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Past & Future

SO FAR

I Local Asymptotic Normality
I Differentiability in Quadratic Mean
I Limit Distribution under Contig. Alt.
I Symmetric Location Model

TODAY
I Hodges’ Estimator
I Supper-Efficiency
I Convolution Theorems
I Anderson’s Lemma
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Convolution Theorems

I Consider the following generic version of an estimation problem.

I Data: Xi, i = 1, . . . , n i.i.d. with distribution P ∈ P = {Pθ : θ ∈ Θ}.

I Estimator: we wish to estimate ψ(θ) using the data and that we have an estimator
Tn = Tn(X1, . . . , Xn) such that for each θ ∈ Θ,

√
n (Tn −ψ(θ))

d→ Lθ

under Pθ - for short we may write “under θ” today.

I Question: What is the “best” possible limit distribution for such an estimator?

I It is natural to measure “best” in terms of concentration, and we can measure concentration with a
loss function.
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Bowl-shaped loss function

I Loss function: simply any function `(x) that takes values in [0,∞).

I A loss function is said to be “bowl-shaped” if the sublevel sets

{x : `(x) 6 c}

are convex and symmetric about the origin.

I A common bowl-shaped loss function on R is mean-squared error loss: `(x) = x2.

I For a given loss function `(x), a limit distribution will be considered “good” if∫
`(x)dLθ is small .

I Example: If the estimator Tn is asymptotically normal,

Lθ = N(µ(θ),σ2(θ)) ,

then to minimize the mean-squared error loss it is optimal to have µ(θ) = 0 and σ2(θ) as small as
possible. But we do not want to restrict attention to asymptotically normal estimators.
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Hodges’ Estimator and Superefficiency

I Consider P = {Pθ = N(θ, 1) : θ ∈ R} and ψ(θ) = θ.

I A natural estimator of θ is the sample mean: Tn = X̄n.

I This estimator has many finite-sample optimality properties (it’s minimax for every bowlshaped loss
function, it’s minimum variance unbiased, etc.)

I We might reasonably expect it to be optimal asymptotically as well.

I A second estimator of θ, Sn, can be defined as follows:

Sn =

{
Tn if |Tn| > n−1/4

0 if |Tn| < n−1/4 .

In words, Sn = Tn when Tn is “far” from zero and Sn = 0 when Tn is “close” to zero.

I Immediate:
√

n (Tn − θ) ∼ N(0, 1). But how does Sn behave asymptotically?
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Asymptotic behavior of Sn

Sn = Tn I{ |Tn| > n−1/4 }

First consider the case where θ 6= 0.
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Asymptotic behavior of Sn

Sn = Tn I{ |Tn| > n−1/4 }

Next consider the case where θ = 0.
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Super-efficiency

I For θ 6= 0:
√

n(Sn − θ)
d→ N(0, 1) under Pθ.

I For θ = 0: an(Sn − θ)
d→ 0 under any sequence an, including

√
n.

I The estimator is said to be superefficient at θ = 0.

I Let Lθ denote the limit distribution of Tn and L ′
θ denote the limit distribution of Sn.

I It follows from the above discussion that for θ 6= 0∫
x2dLθ =

∫
x2dL ′

θ

and for θ = 0, ∫
x2dL ′

θ = 0 < 1 =

∫
x2dLθ .

I Thus: Sn appears to be a better estimator of θ than Tn.
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Appearances can be deceiving

I Reasoning again reflects the poor use of
asymptotics. Our hope is that∫

x2dL ′
θ

is a reasonable approximation to the
finite-sample expected loss

Eθ
[(√

n (Sn − θ)
)2
]

.

I Finite-samples: for θ “far” from zero, we might
expect Sn = Tn, so L ′

θ may be a reasonable
approximation to the distribution of

√
n (Sn − θ);

for “close” to zero, on the other hand, Sn will
frequently differ from Tn, so the distribution of√

n (Sn − θ) may be quite different from L ′
θ.

FIGURE: Risk of Sn
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QUESTIONS?



11

Going for a better approximation

I Consider θn = h
n1/4 where 0 < h < 1.

I We are redefining Tn = X̄n,n, where Xi,n, i = 1, . . . , n are i.i.d. with distribution Pθn = N(θn, 1)).

I Finite Sample distribution: As before,
√

n (Tn − θn) ∼ N(0, 1) under Pθn .

I Question: how does Sn behave under θn? Star by noticing that

Pθn

{
|Tn| < n−1/4

}
= Pθn

{
−n−1/4 < Tn < n−1/4

}
= Pθn

{√
n(−n−1/4 − θn) < Zn <

√
n(n−1/4 − θn)

}
= Pθn

{
−n1/4(1 + h) < Zn < n1/4(1 − h)

}
→ 1 .

I Earlier this probability tended to 0 under θ 6= 0, but now under θn = h
n1/4 , this probability tends to 1.
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Lesson from the local approximation

I Result: under θn we have Sn = 0 with probability approaching 1. Hence, under θn,
√

n(Sn − θn) = −n1/4h

with probability approaching 1, and −n1/4h→ −∞.

I Denote by L the limiting distribution of Tn under θn and by L ′ the limiting distribution of Sn under θn
(in this case L′ is degenerate at −∞). It follows that∫

x2dL ′ =∞ > 1 =

∫
x2dL .

I Lesson: Sn “buys” its better asymptotic performance at 0 at the expense of worse behavior for points
“close” to zero. The definition of “close” changes with n, so this feature is not borne out by a
pointwise asymptotic comparison for every θ ∈ Θ.

I This example is quite famous and is due to Hodges: Sn is often referred to as Hodges’ estimator.
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QUESTIONS?
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Efficiency of Maximum likelihood

I Background: Theorems that in some way show that a normal distribution with mean zero and
covariance matrix equal to the inverse of the Fisher information is a “best possible” limit distribution
have a long history, starting with Fisher in the 1920s and with important contributions by Cramér,
Rao, Stein, Rubin, Chernoff and others.

I “The” theorem referred to is not true, at least not without a number of qualifications.

I The above example illustrates this and shows that it is impossible to give a non-trivial definition of
“best” to the limit distributions Lθ.

I In fact, it is not even enough to consider Lθ under every θ ∈ Θ. For some fixed θ ′ ∈ Θ, we could
always construct an estimator whose limit distribution was equal to Lθ for θ 6= θ ′, but “better” at
θ = θ ′ by using the trick due to Hodges.

I Hájek and Le Cam contributed to this issue, and eventually gave a complete explanation.

I Under certain conditions, the “best” limit distributions are in fact the limit distributions of maximum
likelihood estimators, but to make this idea precise is a bit tricky (convolution theorems)
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Regular Estimators

DEFINITION

Tn is called a sequence of locally regular estimators of ψ(θ) at the point θ0 if, for every h

an

(
Tn −ψ(θ0 + h/an)

)
d→ Lθ0 under Pθ0+h/an

as an →∞ (typically, an =
√

n), where the limit distribution might depend on θ0 but not on h.

I A regular estimator sequence attains its limit distribution in a “locally uniform” manner.

I Intuition: a small change in the parameter should not change the distribution of the estimator too
much; a disappearing small change should not change the (limit) distribution at all.
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QMD

DEFINITION

A model P = {Pθ : θ ∈ Θ} is called differentiable in quadratic mean at θ if there exists a measurable
function ˙̀

θ such that, as h→ 0,∫ [
√

pθ+h −
√

pθ −
1
2

h ′ ˙̀
θ
√

pθ

]2
dµ = o(||h||2),

where pθ is the density of Pθ w.r.t. some measure µ.

I Typically, ˙̀
θ = ∂(log pθ)/∂θ =

ṗθ
pθ

I QMD is the condition that gives us LAN

I Theorems on local optimality of tests and estimators use a condition like QMD or require LAN
directly.
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Convolution Theorems

Hájek’s convolution theorem shows that the limiting distribution of any regular estimator Tn can be
written as a convolution of N(0, ·) and “noise”.

THEOREM (HÁJEK CONVOLUTION THEOREM)

Suppose that 1 P is differentiable in quadratic mean at each θ with non-singular Fisher information
matrix

Iθ = Eθ[˙̀θ ˙̀ ′
θ] ,

and that 2 ψ is differentiable at every θ. 3 Let Tn be an at θ regular estimator sequence with limit
distribution Lθ.

Then, there exist distributions Mθ such that

Lθ = N(0, ψ̇θI−1
θ ψ̇ ′

θ) ∗Mθ .

In particular, if Lθ has covariance matrix Σθ, then the matrix Σθ − ψ̇θI−1
θ ψ̇ ′

θ is nonnegative-definite.

The notation ∗ denotes the “convolution” operation between two distributions and should be interpreted as
follows: If X ∼ F and Y ∼ G and X ⊥ Y , then X + Y ∼ F ∗G.
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Convolution Theorems

THEOREM (ALMOST EVERYWHERE CONVOLUTION THEOREM)

Suppose that 1 P is differentiable in quadratic mean at each θ with norming rate an and non-singular
Fisher information matrix

Iθ = Eθ[˙̀θ ˙̀ ′
θ] ,

and that 2 ψ is differentiable at every θ. 3 Let Tn be any estimator such that for every θ

an(Tn −ψ(θ))
d→ Lθ

under θ.

Then, there exist distributions Mθ such that for almost every θ w.r.t. Lebesgue measure

Lθ = N(0, ψ̇θI−1
θ ψ̇ ′

θ) ∗Mθ .
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QUESTIONS?
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Comments

I Remarkable theorem: yields the assertion of Hájek’s convolution theorem at almost every
parameter value θ, without having to impose the regularity requirement on the estimator sequence.

I Indeed: Le Cam showed that it is roughly true that any estimator sequence Tn is “almost Hájek
regular” at almost every parameter θ

I The convolution property implies that the covariance matrix of Lθ, if it exists, must be bounded below
by the inverse Fisher information.

I This theorem does not contradict the results of the previous section. In that case:

P = {N(θ, 1) : θ ∈ R}, ψ(θ) = θ, and N(0, ψ̇θI−1
θ ψ̇ ′

θ) = N(0, 1) .

I For every θ 6= 0,
√

n(Sn − θ)
d→ N(0, 1)

under Pθ, so the theorem is satisfied for Mθ the distribution with unit mass at 0.
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Anderson’s Lemma

N(0, ψ̇θI−1
θ ψ̇ ′

θ) is the limit distribution of the MLE of ψ(θ). In order to assert that this is
in fact the “best” limit distribution for more general loss functions, we need the following lemma.

LEMMA (ANDERSON’S LEMMA)

For any bowl-shaped loss function ` on Rk, every probability distribution M on Rk, and every covariance
matrix Σ, ∫

`(x)dN(0,Σ) 6
∫
`(x)d(N(0,Σ) ∗M) .

I If “best” is measured by any bowl-shaped loss function, then maximum likelihood estimators are
“best” for almost every θ w.r.t. Lebesgue measure.

I Lesson: the possibility of improvement over the N(0, ψ̇θI−1
θ ψ̇ ′

θ)-limit is restricted on a null set of
parameters.

I Improvement is also possible by considering special loss function (e.g., the James-Stein’s estimator).

I An important part of convolution theorems is the assumption that the model is QMD. The
differentiability of ψ is also key.
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MLE in models that are not QMD

EXAMPLE

Suppose P = {Pθ = U(0, θ) : θ > 0} and ψ(θ) = θ (Recall that P is nowhere QMD so the model does not
satisfy the conditions of the previous Theorems). We know that the MLE of θ is

X(n) = max{X1, . . . , Xn}

and that

n(θ− X(n))
d→ Lθ, where Lθ has density

1
θ

exp{−w/θ} . (1)

Clearly, the estimator is not asymptotically normal. Although it converges at rate n, much faster than the
usual

√
n rate, the fact that the limiting distribution lies completely to one side of the true parameter

suggests that even better estimators may exists.

Claim: for `(x) = x2, MLE is sub-optimal and dominated by θ̃ = X(n) + X(n)/n.
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MLE dominated in the Uniform case

n(θ− X(n))
d→ Lθ where Lθ has density

1
θ

exp{−w/θ} so if W ∼ Lθ ⇒ E(W) = θ
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THE END!
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