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TODAY

> Absolute Continuity and LR

» Contiguity and Le Cam’s 1st Lemma
> Le Cam’s 3rd Lemma

> Wilcoxon Signed Ranked Test

P

> Local Asymptotic Normality

> Differentiability in Quadratic Mean
» Limit Distribution under Contig. Alt.
> Symmetric Location Model
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STATISTICAL EXPERIMENT

» Observed data: a sample Xi, ..., X, from a distribution Pg on some measurable space (X, A)
indexed by a parameter 0 in © open.

> The sample is a single observation from the product P} of 1 copies of Pg and the statistical model
(also called statistical experiment) is completely described as the collection of probability measures

P={P}:0c0)}.

» Today: study conditions under which a statistical experiment can be approximated by a Gaussian
experiment after a suitable reparametrization.

» Starting Point: understand the properties of a Gaussian experiment.



NormAaL LocAaTiION MODEL

EXAMPLE (NORMAL LOCATION MODEL)
Suppose Py = N(6, 62), where o2 is known. In this case,

n

1 & h 2 1 2
log [AP% .,/ //dPh, | = =5 <Xi — 69— ﬁ) + 507 2_(Xi—0)
i1 =

1 ¢ ho K
—@ LX) mon

2
= B (R —00)
=hA, — E;12190 , (1
where
An =n'?(X, —0g)/0* ~ N(0,Ig,) and Iy, = 1/02,
under Py, . It follows that
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locAaL AsYymPrTOoTIC N\ORMALITY

» Traditional regularity conditions for maximum likelihood theory involve existence of two or three
derivatives of the density function, together with domination assumptions to justify differentiation
under integrals.

> Le Cam (1970) noted that such conditions are unnecessarily stringent. He showed that the traditional
conditions can be replaced by a simple assumption of differentiability in quadratic mean (QMD).

» Le Cam showed that QMD implies a quadratic approximation property for the log-likelihoods known
as Local Asymptotic Normality (LAN).
DEFINITION (LAN)
The statistical experiment is called LAN at 0y € O if there exist a sequence of stochastic vectors A, g,
and a nonsingular (k x k) matrix I, such that A, g, 4 N(0,1Ig,) under Py and such that,
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TRADITIONAL ARGUMENTS

> LetXy,...,X, beii.d. from a density po = dPg/du st 6 — pg is twice differentiable.
> Let {g(x) = log(pe(x)), with derivatives g (x) and ¥g(x) with respect to 8. Taylor expansion at x:

4
09 (7 171)) = olpol) + =ba(x) + - Lo(x) + 0x(/1)

where the subscript x in the reminder term denotes its dependence on x. It then follows,
E log p9+h/f —hf E lo(X;))— = 2 En 8o(X)) | +0pe (1),
n 7%
=

(assuming 1 reminders oy (1% /n) are negligible (i.e., 0po (1)))-
> Expected score: Eglg = 0. Fisher information: —Eglg = Eg{3 = Ip.

> First term: can be rewritten as hA, g, where A, o il N(0,Ig) under Pg by the CLT.
Second Term: is asymptotically equivalent to —’12—219 by the LLN.



OUESTIONS?




DIFFERENTIABILITY IN QuADRATIC MEAN

Le Cam: all you need to get LAN is a single condition that only involves a first derivative.
DEFINITION (QMD)

A model P = {Pg : 6 € O} is called differentiable in quadratic mean (or Hellinger differentiable or QMD)
at 0 if there exists a vector of measurable functions ng = (Mg 1,-..,Me )’ such that, as i — 0,

[ |vrewi—vra - gn nesﬁ] die = of ),
where pg is the density of Pg w.r.t. some measure L.

Usually, %h 1o (x)\/pe(x) is the derivative of the map h — /pg . (x) at h = 0 for (almost) every x:

0 1 0 i17g®e
g VPe = mﬁpe i (%Iogpe) VPo

so the function ng (x) is {g (x) = (a—a9 log pg), the score function of the model.



A DISTRIBUTION THAT IS \or OMD

2
[ [vFeri— ves— 3mavpe] au=oli?).

EXAMPLE (UNIFORM DISTRIBUTION)

The family of uniform distributions on [0, 6] is nowhere differentiable in quadratic mean. The reason is that
the support depends too much on the parameter.



locAaL AsYymPrTOoTIC N\ORMALITY

> Le Cam: QMD is exactly what we need to get LAN.

THEOREM

Suppose that © is an open subset of R¥ and that the model (Pg : 6 € ©) is differentiable in quadratic
mean at 0. Then @ Eglg =0, @ the Fisher information matrix Ig = Eglgle’ exists, and @

|ong9;he/f Zhee —%h'19h+o,,9(1).
i=1

> Okay, but QMD looks like hard to check. Are there simple sufficient conditions for QMD to hold?

> Usually one proceeds by showing differentiability of the map 6 — +/pg(x) for almost every x plus
p-equi-integrability (which in turn will imply a convergence theorem for integrals).

» These conditions are stated in the following lemma.



UseErFurL LEMmmA

LEMMA

For every 0 in an open subset of RF Jet pe be a p-probability density. Assume that the map
0 — sg = \/po(x) is continuously differentiable for every x. Assume the elements of the matrix

lg = J(ﬁe/Pe)(f?e/Pe)'Pedu

are well defined and continuous in ©, then the map 0 — . /pg is differentiable in quadratic mean with
Mo = po/Pe-

» We will prove this result in 2 steps
> Step 1. Argue that pg exists and find expression for sg

> Step 2. Invoke Vitali’'s theorem to show QMD.



STEP 1: g EXISTS AND FIND 359

sg = \/pe(x) and me =pe/po



STEP 2: USE VITALIL’'S THEOREM

THEOREM (VITALI’S)

If @ fulx ) for n-almost every x (both real-valued measurable functions) and

@Ilmsupjfn )dp(x) sz ) < o0,

it follows that

lim J[fn —f(x)Pdu(x) =0.

» Need to check the two conditions.

> First: 0 — sg = /pg is continuously differentiable, so

i

fh(x)zﬁ(seJrh[)*Se )Hf =3g(x) as h—0.

» Second: to prove @ we need to do some work.



STEP 2: USE VITALI’'S THEOREM

@Iimsupjff(x)du(x) < sz(x)du(x) < 0o with f;(x) = %(seM(x}—se(x)) and f(x) = g (x) .
h—0



STEP 2: USE VITALIL’'S THEOREM

@Iimsupjff(x)du(x) < sz(x)du(x) < 0o with f;(x) = %(seM(x}—se(x)) and f(x) = g (x) .
h—0



COMPLETE THE PROOF

Final Step: Apply Vitali's Theorem with f,(x) = ;17(59 n(x) —sg(x)) and f(x) = 3¢(x),

1 2
im | {E(Sew(x) —se(x)) —do(x)| dn=0.

Replacing sg = \/pg and g (x) = %ng(x]ﬂ/pe completes the proof.



ExauvurLE: LocAaTiONn MODEL

EXAMPLE (LOCATION MODEL)

Let {po(x) = f(x—0) : 8 € O} be a location model, where f(-) is continuously differentiable. Let

p _f)fe)_—f’(x—e)
o= e = o)

if f(x —8) > 0and f’(x — 6) exists and zero otherwise. Assume
Ip= Jég(x)f(x)dx < 00.

Since in this model the Fisher information is equal to I for all © (just set y = x — 0 in the integral for Iy),
and thus continuous in 6, it follows that the family is QMD.



OUESTIONS?




Livier Dist. UNDER CONTIGUOUS ALTERNATIVES

> LAN: convenient tool in the study of the behavior of statistics under contiguous alternatives.

> LAN. dPng/\[ and dP}j are mutually contiguous:
dP
1
logL, = log < (;;};/f) SN (—Eh/lgh, h'Igh) under Pg .

»> LAN + Le Cam’s third lemma: limit distributions of statistics under the parameters 0 + h//n from
limit behavior under 6.

» General scheme: @ many sequences of statistics T, allow an approximation of the type,
\/ﬁ(Tn le)e +0Pe( ) o
@ By the LAN theorem, the sequence of log likelihood ratios can be approximated by

i 1
7 > Wig(X) — Eh’leh +0po (1)
=il



Livier Dist. UNDER CONTIGUOUS ALTERNATIVES

e 1
V(Ty — pe) \[Zq)e ) +0pe (1) and IogLn:ﬁZh’Ee(X,»)—Eh’Ieh—i-ope(l)
i=1

The sequence of joint averages

Fn (R

is asymptotically multivariate normal under Pg by the CLT

Vi(Ta—to) \ 4 o 0 Eoboly Eobeh'ly
log Ly —1/2h'Igh )\ Egyg'hly  h'Igh :
By Le Cam’s third lemma we get the limit distribution of v/7(T,, — 1g) under 0 + i/+/n which depends on

T= EO [11)0]1’@0] o



SymmmvmeETRIC LlocATiION MODEL

> SML: Py is the distribution with density f(x — ) on the real line, symmetric about 6.
» Data: Xq,..., X, from Pg and wish to test the null Hy : 6 =0

> New assumption: P = {Pg : 6 € O} is differentiable in quadratic mean. We know pg (x) = f(x — 0)
is QMD at © = 0'if f(-) is absolutely continuous with finite Fisher information,

Iy = Jké(x)f(x)dx,

where . —f’(x =
Uele) = W ;
»> By the LAN Theorem
log L, = log(dPg,/dPy) = Z () .

=1

» We can now easily derive the local asymptotic power of many tests by using Le Cam’s third lemma.



T=-TEST

Yo (X;) = X;/0

and hig(x) = h—




SIGN-TEST

Po(X;) = I{X; > 0} — % and hig(x) =h—




WirLcoxon SIGNED-RANK TEST

Yo (X;) = G(IX;]) sign(X;)

and hig(x) = h—



THE END!
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