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Past & Future

SO FAR

I Naive Power Approximations
I Local Power Approximations
I Symmetric Location Model
I t-test vs sign test

TODAY
I Absolute Continuity and LR
I Contiguity and Le Cam’s 1st Lemma
I Le Cam’s 3rd Lemma
I Wilcoxon Signed Ranked Test
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Absolute continuity and likelihood ratios

I Today: about a technique to obtain the limit distribution of a sequence of statistics under underlying
laws Qn from a limiting distribution under laws Pn.

I Particularly useful to compute local asymptotic power of different statistics.

I First, let’s start with a non-asymptotic analog

DEFINITION

Let P and Q be measures on a measurable space (Ω,A). We say Q is absolutely continuous with
respect to P if for every measurable set A we have that

P{A} = 0 implies Q{A} = 0 .

Absolute continuity is denoted by Q << P.

Furthermore, P and Q are orthogonal if Ω can be partitioned as Ω = ΩP ∪ΩQ with ΩP ∩ΩQ = ∅ and
P{ΩQ} = Q{ΩP} = 0. Orthogonality is denoted by P ⊥ Q.
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Absolute continuity and likelihood ratios

THEOREM (RADON-NIKODYM)

Suppose Q and P are probability measures on (Ω,A). Then Q << P if and only if there exists a
measurable function L(x) such that,

Q{A} =

∫
A

L(x)dP, for all A ∈ A .

The function L(x) ≡ dQ(x)/dP(x) is called the Radon-Nikodym derivative (or density) or likelihood ratio.
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Properties

I Note!: two measures P and Q need be neither absolutely continuous nor orthogonal.

I Suppose these measures have densities p and q wrt a measure µ. Then, ΩP = {p > 0} and
ΩQ = {q > 0}. The measure Q can be written as the sum Q = Qa + Q⊥ of the measures,

Qa{A} = Q{A∩ {p > 0}}; Q⊥{A} = Q{A∩ {p = 0}} .

This decomposition is called the Lebesgue decomposition of Q with respect to P.

I The likelihood ratio is a random variable dQ/dP : Ω 7→ [0,∞) and we want to study its law under P.

LEMMA

Let P and Q be probability measures with densities p and q wrt a measure µ. Then,

1. Q = Qa + Q⊥, Qa << P, Q⊥ ⊥ P.

2. Qa{A} =
∫

A(q/p)dP for every measurable set A

3. Q << P if and only if Q{p = 0} = 0 if and only if
∫
(q/p)dP = 1
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Implications

I The function q/p is a density of Qa with respect to P. It is denoted dQ/dP (not dQa/dP), so that
dQ/dP = q/p, P-a.s.

I Question: Suppose that T = f (X) is an estimator or test statistic. How can we compute the
distribution of T under Q if we know how to compute probabilities under P?

I Answer: If Q is absolutely continuous wrt P, then the Q-law of a random variable X can be
calculated from the P-law of the pair (X, q/p) through the formula:

I Remark: The validity of this formula depends essentially on the absolute continuity of Q with respect
to P, because a part of Q that is orthogonal to P cannot be recovered from any P-law.
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QUESTIONS?
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Contiguity

I We wish to consider an asymptotic version of the problem.

I Let (Ωn,An) be measurable spaces, each equipped with a pair of probabilities Pn and Qn.

I Let Tn be some random vector and suppose the asymptotic distribution of Tn under Pn is easily
obtained, but the behavior of Tn under Qn is also required.

I Example: if Tn represents a test function for testing Pn versus Qn, the power of Tn is the expectation
under Qn.

I Question: Under what conditions can a Qn-limit law of random vectors Tn be obtained from suitable
Pn-limit laws? The concept is called contiguity and essentially denotes a notion of “asymptotic
absolute continuity”.
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Absolute Continuity for all n is not enough
EXAMPLE

Let Pn = N(0, 1) and Qn = N(ξn, 1) with ξn →∞.
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Contiguity
DEFINITION (CONTIGUITY)

Let Qn and Pn be sequences of measures. We say that Qn is contiguous w.r.t. to Pn, denoted Qn / Pn, if
for each sequence of measurable sets An, we have that

Pn{An}→ 0⇒ Qn{An}→ 0 .

We saw that absolute continuity does not imply contiguity. The following example provides an extension.

EXAMPLE (CONT)

Suppose Pn is the joint distribution of n i.i.d. observations X1, . . . , Xn from N(0, 1) and Qn is the joint
distribution of n i.i.d. observations from N(ξn, 1). Unless ξn → 0, Pn and Qn cannot be contiguous.
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Le Cam’s First Lemma

I For probability measures P and Q, Lemma (3) implies that the following are equivalent,

Q << P, Q
(

dP
dQ

= 0
)

= 0, EP

[
dQ
dP

]
= 1 .

Le Cam: this equivalence persists if the three statements are replaced by their asymptotic
counterparts.

I Notation:
Pn to denote d→ under Pn.

LEMMA (LE CAM’S FIRST LEMMA)

Let Pn and Qn be sequences of probability measures on measurable spaces (Ωn,An). Then the
following statements are equivalent:

1. Qn / Pn.

2. If dPn/dQn
Qn U along a subsequence, then Pr{U > 0} = 1.

3. If dQn/dPn
Pn V along a subsequence, then E[V] = 1.

4. For any statistic Tn :Ωn → Rk: If Tn
Pn→ 0, then Tn

Qn→ 0.
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Corollary

COROLLARY

Let dQn/dPn
Pn V and suppose log(V) ∼ N(µ,σ2) (this is, V has a log normal distribution). Then Qn and

Pn are mutually contiguous if and only if µ = − 1
2σ

2, which follows from E[V] = exp(µ+ 1
2σ

2).

EXAMPLE (CONTIGUITY DOES NOT IMPLY ABSOLUTE CONTINUITY)

Let Pn = U[0, 1], Qn = U[0, θn], θn → 1, θn > 1.
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Examples

EXAMPLE

Let Pn = N(0, 1) and Qn = N(ξn, 1). Then,

log(Ln(X)) = log
(

dQn

dPn

)
= ξnX −

1
2
ξ2

n .
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Examples

EXAMPLE

Suppose Pn is the joint distribution of n i.i.d. observations X1, . . . , Xn from N(0, 1) and Qn is the joint
distribution of n i.i.d. observations from N(ξn, 1). Then,

log(Ln(X1, . . . , Xn)) = ξn

n∑
i=1

Xi −
nξ2

n
2

,

and so

log(Ln(X1, . . . , Xn)) ∼ N
(
−

1
2

nξ2
n, nξ2

n

)
under Pn.

By the same arguments as before, Qn is contiguous to Pn if and only if nξ2
n remains bounded, i.e.

ξn = O(n− 1
2 ) .
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Comments

I Contiguity. The sequences of measures Pn and Qn do not separate asymptotically: given data from
Pn or Qn it is impossible to tell with certainty from which of the two sequences the data is generated,
at least in an asymptotic sense, as n→∞.

I Much more: contiguity makes possible to derive asymptotic probabilities computed under Qn from
those computed under Pn. This is the content of Le Cam’s third lemma.

APPLICATION

A popular application of contiguity is the comparison of statistical tests where one is given a sequence of
tests φn concerning a parameter θ attached to a statistical model (Pn,θ : θ ∈ Θ) and corresponding
power functions

πn(θ) = EPn,θ [φn] .

If Pn,θ0 and Pn,θ1 are asymptotically separated, then any “good” sequence of tests of the null hypothesis
θ0 versus the alternative θ1 will have πn(θ0)→ 0 and πn(θ1)→ 1.

Contiguous alternatives will not allow this type of degeneracy, and hence may be used to pick a best test,
or compute a relative efficiency of two given sequences of tests.
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QUESTIONS?
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Le Cam’s Third Lemma

LEMMA (LE CAM’S THIRD LEMMA)

Suppose that (
Xn, log

(dQn

dPn

))
Pn N

((
µ

− 1
2σ

2

)
,
(
Σ τ

τ ′ σ2

))
.

Then,

Xn
Qn N(µ+ τ,Σ) .

I Result: under the alternative distribution Qn, the limiting distribution of the test statistic Xn is also
normal but has mean shifted by

τ = lim
n→∞Cov

(
Xn, log

(dQn

dPn

))
.

I Testing: with asymptotically normal test statistics Xn, a change from a null hypothesis to a
contiguous alternative induces a change of asymptotic mean in the test statistics equal to the
asymptotic covariance between Xn and log dQn

dPn
and no change of variance.

I It follows that good test statistics have a large (asymptotic) covariance with the log likelihood ratios.
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Wilcoxon signed rank statistic

I Application: analyze the local asymptotic power of the Wilcoxon signed rank statistic.

I Example: Suppose Pθ is the distribution with density f (x − θ) on the real line. Suppose further that
f (x − θ) is symmetric about θ. We observe X1, . . . , Xn from f and wish to test the null H0 : θ = 0.

I Wilcoxon signed rank statistic serves to test this null and takes the form

Wn = n−3/2
n∑

i=1

R+
i,n sign(Xi) ,

where

sign(Xi) =

{
1 if Xi > 0
−1 otherwise

and R+
i,n =

n∑
j=1

I{|Xj| 6 |Xi|}

is the rank of |Xi| among |X1|, . . . , |Xn|.
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Wilcoxon signed rank: null hypothesis

Wn = n−3/2
n∑

i=1

R+
i,n sign(Xi)
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Wilcoxon signed rank: Le Cam’s 3rd Lemma

Le Cam’s third lemma: suggest that we look at

(Wn, log(dPθn/dP0)) .

Simplification: Pθn = N(θn, 1) and P0 = N(0, 1). In this case,

pθn(X1, . . . , Xn) =

n∏
i=1

(2π)−1/2 exp[−
1
2
(Xi − θn)

2]

and then,

log Ln = log(dPθn/dP0) = log
e−

1
2

∑n
i=1(X2

i −2Xiθn+θ
2
n)

e−
1
2

∑n
i=1 X2

i

= θn

n∑
i=1

Xi −
n
2
θ2

n

= h
1√
n

n∑
i=1

Xi −
1
2

h2 .
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Wilcoxon signed rank: Local Alternative

(
Wn, log(dPθn/dP0)

)
=

(
1√
n

n∑
i=1

Ui sign(Xi) , h
1√
n

n∑
i=1

Xi − h2/2

)
+ op(1) ,
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THE END!
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