ECON 481-3 LECTURE 9: CONVOLUTION THEOREMS

Ivan A. Canay Northwestern University

SO FAR

- Local Asymptotic Normality
- Differentiability in Quadratic Mean
- Limit Distribution under Contig. Alt.
- Symmetric Location Model

TODAY

- Hodges' Estimator
- Supper-Efficiency
- Convolution Theorems
- Anderson's Lemma

CONVOLUTION THEOREMS

- Consider the following generic version of an estimation problem.
- **Data**: X_i , i = 1, ..., n i.i.d. with distribution $P \in \mathbf{P} = \{P_{\theta} : \theta \in \Theta\}$.
- Estimator: we wish to estimate $\psi(\theta)$ using the data and that we have an estimator $T_n = T_n(X_1, \ldots, X_n)$ such that for each $\theta \in \Theta$,

$$\sqrt{n} \left(T_n - \psi(\theta) \right) \stackrel{d}{\to} L_{\theta}$$

under P_{θ} - for short we may write "under θ " today.

- Question: What is the "best" possible limit distribution for such an estimator?
- It is natural to measure "best" in terms of concentration, and we can measure concentration with a loss function.

BOWL-SHAPED LOSS FUNCTION

- **Loss function**: simply any function $\ell(x)$ that takes values in $[0, \infty)$.
- A loss function is said to be "bowl-shaped" if the sublevel sets

 $\{x: \ell(x) \leqslant c\}$

are convex and symmetric about the origin.

A common bowl-shaped loss function on **R** is mean-squared error loss: $\ell(x) = x^2$.

For a given loss function $\ell(x)$, a limit distribution will be considered "good" if

 $\int \ell(x) dL_{\Theta}$ is small .

Example: If the estimator T_n is asymptotically normal,

$$L_{\theta} = N(\mu(\theta), \sigma^2(\theta)),$$

then to minimize the mean-squared error loss it is optimal to have $\mu(\theta) = 0$ and $\sigma^2(\theta)$ as small as possible. But we do not want to restrict attention to asymptotically normal estimators.

Hodges' Estimator and Superefficiency

- Consider $\mathbf{P} = \{P_{\theta} = N(\theta, 1) : \theta \in \mathbf{R}\}$ and $\psi(\theta) = \theta$.
- A natural **estimator** of θ is the sample mean: $T_n = \bar{X}_n$.
- This estimator has many finite-sample optimality properties (it's minimax for every bowlshaped loss function, it's minimum variance unbiased, etc.)
- We might reasonably expect it to be optimal asymptotically as well.
- A second estimator of θ , S_n , can be defined as follows:

$$S_n = \begin{cases} T_n & \text{if } |T_n| \ge n^{-1/4} \\ 0 & \text{if } |T_n| < n^{-1/4} \end{cases}$$

In words, $S_n = T_n$ when T_n is "far" from zero and $S_n = 0$ when T_n is "close" to zero.

Immediate: $\sqrt{n} (T_n - \theta) \sim N(0, 1)$. But how does S_n behave asymptotically?

Asymptotic behavior of S_n

$$S_n = T_n I\{ |T_n| \ge n^{-1/4} \}$$

First consider the case where $\theta \neq 0$.

Asymptotic behavior of S_n

$$S_n = T_n I\{ |T_n| \ge n^{-1/4} \}$$

Next consider the case where $\theta = 0$.

SUPER-EFFICIENCY

► For $\theta \neq 0$: $\sqrt{n}(S_n - \theta) \xrightarrow{d} N(0, 1)$ under P_{θ} .

- For $\theta = 0$: $a_n(S_n \theta) \stackrel{d}{\rightarrow} 0$ under any sequence a_n , including \sqrt{n} .
- The estimator is said to be **superefficient** at $\theta = 0$.
- Let L_{θ} denote the limit distribution of T_n and L'_{θ} denote the limit distribution of S_n .
- lt follows from the above discussion that for $\theta \neq 0$

$$\int x^2 dL_{\theta} = \int x^2 dL'_{\theta}$$

and for $\theta = 0$,

$$\int x^2 dL'_{ heta} = 0 < 1 = \int x^2 dL_{ heta} \; .$$

Thus: S_n appears to be a better estimator of θ than T_n .

Reasoning again reflects the poor use of asymptotics. Our hope is that

$$\int x^2 dL'_{\Theta}$$

is a reasonable approximation to the finite-sample expected loss

 $E_{\theta}\left[\left(\sqrt{n}\left(S_{n}-\theta\right)\right)^{2}\right] \ .$

Finite-samples: for θ "far" from zero, we might expect $S_n = T_n$, so L'_{θ} may be a reasonable approximation to the distribution of $\sqrt{n} (S_n - \theta)$; for "close" to zero, on the other hand, S_n will frequently differ from T_n , so the distribution of $\sqrt{n} (S_n - \theta)$ may be quite different from L'_{θ} .

GOING FOR A BETTER APPROXIMATION

- Consider $\theta_n = \frac{h}{n^{1/4}}$ where 0 < h < 1.
- ▶ We are redefining $T_n = \bar{X}_{n,n}$, where $X_{i,n}$, i = 1, ..., n are i.i.d. with distribution $P_{\theta_n} = N(\theta_n, 1)$).
- Finite Sample distribution: As before,

$$\sqrt{n} \left(T_n - heta_n
ight) \sim N(0,1) \; \; ext{under} \; P_{ heta_n} \; .$$

Question: how does S_n behave under θ_n ? Star by noticing that

$$\begin{aligned} P_{\theta_n}\left\{ |T_n| < n^{-1/4} \right\} &= P_{\theta_n}\left\{ -n^{-1/4} < T_n < n^{-1/4} \right\} \\ &= P_{\theta_n}\left\{ \sqrt{n}(-n^{-1/4} - \theta_n) < Z_n < \sqrt{n}(n^{-1/4} - \theta_n) \right\} \\ &= P_{\theta_n}\left\{ -n^{1/4}(1+h) < Z_n < n^{1/4}(1-h) \right\} \to 1 \,. \end{aligned}$$

Earlier this probability tended to 0 under $\theta \neq 0$, but now under $\theta_n = \frac{h}{n^{1/4}}$, this probability tends to 1.

LESSON FROM THE LOCAL APPROXIMATION

Result: under θ_n we have $S_n = 0$ with probability approaching 1. Hence, under θ_n ,

$$\sqrt{n}(S_n - \theta_n) = -n^{1/4}h$$

with probability approaching 1, and $-n^{1/4}h \rightarrow -\infty$.

• Denote by *L* the limiting distribution of T_n under θ_n and by *L'* the limiting distribution of S_n under θ_n (in this case *L'* is degenerate at $-\infty$). It follows that

$$\int x^2 dL' = \infty > 1 = \int x^2 dL \,.$$

- ▶ Lesson: S_n "buys" its better asymptotic performance at 0 at the expense of worse behavior for points "close" to zero. The definition of "close" changes with n, so this feature is not borne out by a pointwise asymptotic comparison for every $\theta \in \Theta$.
- This example is quite famous and is due to Hodges: S_n is often referred to as Hodges' estimator.

EFFICIENCY OF MAXIMUM LIKELIHOOD

- Background: Theorems that in some way show that a normal distribution with mean zero and covariance matrix equal to the inverse of the Fisher information is a "best possible" limit distribution have a long history, starting with Fisher in the 1920s and with important contributions by Cramér, Rao, Stein, Rubin, Chernoff and others.
- "The" theorem referred to is not true, at least not without a number of qualifications.
- The above example illustrates this and shows that it is impossible to give a non-trivial definition of "best" to the limit distributions L_{θ} .
- In fact, it is not even enough to consider L_θ under every θ ∈ Θ. For some fixed θ' ∈ Θ, we could always construct an estimator whose limit distribution was equal to L_θ for θ ≠ θ', but "better" at θ = θ' by using the trick due to Hodges.
- ▶ Hájek and Le Cam contributed to this issue, and eventually gave a complete explanation.
- Under certain conditions, the "best" limit distributions are in fact the limit distributions of maximum likelihood estimators, but to make this idea precise is a bit tricky (convolution theorems)

DEFINITION

 T_n is called a sequence of locally regular estimators of $\psi(\theta)$ at the point θ_0 if, for every h

$$a_n \Big(T_n - \psi(\theta_0 + h/a_n) \Big) \stackrel{d}{\to} L_{\theta_0} \text{ under } P_{\theta_0 + h/a_n}$$

as $a_n \to \infty$ (typically, $a_n = \sqrt{n}$), where the limit distribution might depend on θ_0 but not on *h*.

- A regular estimator sequence attains its limit distribution in a "locally uniform" manner.
- Intuition: a small change in the parameter should not change the distribution of the estimator too much; a disappearing small change should not change the (limit) distribution at all.

DEFINITION

A model $\mathbf{P} = \{P_{\theta} : \theta \in \Theta\}$ is called differentiable in quadratic mean at θ if there exists a measurable function $\dot{\ell}_{\theta}$ such that, as $h \to 0$,

$$\left[\sqrt{p_{\theta+h}} - \sqrt{p_{\theta}} - \frac{1}{2}h'\dot{\ell}_{\theta}\sqrt{p_{\theta}}\right]^{2}d\mu = o(||h||^{2}),$$

where p_{θ} is the density of P_{θ} w.r.t. some measure μ .

- Typically, $\dot{\ell}_{\theta} = \partial(\log p_{\theta})/\partial\theta = \frac{\dot{p}_{\theta}}{p_{\theta}}$
- QMD is the condition that gives us LAN
- Theorems on local optimality of tests and estimators use a condition like QMD or require LAN directly.

Hájek's convolution theorem shows that the limiting distribution of any regular estimator T_n can be written as a convolution of $N(0, \cdot)$ and "noise".

THEOREM (HÁJEK CONVOLUTION THEOREM)

Suppose that (1) **P** is differentiable in quadratic mean at each θ with non-singular Fisher information matrix

$$I_{\Theta} = E_{\Theta}[\dot{\ell}_{\Theta}\dot{\ell}_{\Theta}'] ,$$

and that 2ψ is differentiable at every θ . 3 Let T_n be an at θ regular estimator sequence with limit distribution L_{θ} .

Then, there exist distributions M_{θ} such that

 $L_{\theta} = N(0, \dot{\psi}_{\theta} I_{\theta}^{-1} \dot{\psi}_{\theta}') * M_{\theta} .$

In particular, if L_{θ} has covariance matrix Σ_{θ} , then the matrix $\Sigma_{\theta} - \dot{\psi}_{\theta}I_{\theta}^{-1}\dot{\psi}_{\theta}'$ is nonnegative-definite.

The notation * denotes the "convolution" operation between two distributions and should be interpreted as follows: If $X \sim F$ and $Y \sim G$ and $X \perp Y$, then $X + Y \sim F * G$.

THEOREM (ALMOST EVERYWHERE CONVOLUTION THEOREM)

Suppose that (1) **P** is differentiable in quadratic mean at each θ with norming rate a_n and non-singular Fisher information matrix

$$I_{\theta} = E_{\theta}[\dot{\ell}_{\theta}\dot{\ell}_{\theta}'] ,$$

and that 2ψ is differentiable at every θ . 3 Let T_n be any estimator such that for every θ

 $a_n(T_n-\psi(\theta)) \xrightarrow{d} L_{\theta}$

under θ.

Then, there exist distributions M_{θ} such that for almost every θ w.r.t. Lebesgue measure

 $L_{\theta} = N(0, \dot{\psi}_{\theta} I_{\theta}^{-1} \dot{\psi}_{\theta}') * M_{\theta} .$

COMMENTS

- Remarkable theorem: yields the assertion of Hájek's convolution theorem at almost every parameter value θ, without having to impose the regularity requirement on the estimator sequence.
- Indeed: Le Cam showed that it is roughly true that any estimator sequence T_n is "almost Hájek regular" at almost every parameter θ
- The convolution property implies that the covariance matrix of L₀, if it exists, must be bounded below by the inverse Fisher information.
- This theorem does not contradict the results of the previous section. In that case:

$$\mathbf{P} = \{ N(\theta, 1) : \theta \in \mathbf{R} \}, \quad \psi(\theta) = \theta, \quad \text{and} \quad N(0, \dot{\psi}_{\theta} I_{\theta}^{-1} \dot{\psi}_{\theta}') = N(0, 1) .$$

For every $\theta \neq 0$,

$$\sqrt{n}(S_n - \theta) \stackrel{d}{\to} N(0, 1)$$

under P_{θ} , so the theorem is satisfied for M_{θ} the distribution with unit mass at 0.

ANDERSON'S LEMMA

 $N(0, \dot{\psi}_{\theta}I_{\theta}^{-1}\dot{\psi}_{\theta}')$ is the limit distribution of the MLE of $\psi(\theta)$. In order to assert that this is in fact the "best" limit distribution for more general loss functions, we need the following lemma.

LEMMA (ANDERSON'S LEMMA)

For **any** bowl-shaped loss function ℓ on \mathbf{R}^k , every probability distribution M on \mathbf{R}^k , and every covariance matrix Σ ,

$$\int \ell(x) dN(0, \Sigma) \leqslant \int \ell(x) d(N(0, \Sigma) * M) .$$

- If "best" is measured by any bowl-shaped loss function, then maximum likelihood estimators are "best" for almost every θ w.r.t. Lebesgue measure.
- Lesson: the possibility of improvement over the N(0, ψ_θI_θ⁻¹ψ'_θ)-limit is restricted on a null set of parameters.
- Improvement is also possible by considering special loss function (e.g., the James-Stein's estimator).
- An important part of convolution theorems is the assumption that the model is QMD. The differentiability of ψ is also key.

EXAMPLE

Suppose $\mathbf{P} = \{P_{\theta} = U(0, \theta) : \theta > 0\}$ and $\psi(\theta) = \theta$ (Recall that \mathbf{P} is nowhere QMD so the model does not satisfy the conditions of the previous Theorems). We know that the MLE of θ is

$$X_{(n)} = \max\{X_1, \ldots, X_n\}$$

and that

$$n(\theta - X_{(n)}) \xrightarrow{d} L_{\theta}$$
, where L_{θ} has density $\frac{1}{\theta} \exp\{-w/\theta\}$. (1)

Clearly, the estimator is **not** asymptotically normal. Although it converges at rate *n*, much faster than the usual \sqrt{n} rate, the fact that the limiting distribution lies completely to one side of the true parameter suggests that even better estimators may exists.

Claim: for $\ell(x) = x^2$, MLE is sub-optimal and dominated by $\tilde{\theta} = X_{(n)} + X_{(n)}/n$.

MLE DOMINATED IN THE UNIFORM CASE

$$n(\theta - X_{(n)}) \xrightarrow{d} L_{\theta}$$
 where L_{θ} has density $\frac{1}{\theta} \exp\{-w/\theta\}$ so if $W \sim L_{\theta} \Rightarrow E(W) = \theta$

