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2

Topics of Part I
I Lec I: Selection on Observables

1. Potential Outcomes vs Latent Variables

2. Causal Inference

3. Selection Bias

4. Selection on Observables & Selection on Prop. Score

I Lec II: Roy Models and LATE
1. The role of heterogeneity

2. Multiple instruments, Covariates, and Abadie’s κ

I Lec III: Marginal Treatment E�ect
1. Parameters as functions of MTEs

2. Policy Relevant Treatment E�ects

I Lec IV: Extrapolations
1. Semi-Parametrics MTEs

2. Weights for Target Parameters
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Outline

1. Parameterizing MTEs

2. Application: QQ in Fertility

3. Extrapolation: Mogstad, Santos, and Torgovitsky

4. Application: Bed Nets
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Taking Stock

Summary
I Unobserved heterogeneity widely viewed as prevalent and important
I Fully parametric selection models allow for it, but not deemed credible
I Linear IV models with heterogeneity might not yield a useful parameter

At best some sort of weighted LATE expression — policy question?
I MTE models provide a conceptual framework for defining parameters

But many counterfactual parameters will not be point identified

Extrapolation
I We want to extrapolate from those a�ected by the instrument to others

Those who would be relevant in our counterfactual question
I Natural way to do this is to add some attractive parametric structure

But want to avoid the fully parametric normal selection model
I Another natural response is to allow for partial identification
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No Unobserved Heterogeneity
The easy way out
I All identification issues here are caused by unobserved heterogeneity

U dependent with Y1 − Y0, given X
I Assuming no such heterogeneity in treatment e�ects:

E[Y1 − Y0|U = u, X = x] = E[Y1 − Y0|X = x] for all u ∈ [0, 1]

I Equivalent to assuming that the MTE is constant as a function of u
I Any conditional-on-x LATE is su�cient to point identify the entire MTE

Sufficient conditions
I This will be true with constant e�ects: Y1 − Y0|X = x deterministic
I More generally, holds if agents choose D with no knowledge of (Y1, Y0)

I Notice in principle constant e�ects still allows E[Yd|U, X] 6= E[Yd|X]

I So it allows for selection bias, but not selection on the gain
I However, most endogeneity stories feature both forms of selection
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Parameterizing the MTE

I Brinch et al (2017, “BMW”) show how to parameterize the MTE
I For example, with no covariates, suppose we assume that

md(u) ≡ E[Yd|U = u] = αd + βdu for d = 0, 1
⇒ MTE(u) ≡ m1(u)−m0(u) = (α1 − α0) + (β1 − β0)u

I It can be shown that under this assumption

E[Y|D = 1, P = p] = α1 +
β1
2

p

E[Y|D = 0, P = p] =
(

α0 +
β0
2

)
+

β0
2

p

I So regress Y on P among D = d to identify (αd, βd) for d = 0, 1
I Requires two points of support in P⇒ Z ∈ {0, 1} su�ces
I Implication: Linearity is su�cient to point identify any mean contrast
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Generalization to Polynomials

I More generally, one could specify

md(u) ≡ E[Yd|U = u] =
K

∑
k=0

βdkuk

I E[Y|D = 1, P = p] is a Kth degree polynomial in this case
I So we can point identify a polynomial of degree K = | supp(Z)| − 1
I Stated di�erently, we need an instrument with | supp(Z)| ≥ K + 1

I Stratifying on D = d is important, otherwise in the linear case

E[Y|P = u] = − β0

2
+ (α1 − α0)u +

1
2
(β1 + β0)u2

I So you would need a trinary instrument if you didn’t stratify
I In the general case, would need | supp(Z)| ≥ K + 2
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Covariates and Separability

Saturated specifications
I Covariates could be fully interacted, e.g. with X ∈ {0, 1}

m1(u, x) = α1 + xγ1 + β1u + uxδ1

⇒ E[Y|D = 1, P = p, X = x] = α1 + γ1x +
β1
2

p +
δ1
2

px

I Instrument requirement becomes conditional on X = x
Variation in P given X = 0 for (α1, β1); given X = 1 for (γ1, δ1)

Separability
I Removing interactions (δ1 = 0) allows one to combine variation in X:

m1(u, x) = α1 + xγ1 + β1u

⇒ E[Y|D = 1, P = p, X = x] = α1 + xγ1 +
β1
2

p

I Same variation in X and P, but fewer parameters⇒ overidentified
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Outline

1. Parameterizing MTEs

2. Application: QQ in Fertility

3. Extrapolation: Mogstad, Santos, and Torgovitsky

4. Application: Bed Nets
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Quantity-Quality in Fertility

Question
I BMW revisit the causal e�ect of family size on child outcomes

Motivated by quantity-quality (QQ) model of Becker and Lewis (1973)
I Could be negative due to (e.g.) resource dilution
I Could be positive due to (e.g.) increased marriage stability

Data and design
I Same as in Black, Devereaux and Salvanes (2005)
I Norwegian administrative data (N ≈ 514,000 families)
I Y is the first-born child’s years of attained education
I Treatment and instruments are the same as in Angrist and Evans (1998)
I D is an indicator for having more than 2 children (vs. exactly 2)
I Z is either twins or same-sex
I X includes cohort, parent’s age at first birth, and parent’s schooling
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Various IV Estimates

mates from the logit model, for which average marginal effects are re-
ported in table 2. When excluding the same-sex instrument from the
outcome equation, we estimate that being in a family with two or more
siblings rather than one sibling lowers the educational attainment of first-
born children by 0.208 year. If instead we exclude the twins instrument
from the outcome equation, we still find a negative point estimate but
cannot reject no effect of family size at conventional significance levels.
When we exclude both instruments from the outcome equation, the IV
estimate is close to zero. Indeed, the LATE based on both instruments
is significantly different from the LATE based on the same-sex (twins)
instrument at the 5 (10) percent significance level.15 The fact that the
LATEs vary significantly with the choice of excluded instrument indicates
nonconstant MTEs.
In column 2, we follow Black et al. (2005) in using a standard linear IV

procedure with Z2 as the excluded instruments. While the effect of family
size induced by twins is only 0.050, the effect based on the same-sex in-
strument is as large as 0.174. The IVestimates in columns 1 and 2 are con-
sistent under the same assumptions (Carneiro et al. 2011). However, as
P(Z) incorporates interactions between the controls and the instrument
in the fertility choice, the LATE of a P(Z) shift in D does not need to be

TABLE 3
OLS and IV estimates

P(Z) as
Instrument

(1)

Z2

as Instrument
(2)

IV:
Same-sex instrument 2.208 .174

(.105) (.115)
Twins instrument 2.065 .050

(.060) (.062)
Both instruments 2.015 .076

(.053) (.055)
OLS 2.052

(.007)

Note.—This table reports OLS and IV estimates of the effect of family size on the edu-
cational attainment of firstborn children. Column 1 reports linear IV estimates with P(Z)
as instrument. We construct P(Z) using the parameter estimates from the logit model with
average derivatives reported in table 2. Column 2 reports standard linear IV estimates with
Z2 as instrument. We use the same specification for the covariates as reported in table 2.
The first row excludes the same sex, first and second children instrument from the second
stage, the second row excludes the twins at second parity instrument from the second
stage, and the third row excludes both instruments from the second stage. The OLS esti-
mate of the second-stage specification (20) is reported in the fourth row. Standard errors
in parentheses are robust to heteroskedasticity.

15 Tests comparing different coefficients in table 3 are performed using nonparametric
bootstrap with 1,000 bootstrap replications.

1010 journal of political economy

This content downloaded from 165.124.166.097 on March 21, 2019 08:02:41 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

I Outcome equation has 1, D, X without any interactions
I Di�erence in columns is linear IV vs. using estimated propensity score
I Di�erence in rows is what is excluded from the outcome equation
I If treatment e�ects were constant, one would expect stable estimates
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Linear MTE Estimates
TABLE 4

Estimates of Linear MTE Model and LATE Based on Same-Sex Instrument

p 5 .473 p 5 .531 Intercept Slope

A. Estimates of Linear MTE Model and Its Components

Linear MTE model:
m1 1 K1(P) 5 E(Y1FUD < p) 12.086 12.131 11.720 1.775p

(.008) (.007) (.095) (.188)
m0 1 K 0(P) 5 E(Y0FUD > p) 12.462 12.450 12.564 2.216p

(.007) (.008) (.091) (.181)
m1 1 k1(p) 5 E(Y1FUD 5 p) 12.453 12.542 11.720 11.550p

(.084) (.105) (.095) (.376)
m0 1 k0(p) 5 E(Y0FUD 5 p) 12.576 12.551 12.780 2.432p

(.101) (.080) (.272) (.0362)
MTE(p) 5 E(Y1 2 Y0FUD 5 p) 2.123 2.008 21.006 11.981p

(.129) (.130) (.290) (.529)

B. LATE from IV and Linear MTE Model

Instrumental variables:
½EðY j PrðDÞ 5 :531Þ 2 EðY j PrðDÞ 5 :473Þ$=ð:531 2 :473Þ 2.065

(.129)
Linear MTE model:Ð :531

:471 MTEðpÞ 5 MTE½ð:531 1 :471Þ=2$ 2.065
(.129)

Note.—This table displays LATE and linear MTE estimates of family size on the educational attainment of firstborn children. Panel A re-
ports estimates from the linear MTE model with same sex, first and second as the excluded instrument. Panel B reports estimates of LATE
from the IV estimator and the linear MTEmodel, with same sex, first and second as the excluded instrument. We do not include any covariates
in the MTE estimation or the IV estimation. Standard errors in parentheses are computed by nonparametric bootstrap with 100 bootstrap
replications.

This content dow
nloaded from

 165.124.166.097 on M
arch 21, 2019 08:02:41 A

M
A

ll use subject to U
niversity of Chicago Press Term

s and Conditions (http://w
w

w
.journals.uchicago.edu/t-and-c).

I No covariates in these specifications (reason for large standard errors)
I The linear MTE model replicates the LATE (−.065) — see problem set
I Linearity means the MTE is point identified everywhere — credible?
I Provides ATE estimate of −0.02 and ATT estimate of 0.48
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Nonparametric MTE w/ Separability

unlikely to bemanifested with equal force by all groups in the population.
Mixture distributions arise naturally when the population contains two or
more distinct subpopulations.
InAppendixD,wepresent a simple example ofMTE in amixturemodel

with two subpopulations of equal size. The population distribution ofMTE
that is derived from thismixedmodel has aU shape: Individuals with high
MTE are overrepresented in the tails, whereas individuals with low MTE
tend to be in themiddle ranges ofUD. The reason is that the first subgroup
has a relatively high variance of UD: This could, for example, be due to
weaker preferences for mixed-sex sibship such that the unobserved com-
ponent explains more of the variation in the choice of family size.
We have already discussed the rejection of the hypothesis that MTE is

constant in UD on the basis of the estimates of the linear MTEmodel, but

FIG. 5.—This figure displays the MTE estimates based on assumptions 1 and 2. We use
same-sex as the excluded instrument. The MTE estimates are evaluated at the mean values
of the covariates. We construct P(Z) using the parameter estimates from the logit model
specified in the note to table 2. TheMTE estimates are based on a double residual regression
separately for the treated andnontreated, using a local quadratic regression with uniformker-
nel and a bandwidth of 0.0615. The 95 percent confidence band (dashed lines) is computed
from a nonparametric bootstrap with 100 bootstrap replications. The y -axis measures the
value of the MTE in years of schooling, whereas the x-axis represents the unobserved compo-
nent of parents’net gain fromhaving three ormore children rather than two children. A high
value of p means that a family is less likely to have three or more children.

1020 journal of political economy

This content downloaded from 165.124.166.097 on March 21, 2019 08:02:41 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

I Impose separability to combine ≈ 32,000 support points for p(X, Z)
I Positive e�ects (MTE) for both smaller and larger U

Those least likely to change fertility because of sex composition
I Negative e�ects (MTE) for those more a�ected by sex composition
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Tests: Unobserved Heterogeneity

without invoking assumption 2. With this separability assumption, we can
test whether theMTE is constant inUD or not. We evaluate theMTE in five
intervals equally spaced between 0.22 and 0.72. As in Carneiro et al. (2011),
we construct pairs of intervals and compare themean of theMTEs for each
pair. Table 5 reports the outcome of these comparisons. For example, col-
umn 1 reports

EðY1 2 Y0jX 5 �X , 0:22 ≤ UD ≤ 0:27Þ
2EðY1 2 Y0jX 5 �X , 0:31 ≤ UD ≤ 0:36Þ 5 1:102,

with a p -value of .034 for no difference in these LATEs. Table 6 shows that
most of the adjacent LATEs are different at conventional levels of signif-
icance. A joint test that the difference across all adjacent LATEs is differ-
ent from zero has a p -value close to zero. This is further evidence that fam-
ilies select into family size on the basis of heterogeneous returns.

C. Summary Measures of Treatment Effects

As shown by Heckman and Vytlacil (1999, 2005, 2007), all conventional
treatment parameters can be expressed as different weighted averages of
theMTE. Recovering these treatment parameters from estimates of MTE,
however, requires full support of P(Z) on the unit interval. Since we do
not have full support of P(Z), we follow Carneiro et al. (2011) in rescaling
the weights so that they integrate to one over the region of common sup-
port.

TABLE 5
Comparing LATEs across Different Intervals of the Propensity Score

LATE over Intervals

(.22, .27) 2
(.31, .36)

(.31, .36) 2
(.40, .45)

(.40, .45) 2
(.49, .54)

(.49, .54) 2
(.58, .63)

(.58, .63) 2
(.67, .72)

Point estimate 1.102 1.011 .046 2.413 21.006
Standard error .521 .307 .257 .241 .301
p - value .034 .001 .859 .087 .001
p - value of joint
test .000

Note.—This table reports tests of constant MTE of family size on the educational attain-
ment of firstborn children. TheMTE estimates are based on assumptions 1 and 2, with same
sex, first and second as the excluded instrument (see fig. 5). We construct P(Z) using the
parameter estimates from the logit model with average derivatives reported in table 2.
We use the same specification for the covariates as reported in table 2. The MTE estimates
are based on double residual regression separately for the treated and nontreated, using
local quadratic regression with uniform kernel and bandwidth of 0.0615. The LATEs are
derived from theMTE estimates by integrating over the indicated intervals. Standard errors
are based on nonparametric bootstrap (of both estimation stages) with 100 bootstrap rep-
lications.

beyond late with a discrete instrument 1021

This content downloaded from 165.124.166.097 on March 21, 2019 08:02:41 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

I Same testing procedure as in CHV, but much more power here
I Unobserved treatment e�ect heterogeneity is clearly present
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Mogstad, Santos & Torgovitsky (18)

Background motivation
I We want to specify precise parameters that answer specific questions
I The MTE framework provides a good way to do this
I But shows these parameters are often not nonparametrically identified
I 3 options: More assumptions, partial identification, change the question

Motivation relative to BMW
I More assumptions, but functional forms dictated by instrument support

This reflects a framework that requires point identification
I Instead, we would like to take the assumptions as the primitive
I Possible for these to be informative even without point identification
I Would also like to treat the parameter of interest as central

Instead of deriving it from the MTE as a second step



17

Overview

Motivation
I Assume that the analyst has a target parameter, β?

I They choose β? on the outset to answer a specific question
I Forward engineering instead of backward engineering
I Suppose β?(m) can be written as function of m ≡ (m0, m1)

md ≡ E[Yd|U = u] is a marginal treatment response (MTR) function

Main question
I There are two constraints on the MTR functions m:
1. Must be observationally equivalent (consistent with data)
2. Must satisfy our assumptions (m ∈ M, the parameter space)
I These constraints restrict m to be in some setM?

I So they also restrict β?(m) to be in some set B?
How do we determine B??
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Form for the Target Parameter

Form
I Suppose β?(m) is a single number for each pair m ≡ (m0, m1)

I Means we are looking for B? ⊆ R
I Assume that β? can be written as

β?(m0, m1) ≡ ∑
d∈{0,1}

E



∫ 1

0
md(u, X)︸ ︷︷ ︸
MTR for Yd

identified weights︷ ︸︸ ︷
ω?

d (u, X, Z) du




I The weights can (usually) be derived from the choice of β?

Scope
I Covers basically any mean contrast — recall ATE, ATT, LATE, PRTE . . .
I HV and MST provide extensive tables cataloguing ω?

0 , ω?
1 forms . . .

I In many (but not all) cases the weights are symmetric: ω?
0 = −ω?

1
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Weights for Target Parameters
Weights for Conventional Target Parameters (69 / 103)

Weights

Target Parameter Expression !?
0(u, x, z) !?

1(u, x, z)

Average Untreated
Outcome

E[Y0] 1 0

Average Treated
Outcome

E[Y1] 0 1

Average Treatment
Effect (ATE)

E[Y1 � Y0] �1 1

ATE given X = x
where P[X = x] > 0

E[Y1 � Y0|X = x] �!?
1(u, x, z)

1[x = x]
P[X = x]

Average Treatment on
the Treated (ATT)

E[Y1 � Y0|D = 1] �!?
1(u, x, z)

1[u  p(x, z)]
P[D = 1]

Average Treatment on
the Untreated (ATU)

E[Y1 � Y0|D = 0] �!?
1(u, x, z)

1[u > p(x, z)]
P[D = 0]

Local Average
Treatment Effect
(LATE) for z0 ! z1
given X = x, where
p(x, z1) > p(x, z0)

E[Y1 � Y0|p(x, z0) < U 
p(x, z1), X = x]

�!?
1(u, x, z)

1[p(x, z0) < u  p(x, z1)]

p(x, z1) � p(x, z0)
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Weights for Policy Relevant TEs
Weights for Policy Relevant Treatment Effects (70 / 103)

Target Parameter Expression !?
1(u, x, z) = �!?

0(u, x, z)

Generalized LATE for
U 2 [u, u]

E[Y1 � Y0|U 2 [u, u]]
1[u 2 [u, u]]

u � u

Policy Relevant
Treatment Effect (PRTE)
for policy (pa1 , Za1)
relative to policy
(pa0 , Za0)

E[Ya1 ] � E[Ya0 ]

E[Da1 ] � E[Da0 ]

P[u  pa1(x, Za1)|X = x] � P[u  pa0(x, Za0)|X = x]
E[pa1(X, Za1)] � E[pa0(X, Za0)]

Additive PRTE with
magnitude ↵

PRTE with Z? = Z and
p?(x, z) = p(x, z) + ↵

1[u  p(x, z) + ↵] � 1[u  p(x, z)]
↵

Proportional PRTE with
magnitude ↵

PRTE with Z? = Z and
p?(x, z) = (1 + ↵)p(x, z)

1[u  (1 + ↵)p(x, z)] � 1[u  p(x, z)]
↵E[p(X, Z)]

PRTE for an additive ↵
shift of the jth component
of Z

PRTE with Z? = Z + ↵ej

and p?(x, z) = p(x, z)

1[u  p(x, z + ↵ej)] � 1[u  p(x, z)]
E[p(X, Z + ↵ej)] � E[p(X, Z)]
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Observational Equivalence

IV–like estimands
I Moments of the distribution of (Y, D, X, Z) are similar to β?:

Each m generates a di�erent value of a given moment
I Let s be a function of (D, X, Z) and let S ≡ s(D, X, Z)
I Define an IV–like estimand as βs ≡ E[YS]

I The mapping between m and the βs it would generate is

Γs(m) ≡ ∑
d∈{0,1}

E



∫ 1

0
md(u, X)︸ ︷︷ ︸
MTR for Yd

identified weights︷ ︸︸ ︷
ωds(u, X, Z) du




where ω0s(u, x, z) ≡ s(0, x, z)I{u ≥ p(x, z)}
ω1s(u, x, z) ≡ s(1, x, z)I{u ≤ p(x, z)}

I Same structure as the target parameter, β?, but di�erent weights
I Derivation was part of deriving IV estimand weights (may write supplement)
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Examples of IV–Like Estimands
Notable Examples of IV–Like Estimands (72 / 103)

Estimand �s s(d, x, z) Notes

Wald (z0 to z1)
E[Y|Z = z1] � E[Y|Z = z0]

E[D|Z = z1] � E[D|Z = z0]

1[z=z1]
P[Z=z1]

� 1[z=z]
P[Z=z0]

E[D|Z = z1] � E[D|Z = z0]

P[Z = zj] 6= 0, j = 0, 1
and E[D|Z = z1]
6= E[D|Z = z0]

IV slope
Cov(Y, Z)

Cov(D, Z)

z � E[Z]

Cov(D, Z)
Z scalar

IV (jth
component)

e0j E[eZeX0]�1 E[eZY] e0j E[eZeX0]�1ez

eX ⌘ [1, D, X0]0

eZ ⌘ [1, Z, X0]0

Z scalar
ej the jth unit vector

TSLS (jth
component)

e0j
⇣
⇧E[eZeX0]

⌘�1 ⇣
⇧E[eZY]

⌘
e0j(⇧E[eZeX0])�1⇧eZ ⇧ ⌘ E[eXeZ0] E[eZeZ0]�1

Z vector

OLS slope
Cov(Y, D)

Var(D)

d � E[D]

Var(D)
—

OLS (jth
component)

e0j E[eXeX0]�1 E[eXY] e0j E[eXeX0]�1ex
eX ⌘ [1, D, X0]0

ej the jth unit vector
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Identification
Finding bounds through optimization
I Suppose we pick some s ∈ S and get IV–like estimands {βs : s ∈ S}
I Then an upper bound on β? can be found by solving:

β
? ≡ sup

m
β?(m) s.t. m ∈ M︸ ︷︷ ︸

assumptions

and Γs(m) = βs ∀s ∈ S︸ ︷︷ ︸
observationally equivalent

I Lower bound β? by replacing “sup” with “inf”

I If we can find these, then we can conclude B? ⊆ [β?, β
?
]

Questions
I How do we do this in practice? Can these problems be made feasible?

Turns out the answer is yes ifM has a particular structure
I Are these the best bounds possible? This will depend on S
I Are these bounds useful?

Depends on β?,M and the data in a natural and intuitive way
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Feasible Computation

Linear programming
I Both β? and Γs are linear functions of m
I IfM is polyhedral, the optimization problems are linear programs
I (Finite) linear programs can be solved quickly and reliably
I However, m is a function — how do we optimize over a function?

Linear basis
I Assume that every m ≡ (m0, m1) ∈ M has the following form:

md(u, x) =
Kd

∑
k=1

θdkbdk(u, x) known basis bdk, unknown θdk

I Now the optimization problems are finite and linear in θ since (e.g.)

β?(

(now θ)︷ ︸︸ ︷
m0, m1) ≡ ∑

d∈{0,1}

Kd

∑
k=1

θdkE
[∫ 1

0
bdk(u, X)ω?

d (u, X, Z) du
]
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Choosing a Linear Basis
I Main concern isM being polyhedral after adding assumptions
I The following two choices of bases are flexible in this regard

Bernstein polynomials (BPs)
I BPs are just polynomials in a di�erent basis:

bK
k (u) ≡

(
K
k

)
uk(1− u)K−k for k = 0, 1, . . . , K

I They are less collinear than ordinary (“power basis”) polynomials
I Bounded, monotone, concave can be ensured by linear constraints on θ

Constant splines (CSs)
I Indicator functions: bk(u) = I{ck−1(u), ck(u)} — knots ck
I MST show CSs can exactly replicate nonparametric bounds
I Idea is to choose the knots correctly (e.g. propensity score values)
I Also easy to constrain to be bounded, monotone using linear constraints
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Computationally Tractable Assumptions
Boundedness
I Generally need Y ∈ [y, y] to get nontrivial bounds on means
I Natural in economics, although sometimes see resistance to this
I For BPs/CSs these are box (bound) constraints on θdk

Monotonicity
I Imposes an assumption about the direction of selection
I m0(u) decreasing — positive selection bias
I Distinct from (m1 −m0)(u) decreasing — positive selection on gains
I For BPs/CSs these are sets of inequality constraints on θdk

Separability
I md(u, x) = mU

d (u) + mX
d (x) — same meaning as before

I bdk(u, x) = bU
dk(u) + bX

dk(x) — impose θdk = 0 for interaction terms
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Choosing IV–Like Estimands S

Sharpness
I The bounds necessarily get smaller with more S
I MST show the smallest bounds are achieved by making S “rich enough”
I For identification, the only drawback of increasing S is computational
I In statistical inference the issue is more complicated (no answer yet)

Reproducing common estimands
I Any s included in S must be consistent with the derived bounds
I For example, suppose one includes a z′ → z Wald estimand in S

Then the bounds also reproduce LATEz
z′ — as in BMW

I Procedure allows for extrapolation, but does not sacrifice internal validity
I Natural approach might be to include common estimands in S

“Doesn’t hurt to look” attitude — should please all camps (?)
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Numerical Illustration: MST

Treatment and instrument
I Motivated by the empirical application in MST (discussed later)
I D ∈ {0, 1} is purchasing an anti-malarial bed net
I Z ∈ {1, 2, 3, 4} is a randomly assigned price subsidy for purchase
I Marginal distribution P[Z = z] = 1

4 , propensity score p(z) given by

p(1) = .12︸ ︷︷ ︸
least generous

p(2) = .29 p(3) = .48 p(4) = .78︸ ︷︷ ︸
most generous

I Roughly the type of variation we have in the data

Outcome
I Suppose Y ∈ {0, 1} is being infected by malaria
I D is endogenous if individuals know their propensity to contract malaria

For example, they live by a lot of mosquitoes, or have poor immunity
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MTR & MTE Functions in Simulation

I MTRs and MTE non-constant — selection bias and selection on gain
I Those less likely to buy a net are more likely to get malaria anyway
I Those more likely to buy a net are more likely to gain more from it
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Bounds on the ATT ( 6= Polynomials)

I Polynomials vs nonparametric, as well as decreasing vs unrestricted
I Polynomial bounds converge to the nonparametric bounds
I Shape restrictions can have a big impact (look at K = 6)



31

The Degree of Extrapolation

I The ATT requires substantial extrapolation, hence bounds are fairly wide
I Contrast to an extrapolated LATE: E[Y1 − Y0|U ∈ (p(2), p(3) + α]]

Width of bounds are a function of extrapolation and assumptions



32

Outline

1. Parameterizing MTEs

2. Application: QQ in Fertility

3. Extrapolation: Mogstad, Santos, and Torgovitsky

4. Application: Bed Nets
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Bed Nets (MST 2017 WP)

Motivation
I Motivated by Dupas (2014) — same variables as in illustration
I Dupas randomly assigned price subsidies for purchasing the net
I Di�erence is Y ∈ {0, 1} is whether the net is actually being used
I How to promote (cost-e�ective) use of preventative health products?
I Encourage wide use without over-subsidizing inframarginal consumers?
I Olyset nets are a new type, so Y0 = 0 (shape restriction)
I Unfortunately no data on interesting economic or health outcomes

Data
I Randomly assigned prices to 1200 households in 6 Kenyan villages
I Prices varied from 0 to 250 Ksh (about $3.80, twice daily wage)
I Overall 17 di�erent prices o�ered, but only 4 or 5 to each village
I Everything will be conditioned on village (then average parameters)
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Propensity Score (First Stage)

Estimate demand (p-score) with a logit (villages combined in graph)
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Different Subsidy RegimesTable 3: The Effects of Purchase on Net Usage

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Information Specification
Intercept 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Linear in p(Z) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

OLS 3 3 3 3 3 3 3 3 3 3

1(Z ≤ 50) 3 3 3 3 3

1(Z ≤ 150) 3 3 3 3 3

Panel A. Population Average Treatment Effect
K (polynomial order) 2 6 10 20 NP 2 6 10 20 NP 2 6 10 20 NP
Bounds
Lower .6521 .4646 .3857 .3275 .2533 .6521 .4956 .4700 .4537 .3954 ∅ .6365 .5602 .5269 .4487
Upper .6772 .7269 .7362 .7445 .7515 .6521 .7269 .7362 .7445 .7515 ∅ .7104 .7178 .7229 .7253
90% Confidence Interval
Lower .5486 .3761 .2995 .2421 .4282 .4032 .3511 .3204 .5206 .4130 .3652 .3260
Upper .7462 .8019 .8102 .8139 .7516 .8093 .8179 .8209 .7491 .7910 .7941 .7978

Panel B. PRTE at Free Provision versus a Price of 150 Ksh
K (polynomial order) 2 6 10 20 NP 2 6 10 20 NP 2 6 10 20 NP
Bounds
Lower .6600 .5881 .5626 .5444 .4817 .6600 .5881 .5626 .5444 .4856 ∅ .6758 .6506 .6214 .5573
Upper .7049 .8140 .8469 .8817 .9732 .6600 .7085 .7172 .7275 .7941 ∅ .6895 .6988 .7140 .7492
90% Confidence Interval
Lower .5417 .5005 .4695 .4479 .3890 .3472 .3414 .3320 .5079 .4755 .4584 .4281
Upper .7686 .9161 .9519 .9746 .7732 .9263 .9616 .9838 .7713 .9093 .9291 .9511

Specifications of the IV-like Estimands
Intercept s(d, z) = 1 s(d, z) = 1 s(d, z) = 1
Linear in p(Z) s(d, z) = p(z) s(d, z) = p(z) s(d, z) = p(z)
OLS s(d, z) = d s(d, z) = d
1(Z ≤ 50) s(d, z) = 1(z ≤ 50)
1(Z ≤ 150) s(d, z) = 1(z ≤ 150)

Notes: This table reports bounds and 90% confidence intervals for the effects of purchase on usage of the
Olyset net. We estimate the propensity score, p, using the fitted logistic regression from Figure 9. K
denotes the order of the Bernstein polynomial specification for the MTR functions. The confidence intervals
are based on 200 bootstrap replicates, and the tuning parameters are specified as 0.05.
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I PRTE of free provision (with full-take up) vs. no provision
I Common parameter of interest (≡ ATE) — but maybe not so interesting
I Bounds depend on S and K — can be empty (misspecification)
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Upper .7686 .9161 .9519 .9746 .7732 .9263 .9616 .9838 .7713 .9093 .9291 .9511

Specifications of the IV-like Estimands
Intercept s(d, z) = 1 s(d, z) = 1 s(d, z) = 1
Linear in p(Z) s(d, z) = p(z) s(d, z) = p(z) s(d, z) = p(z)
OLS s(d, z) = d s(d, z) = d
1(Z ≤ 50) s(d, z) = 1(z ≤ 50)
1(Z ≤ 150) s(d, z) = 1(z ≤ 150)

Notes: This table reports bounds and 90% confidence intervals for the effects of purchase on usage of the
Olyset net. We estimate the propensity score, p, using the fitted logistic regression from Figure 9. K
denotes the order of the Bernstein polynomial specification for the MTR functions. The confidence intervals
are based on 200 bootstrap replicates, and the tuning parameters are specified as 0.05.

53

I PRTE of free provision vs. market price one year later (150 Ksh)
I Demand at 150 Ksh is predicted from the logit estimate
I This is a LATE, but not nonparametrically point id’d (for every village)
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53

I Statistical inference is a challenge for partial identification approaches
I We know these confidence intervals are conservative (excessively wide)
I There is rapid progress here, and work continues . . .



36

QUESTIONS?
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