguous:

log Ln = log

(
dPn
θ+h/

√
n

dPn
θ

)
d→ N

(
−

1
2

h ′Iθh , h ′Iθh
)

under Pθ .

I LAN + Le Cam’s third lemma: limit distributions of statistics under the parameters θ+ h/
√

n from
limit behavior under θ.

I General scheme: 1 many sequences of statistics Tn allow an approximation of the type,

√
n(Tn − µθ) =

1√
n

n∑
i=1

ψθ(Xi) + opθ(1) .

2 By the LAN theorem, the sequence of log likelihood ratios can be approximated by

1√
n

n∑
i=1

h ′ ˙̀
θ(Xi) −

1
2

h ′Iθh + opθ(1) .
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Limit Dist. under Contiguous Alternatives

√
n(Tn − µθ) =

1√
n

n∑
i=1

ψθ(Xi) + opθ(1) and log Ln =
1√
n

n∑
i=1

h ′ ˙̀
θ(Xi) −

1
2

h ′Iθh + opθ(1)

The sequence of joint averages
1√
n

n∑
i=1

(
ψθ(Xi)
h˙̀
θ(Xi)

)
is asymptotically multivariate normal under Pθ by the CLT

( √
n(Tn − µθ)

log Ln

)
d→ N

((
0

−1/2h ′Iθh

)
,
(

Eθψθψ
′

θ Eθψθh ′ ˙̀
θ

Eθψθ ′h˙̀
θ h ′Iθh

))
.

By Le Cam’s third lemma we get the limit distribution of
√

n(Tn − µθ) under θ+ h/
√

n which depends on

τ = Eθ
[
ψθh ′ ˙̀

θ

]
.
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Symmetric Location Model

I SML: Pθ is the distribution with density f (x − θ) on the real line, symmetric about θ.

I Data: X1, . . . , Xn from Pθ and wish to test the null H0 : θ = 0.

I New assumption: P = {Pθ : θ ∈ Θ} is differentiable in quadratic mean. We know pθ(x) = f (x − θ)
is QMD at θ = 0 if f (·) is absolutely continuous with finite Fisher information,

I0 =

∫
˙̀2
0(x)f (x)dx ,

where
˙̀
θ(x) =

−f ′(x − θ)

f (x − θ)
.

I By the LAN Theorem

log Ln = log(dPθn/dP0) =
1√
n

n∑
i=1

−h
f ′(Xi)

f (Xi)
−

1
2

h2I0 + op(1) .

I We can now easily derive the local asymptotic power of many tests by using Le Cam’s third lemma.
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t-test

ψθ(Xi) = Xi/σ and h˙̀
θ(x) = h

−f ′(x − θ)

f (x − θ)
.
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sign-test

ψθ(Xi) = I{Xi > 0}−
1
2

and h˙̀
θ(x) = h

−f ′(x − θ)

f (x − θ)
.
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Wilcoxon Signed-rank Test

ψθ(Xi) = G(|Xi|) sign(Xi) and h˙̀
θ(x) = h

−f ′(x − θ)

f (x − θ)
.
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THE END!
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