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» Lec I: Selection on Observables
1. Potential Outcomes vs Latent Variables

2. Causal Inference
3. Selection Bias

4. Selection on Observables & Selection on Prop. Score

» Lec Il: Roy Models and LATE
1. The role of heterogeneity

2. Multiple instruments, Covariates, and Abadie’s x

» Lec Ill: Marginal Treatment Effect
1. Parameters as functions of MTEs

2. Policy Relevant Treatment Effects

» Lec IV: Extrapolations
1. Semi-Parametrics MTEs

2. Weights for Target Parameters



Parameterizing MTEs
Application: QQ in Fertility
Extrapolation: Mogstad, Santos, and Torgovitsky

Application: Bed Nets




TAKING STOCK

» Unobserved heterogeneity widely viewed as prevalent and important

> Fully parametric selection models allow for it, but not deemed credible

> Linear IV models with heterogeneity might not yield a useful parameter
At best some sort of weighted LATE expression — policy question?

» MTE models provide a conceptual framework for defining parameters
But many counterfactual parameters will not be point identified

> We want to extrapolate from those affected by the instrument to others
Those who would be relevant in our counterfactual question

> Natural way to do this is to add some attractive parametric structure
But want to avoid the fully parametric normal selection model

» Another natural response is to allow for partial identification



No UnoBsSERVED HETEROGENEITY

THE EASY WAY OUT

> All identification issues here are caused by unobserved heterogeneity
U dependent with Y; — Yy, given X
» Assuming no such heterogeneity in treatment effects:

E[Yq —YolU =u,X =x] = E[Y] — Yo|X =] forallu € [0,1]

> Equivalent to assuming that the MTE is constant as a function of u
» Any conditional-on-x LATE is sufficient to point identify the entire MTE

SUFFICIENT CONDITIONS

This will be true with constant effects: Y; — Y| X = x deterministic

> More generally, holds if agents choose D with no knowledge of (Y7, Yj)
> Notice in principle constant effects still allows E[Y;|U, X] # E[Y,|X]
>
>

v

So it allows for selection bias, but not selection on the gain
However, most endogeneity stories feature both forms of selection



PaArRAMETERIZING THE MTE

\4

Brinch et al (2017, “BMW”) show how to parameterize the MTE
For example, with no covariates, suppose we assume that

v

mg(u) = E[Yy|U =u] = ay+ Bgu for d=0,1
=  MTE(u) = my(u) —my(u) = (a1 —ag) + (B1 — Bo)u

It can be shown that under this assumption

\4

E[YID =1,P =p] :txl—l—%p
E[Y|D=0,P=p] = (a0+ %) +%p

> So regress Y on P among D = d to identify (ay, B;) ford =0,1
Requires two points of supportin P = Z € {0,1} suffices
Implication: Linearity is sufficient to point identify any mean contrast

vy



GENERALIZATION TO POLYNOMIALS

» More generally, one could specify

mg(u) = E[Yq|U = u] = Zﬁdk”

v

E[Y|D = 1,P = p] is a Kth degree polynomial in this case
So we can point identify a polynomial of degree K = |supp(Z)| — 1
Stated differently, we need an instrument with | supp(Z)| > K+1

vy

\4

Stratifying on D = d is important, otherwise in the linear case

E[YIP=u] = —% + (a1 —ag)u + 5 (/51 + Bo)u”

» So you would need a trinary instrument if you didn't stratify
In the general case, would need |supp(Z)| > K +2

v



COVARIATES AND SEPARABILITY

SATURATED SPECIFICATIONS

> Covariates could be fully interacted, e.g. with X € {0,1}
my (1, x) = aq + x7y1 + Bru + uxdy

= EY|D=1P=pX=1 :a1+’nx+ﬁ;r’+ S bx

> Instrument requirement becomes conditional on X = x
Variation in P given X = 0 for («q, 1 ); given X =1 for (74,01)
» Removing interactions (6; = 0) allows one to combine variation in X:
my (u,x) = aq +x791 + B1u
= E[Y|D=1P=pX=1 _le—i-x'yl—}—l]

» Same variation in X and P, but fewer parameters = overidentified



Parameterizing MTEs




OQOuANTITY-QUuALITY IN FERTILITY

QUESTION

>

>
>

BMW revisit the causal effect of family size on child outcomes
Motivated by quantity-quality (QQ) model of Becker and Lewis (1973)
Could be negative due to (e.g.) resource dilution

Could be positive due to (e.g.) increased marriage stability

DATA AND DESIGN

| 2
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Same as in Black, Devereaux and Salvanes (2005)

Norwegian administrative data (N ~ 514,000 families)

Y is the first-born child’s years of attained education

Treatment and instruments are the same as in Angrist and Evans (1998)
D is an indicator for having more than 2 children (vs. exactly 2)

Z is either twins or same-sex

X includes cohort, parent’s age at first birth, and parent’s schooling



VArious 1V ESsTIMATES

TABLE 3
OLS AND IV ESTIMATES
P(Z) as Z
Instrument as Instrument

v:
Same-sex instrument 174
(.115)
Twins instrument —.065 050
(.060) (.062)
Both instruments —.015 .076
(.053) (.055)
OLS —.052
(.007)
Note.—This table reports OLS and IV estimates of the effect of family size on the edu-

cational attainment of firstborn children. Column 1 reports linear IV estimates with P(Z)
as instrument. We construct P(Z) using the parameter estimates from the logit model with
average derivatives reported in table 2. Column 2 reports standard linear IV estimates with
Z_ as instrument. We use the same specification for the covariates as reported in table 2.
The first row excludes the same sex, first and second children instrument from the second
stage, the second row excludes the twins at second parity instrument from the second
stage, and the third row excludes both instruments from the second stage. The OLS esti-
mate of the second-stage specification (20) is reported in the fourth row. Standard errors
in parentheses are robust to heteroskedasticity.

» Outcome equation has 1, D, X without any interactions
» Difference in columns is linear IV vs. using estimated propensity score
> Difference in rows is what is excluded from the outcome equation

If treatment effects were constant, one would expect stable estimates



LinEar MTE ESTIMATES

TABLE 4
ESTIMATES OF LINEAR MTE MODEL AND LATE BASED ON SAME-SEX INSTRUMENT

p= 473 p =531 Intercept Slope

A. Estimates of Linear MTE Model and Its Components

Linear MTE model:

i+ Ki(P) = E(G| Uy < p) 12.086 12.131 11.720 +.775p
(.008) (.007) (.188)

o + Ko(P) = E(Y,| Up> p) 2.462 12.450 —.216p
(.008) (.181)

i+ h(p) = E(V| Uy = p) 2 +1.550p

6)
2

so + ko(p) = E(Yo| Up = p)

1080) 4 .0362)
MTE(p) = E(Y; — Y| Up = p) —.008 ~1.006 +1.981p
(.130) (:290) (.529)

B. LATE from IV and Linear MTE Model

Instrumental v:
[E(Y| Pr(D)

31) — E(Y|Pr(D) = .473)]/(.531 — 473) —.065

(.129)

r MTE model:
" MTE(p) = MTE[(.531 + .471)/2] —.065
(.129)

Nore.—This table displays LATE and lincar MTE cstimates of family sizc on the cducational atainment of firstborn children. Panel A re-

i rom the MTE model wi second as the excluded instrument. Panel B reports estim:

stimator and the linear M’ ind seco as the excluded instrument. We do not include any

in the MTE estimation or the IV estima sntheses are computed by nonparametric bootstrap with 100 b(n)[sudp
replications.

> No covariates in these specifications (reason for large standard errors)
» The linear MTE model replicates the LATE (—.065) — see problem set

> Linearity means the MTE is point identified everywhere — credible?

> Provides ATE estimate of —0.02 and ATT estimate of 0.48



NonraArRAMETRIC MTE W/ SEPARABILITY
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» Impose separability to combine ~ 32,000 support points for p(X, Z)
> Positive effects (MTE) for both smaller and larger U

Those least likely to change fertility because of sex composition
» Negative effects (MTE) for those more affected by sex composition



TESTS: UnOBSERVED HETEROGENEITY

TABLE 5
CoMPARING LATES ACROSS DIFFERENT INTERVALS OF THE PROPENSITY SCORE

LATE OVER INTERVALS

(22,.27) — (.31,.36) — (40, .45) — (49,.54) — (.58, .63) —
(.31, .36) (.40, .45) (ke J3eh) (.58, .63) (.67,.72)

Point estimate 1.102 1.011 046 -413 —1.006
Standard error 521 .307 257 241 301
p-value .034 .001 .859 .087 .001
p-value of joint

test. 000

NotE.—This table reports tests of constant MTE of family size on the educational attain-
ment of firstborn children. The MTE estimates are based on assumptions 1 and 2, with same
sex, first and second as the excluded instrument (see fig. 5). We construct P(Z) using the
parameter estimates from the logit model with average derivatives reported in table 2.
We use the same specification for the covariates as reported in table 2. The MTE estimates
are based on double residual regression separately for the treated and nontreated, using
local quadratic regression with uniform kernel and bandwidth of 0.0615. The LATEs are
derived from the MTE estimates by integrating over the indicated intervals. Standard errors
are based on nonparametric bootstrap (of both estimation stages) with 100 bootstrap rep-
lications.

» Same testing procedure as in CHV, but much more power here
> Unobserved treatment effect heterogeneity is clearly present



Parameterizing MTEs

Application: QQ in Fertility




MoGSTAD, SANTOS & TorGOoVITSKY (18)

BACKGROUND MOTIVATION

> We want to specify precise parameters that answer specific questions

» The MTE framework provides a good way to do this

> But shows these parameters are often not nonparametrically identified
> 3 options: More assumptions, partial identification, change the question

MOTIVATION RELATIVE TO BMW

> More assumptions, but functional forms dictated by instrument support
This reflects a framework that requires point identification

> Instead, we would like to take the assumptions as the primitive

> Possible for these to be informative even without point identification

> Would also like to treat the parameter of interest as central
Instead of deriving it from the MTE as a second step



OvERVIEW

MOTIVATION

> Assume that the analyst has a target parameter, g*
» They choose B* on the outset to answer a specific question
» Forward engineering instead of backward engineering
> Suppose p*(m) can be written as function of m = (mg, m;)
my = E[Y4|U = u] is a marginal treatment response (MTR) function

MAIN QUESTION

» There are two constraints on the MTR functions m:
1. Must be observationally equivalent (consistent with data)

2. Must satisfy our assumptions (m € M, the parameter space)
> These constraints restrict m to be in some set M*

> So they also restrict *(m) to be in some set B*
How do we determine B*?



Form Fror THE TARGET PARAMETER

FORM

» Suppose p*(m) is a single number for each pair m = (mg, m;)
» Means we are looking for B* C R
» Assume that g* can be written as

identified weights

* 1 *
B*(mo,m)= Y E / ma(u,X) wij(u,X,7) du
HEuil) MTR for Y,

» The weights can (usually) be derived from the choice of g*

SCOPE

> Covers basically any mean contrast — recall ATE, ATT, LATE, PRTE ...
» HV and MST provide extensive tables cataloguing wj, wi forms ...
» In many (but not all) cases the weights are symmetric: w} = —w?



WEIGHTS FOR TARGET PARAMETERS

Weights
Target Parameter Expression Wi (u,x,2) Wi (u,x,z)
Average Untreated
1 0

Outcome E[Yo)
Average Treated E[Y)] 0 1
Outcome !
Average Treatment

— —1 1
Effect (ATE) E[Y; — Yol
ATE given X =X o s 1x =%
where P[X =x] > 0 Ef = Yolx =x] Wil %,2) P[X =7]
Average Treatment on _ o Au < p(x,2)]
the Treated (ATT) E[Yy = Yo|D =1] wilw x,2) PD = 1]
Average Treatment on _ o Afu > p(x,2)]
the Untreated (ATU) EY1 — Yol D = 0] wi(w,x2) P[D = 0]
Local Average
Treatment Effect

_ < Ap(x,z0) < u < p(x,z

(LATE) for 0 — 21 Eli—Yolp(rz) <US g oy Lp20) <usplvz)]

p(x,21), X = x] px,z1) — p(x,20)

given X = x, where
p(x,21) > p(x,20)




WEIGHTS FOR PoLicYy ReELeEvAnNT TEs

Target Parameter Expression wi (u,x,2) = —wg(u,x,2)
Generalized LATE for _ Uu € [u,u]]
UE[&,E] ]E[YI*YO‘UE[%“” d—u

Policy Relevant
Treatment Effect (PRTE)
for policy (p™,Z%)
relative to policy

(. 2%)

Additive PRTE with
magnitude o

Proportional PRTE with
magnitude o«

PRTE for an additive o
shift of the /" component
of Z

E[y4] — E[y%]

PRTE with Z* = Z and
p(x,2) =plx,2) + o

PRTE with Z* = Z and
p(x.2) = (1+a)p(x.2)

PRTE with Z* = Z 4 «ae;
and p*(x,z) = p(x,2)

Plu < p (x, Z")|X = 8] = Plu < p™(x, Z)|X = x]
E[p (X, z41)] = E[p* (X, Z%)]

Lu < p(x,2) + o] —Uu < p(x,2)]

1u < (1 + a)p(x, 2)] — Uu < p(x, 2)]
aEp(X,Z)]

Au < p(x,z+ ae)] — Uu < p(x,7)]
E[p(X,Z + ae))] — E[p(X, Z)]




OBSERVATIONAL El__)IJI\/Al_EI\ICE

IV-LIKE ESTIMANDS

» Moments of the distribution of (Y, D, X, Z) are similar to g*:
Each m generates a different value of a given moment

> Let s be a function of (D, X, Z) and let S = s(D, X, Z)
» Define an IV-like estimand as 3; = E[YS]
» The mapping between m and the B; it would generate is
identified weights
1 —_———
Im)= Y E / my(u,X) wgs(u,X,Z) du
de{01} MTR for Y,
where  wys(1,x,2z) =5(0,x,2)[{u > p(x,2)}
wis(u,x,2) =s(1,x,2)[{u < p(x,2)}
> Same structure as the target parameter, *, but different weights
» Derivation was part of deriving IV estimand weights (may write supplement)



ExamPrLES OF IV-LixE EsTiMANDS

Estimand Bs s(d,x,z) Notes
Ue=z] _ 1=z P[Z=2z]#0,j=0,1
E[Y|Z = z1] — E[Y|Z = 2] Pl=a] ~ Plr=al [and ]%][;Z i 21
Wald (2o to z1) ED|Z=z]-ED|Z=2] E[D|Z=z]-E[D|Z=z)] LEDZ - ]
Cov(Y,Z) z—E[Z]
—_— - - - Z 1.
1V slope Cov(D,Z) Cov(D,Z) scatar
X=[1,D,x)
~——~ ~ —— 7 — au
1V (jth ¢ E[ZX'|"' E[zY] JE[ZX) 'z z P [slé irX ]
component) ’
P e;j the jth unit vector
. e\ 1 ~ . N — RIY7 Zn—1
TSLS (jth ¢ (nEZxY) ' (EEZN) ITEZX])) 'z Il = E(xZ| E[zZ]
component) Z vector
Cov(¥,D) d—E[D|
OLS slope Var(D) Var(D)
~— ~ e Y — "
OLS (jth ej’-]E[XX’]’l E[XY] ej’-IE[XX’]’IZ X =[1,D,X]

component) e; the jth unit vector




IDENTIFICATION

FINDING BOUNDS THROUGH OPTIMIZATION

» Suppose we pick some s € S and get IV-like estimands {Bs : s € S}
» Then an upper bound on §* can be found by solving:

B = s::lp g*(m) st. meM and Ts(m)=PBsVseS

assumptions observationally equivalent

> Lower bound B* by replacing “sup” with “inf”

> If we can find these, then we can conclude B* C [E*,F]

QUESTIONS

» How do we do this in practice? Can these problems be made feasible?
Turns out the answer is yes if M has a particular structure
> Are these the best bounds possible? This will depend on S

> Are these bounds useful?
Depends on p*, M and the data in a natural and intuitive way



FEAsIBLE COMPUTATION

LINEAR PROGRAMMING

» Both g* and I's are linear functions of m

> If M is polyhedral, the optimization problems are linear programs
» (Finite) linear programs can be solved quickly and reliably

» However, m is a function — how do we optimize over a function?

LINEAR BASIS

> Assume that every m = (mg,m;) € M has the following form:
d
mg(u,x) = Y 0yba(u,x) known basis b, unknown 6
k=1
» Now the optimization problems are finite and linear in ¢ since (e.g.)

(now )

,B*(mo,ml = Z ng;\E |:/ bdk MX) d(M,X,Z)dll

de{0,1} k=1



CHnoosinGg A LinEar BAsis

» Main concern is M being polyhedral after adding assumptions
» The following two choices of bases are flexible in this regard

BERNSTEIN POLYNOMIALS (BPS)
> BPs are just polynomials in a different basis:

b (u) = (I]f) uk(1 —u)** fork=0,1,..., K

» They are less collinear than ordinary (“power basis”) polynomials
» Bounded, monotone, concave can be ensured by linear constraints on 6

CONSTANT SPLINES (CSS)

» Indicator functions: by (1) = I{cy_1(u), cx (1)} — knots ¢

» MST show CSs can exactly replicate nonparametric bounds

> ldea is to choose the knots correctly (e.g. propensity score values)

> Also easy to constrain to be bounded, monotone using linear constraints



CoMPUTATIONALLY TRACTABLE ASSUMPTIONS

BOUNDEDNESS
> Generally need Y € [y, 7] to get nontrivial bounds on means

» Natural in economics, although sometimes see resistance to this
» For BPs/CSs these are box (bound) constraints on 6,

MONOTONICITY

» Imposes an assumption about the direction of selection

» my(u) decreasing — positive selection bias

» Distinct from (m; — mg)(u) decreasing — positive selection on gains
> For BPs/CSs these are sets of inequality constraints on 6,

SEPARABILITY

> mg(u,x) = mY (u) + m¥(x) — same meaning as before
> bue(u,x) = bY (1) + b (x) — impose 6 = 0 for interaction terms



CnoosinGg IV-LixkeE EsTimMmANDS S

SHARPNESS

» The bounds necessarily get smaller with more S

» MST show the smallest bounds are achieved by making S “rich enough”
> For identification, the only drawback of increasing S is computational
> In statistical inference the issue is more complicated (no answer yet)

» Any s included in S must be consistent with the derived bounds
> For example, suppose one includes a z/ — z Wald estimand in S
Then the bounds also reproduce LATEZ, — as in BMW
> Procedure allows for extrapolation, but does not sacrifice internal validity
» Natural approach might be to include common estimands in S
“Doesn’t hurt to look” attitude — should please all camps (?)



NumMERICAL ILLusTRATION: MST

TREATMENT AND INSTRUMENT

» Motivated by the empirical application in MST (discussed later)

» D € {0,1} is purchasing an anti-malarial bed net

» Z € {1,2,3,4} is a randomly assigned price subsidy for purchase
» Marginal distribution P[Z = z] = }1, propensity score p(z) given by

p(1)=12  p2)=29 pB)=48 p4)=.78
—————

least generous most generous
» Roughly the type of variation we have in the data

OuTCOME

> Suppose Y € {0,1} is being infected by malaria
» D is endogenous if individuals know their propensity to contract malaria
For example, they live by a lot of mosquitoes, or have poor immunity



MTR & MTE FUNCTIONS IN SIMULATION
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Unobserved Heterogeneity in Treatment Choice (u)

» MTRs and MTE non-constant — selection bias and selection on gain
» Those less likely to buy a net are more likely to get malaria anyway
> Those more likely to buy a net are more likely to gain more from it



Bounps

on THE ATT (# POLYNOMIALS)
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» Polynomials vs nonparametric, as well as decreasing vs unrestricted
> Polynomial bounds converge to the nonparametric bounds
» Shape restrictions can have a big impact (look at K = 6)



THE DEGREE

oF EXTRAPOLATION
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Degree of Extrapolation ()

> The ATT requires substantial extrapolation, hence bounds are fairly wide
> Contrast to an extrapolated LATE: E[Y; — Yo|U € (p(2),p(3) + «]]
Width of bounds are a function of extrapolation and assumptions



Parameterizing MTEs
Application: QQ in Fertility

Extrapolation: Mogstad, Santos, and Torgovitsky
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BeEp NErTs (MST 2017 WP)

MOTIVATION

>

vVvyVvyvVvyyvyy

Motivated by Dupas (2014) — same variables as in illustration

Dupas randomly assigned price subsidies for purchasing the net
Difference is Y € {0,1} is whether the net is actually being used

How to promote (cost-effective) use of preventative health products?
Encourage wide use without over-subsidizing inframarginal consumers?
Olyset nets are a new type, so Yy = 0 (shape restriction)

Unfortunately no data on interesting economic or health outcomes

DATA

>
>
>
| 2

Randomly assigned prices to 1200 households in 6 Kenyan villages
Prices varied from o to 250 Ksh (about $3.80, twice daily wage)
Overall 17 different prices offered, but only 4 or 5 to each village
Everything will be conditioned on village (then average parameters)



PRrROPENSITY SCORE (FIRST STAGE)

0.81

o
o

Share Purchased
o
»

0.2

0.0

0 50 100 150 200 250
Price (in Ksh)

Estimate demand (p-score) with a logit (villages combined in graph)



DIFFERENT SUBSIDY

REGIMES

on @ B @ ® @O ©® 9 @) (@1 (12 (13 (14) (15
Information Specification

Intercept v v v v v v v v v v v v v v v
Linear in p(Z) v v v v v v v v v v v v 7 v v
OLS v v v v v 4 v v 4 v
1(Z < 50) 4 v v 4 v
1(Z < 150) v v 4 4 v
Panel A. Population Average Treatment Effect
K (polynomial order) 2 6 10 20 NP 2 6 10 20 NP 2 6 10 20 NP
Bounds
Lower 4646 3857 3275 .2533 .6521 .4956 .4700 .4537 .3954 0 6365 5602 4487
Upper 7269 7362 7445 7515 .6521 7269 .7362 .7445 .7515 0 7104 .T178 7253
90% Confidence Interval
Lower 5486 3761 .2995 2421 4282 4032 3511 .3204 5206 4130 .3652 3260
Upper 7462 8019 .8102 .8139 7516 .8093 .8179 .8209 7491 7910 .7941 .7978
Panel B. PRTE at Free Provision versus a Price of 150 Ksh
K (polynomial order) 2 6 10 20 NP 2 6 10 20 NP 2 6 10 20 NP
Bounds
Lower 6600 5881 .5626 .5444 4817 .6600 .5881 .5626 .5444 4856 0 6758 .6506 .6214 5573
Upper 7049 .8140 .8469 .8817 .9732 6600 .7085 .7172 7275 .7941 0 6895 .6988 .7140 .7492
90% Confidence Interval
Lower 5417 5005 4695 4479 3890 3472 3414 3320 5079 4755 4584 4281
Upper 7686 .9161 .9519 .9746 7732 9263 9616 9838 77139093 9291 9511

» PRTE of free provision (with full-take up) vs. no provision

» Common parameter of interest (= ATE) — but maybe not so interesting
» Bounds depend on S and K — can be empty (misspecification)



DIFFERENT SUBSIDY

REGIMES

)

on @ B @ ® @O ©® 9 @) (@1 (12 (13 (14) (15
Information Specification

Intercept v v v v v v v v v v v v v v v
Linear in p(Z) v v v v v v v v v v v v 7 v v
OLS v v v v v 4 v v 4 v
1(Z < 50) 4 v v 4 v
1(Z < 150) v v 4 4 v
Panel A. Population Average Treatment Effect
K (polynomial order) 2 6 10 20 NP 2 6 10 20 NP 2 6 10 20 NP
Bounds
Lower 4646 3857 3275 .2533 .6521 .4956 .4700 .4537 .3954 0 6365 5602 4487
Upper 7269 7362 7445 7515 .6521 .7269 .7362 .7445 .7515 0 7104 .T178 7253
90% Confidence Interval
Lower 5486 3761 .2995 2421 4282 4032 3511 .3204 5206 4130 .3652 3260
Upper 7462 8019 .8102 .8139 7516 .8093 .8179 .8209 7491 7910 .7941 .7978
Panel B. PRTE at Free Provision versus a Price of 150 Ksh
K _(polynomial order) 2 6 10 20 NP 2 6 10 20 NP 2 6 10 20 NP
Bounds
Lower 6600 5881 .5626 .5444 4817 .6600 .5881 .5626 .5444 4856 0 6758 .6506 .6214 5573
Upper 7049 8140 8469 8817 9732 6600 .7085 .7172 7275 .7941 0 6895 6988 7140 .7492
90% Confidence Interval
Lower 5417 5005 4695 4479 3890 3472 3414 3320 5079 4755 4584 4281
Upper 7686 .9161 .9519 .9746 7732 9263 9616 9838 77139093 9291 9511

» PRTE of free provision vs. market price one year later (150 Ksh)
» Demand at 150 Ksh is predicted from the logit estimate

> This is a LATE, but not nonparametrically point id’d (for every village)



DIFFERENT SUBSIDY

REGIMES

n @ ® @ 6 ® @ ®) (9 @) (@1 (12 (@13 (14 (15
Information Specification
Intercept v v v v v v v v v v v v
Linear in p(Z) v 4 v v 4 v v 4 v v v v 7 4 v
S v v 4 v v v v v 4 v

1(Z < 50) v v 4 v v
1(Z < 150) v v v v v
Panel A. Population Average Treatment Effect
K (polynomial order) 2 6 10 20 10 20 NP 2 6 10 20 NP
Bounds
Lower 6521 4646 3857 3275 2533 .6521 4956 4700 4537 .3954 0 6365 5602 526! 4487
Upper 6772 7269 7362 7445 7515 6521 .7269 .7362 .7445 .7515 0 7104 7178 7229 .7253
90% Confidence Interval
Lower 5486  .3761 2995 2421 4282 4032 3511  .3204 5206 4130 3652 3260
Upper 7462 8019 8102 .8139 7516 .8093 8179 .8209 7491 7910 7941 7978
Panel B. PRTE at Free Provision versus a Price of 150 Ksh
K (polynomial order) ] 6 10 20 NP 2 6 10 20 NP 2 6 10 20 NP
Bounds
Lower 6600 5881 5626 .5444 4817 .6600 .5881 .5626 .5444 4856 0 6758 .6506 .6214 5573
Upper .7049 8140 8469 .8817 9732 6600 .7085 7172 7275 7941 0 (6895 6988 7140 7492
90% Confidence Interval
Lower 5417 5005 4695 .4479 3890 .3472 3414 3320 5079 755 4584 4281
Upper 7686 .9161 9519 .9746 7732 9263 .9616 .9838 7713 9093 9291 9511

> Statistical inference is a challenge for partial identification approaches
» We know these confidence intervals are conservative (excessively wide)
> There is rapid progress here, and work continues ...
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