ECON 4BO-3
 LECTURE 9: NON-PARAMETRIC REGRESSION

Ivan A. Canay

Northwestern University

PART I

- Linear Regression
- Properties and Interpretation
- Endogeneity
- Panel Data

PART II: TOPICS

- Non-parametric Regression
- RDD and Matching
- CART and Random Forest
- LASSO

- Let (Y, X) be a random vector where Y and X take values in \mathbf{R}.
- Let P be the distribution of (Y, X).
- The case where $X \in \mathbf{R}^{k}$ will be discussed later.
- We are interested in the conditional mean of Y given X.

$$
m(x)=E[Y \mid X=x]
$$

- Let $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$ be an i.i.d. sample from P.
- Discrete case: If X takes ℓ values $\left\{x_{1}, x_{2}, \ldots, x_{\ell}\right\}$, then

$$
\hat{m}(x)=\frac{\sum_{i=1}^{n} I\left\{X_{i}=x\right\} Y_{i}}{\sum_{i=1}^{n} I\left\{X_{i}=x\right\}}
$$

is a natural estimator of $m(x)$ for $x \in\left\{x_{1}, x_{2}, \ldots, x_{\ell}\right\}$.

- Straightforward: $\hat{m}(x)$ is consistent and asymptotically normal if $E\left[Y^{2}\right]<\infty$.

Nearest Neighbor Estimator

- Continuous X : the event $\left\{\mathrm{X}_{i}=x\right\}$ has zero probability.
- Affects the properties of the previous estimator.
- Assume $m(x)$ is continuous: take average of observations that are "close" to x.

Q-NEAREST NEIGHBOR ESTIMATOR

Let $J_{q}(x)$ be the set of indices in $\{1, \ldots, n\}$ associated with q closest-to- x values of $\left\{X_{1}, \ldots, X_{n}\right\}$. The q-nearest neighbor estimator is defined as

$$
\hat{m}(x)=\frac{1}{q} \sum_{i \in J_{q}(x)} Y_{i} .
$$

- $J_{q}(x)$ can be formally defined as follows:

Let $d_{i}=\left|X_{i}-x\right|$ and denote by $d_{(1)}, \ldots, d_{(n)}$ the ordered statistics. Then

$$
J_{q}(x)=\left\{i \in\{1, \ldots, n\}: d_{i} \leqslant d_{(q)}\right\} .
$$

Nearest Neighbor Estimator

- Step 1: find the q observations with values of X_{i} closest to x.
- Step 2: average the outcomes of those observations.
- Intuition: is $m(x)$ is smooth, it should not change too much as x varies in a small neighborhood.
- $q=n$: we use all of the observations and $\hat{m}(x)$ just becomes \bar{Y}_{n}.
... produces a perfectly flat estimated function. Variance in very low. Bias is high for many values of x - unless $m(x)$ truly flat.
- $q=1$: we use X_{i} very close to x, so the bias should be relatively small. Few obs. so variance is high.
- Could pick q using cross-validation (later).

Binnet Estimator

- Flipped side of q-NN estimators.
- q-NN estimator takes an average according to the q observations closest to x.
- The number of "local" observations is always q.
- The distance of these observations is random. In particular,

$$
h=\max _{i \in J_{q}(x)}\left|X_{i}-x\right|
$$

is random.

- Alternative approach: fix h and consider all observations with $\left|X_{i}-x\right| \leqslant h$.
- Flipped side: the number of local observations is now random.

Binned Estimator

Binned Estimator

Let $h>0$ be given. The binned estimator is defined as

$$
\hat{m}(x)=\frac{\sum_{i=1}^{n} I\left\{\left|X_{i}-x\right| \leqslant h\right\} Y_{i}}{\sum_{i=1}^{n} I\left\{\left|X_{i}-x\right| \leqslant h\right\}}
$$

- It can be alternatively written as a weighted average estimator

$$
\hat{m}(x)=\sum_{i=1}^{n} w_{i}(x) Y_{i}
$$

with

$$
w_{i}(x)=\frac{I\left\{\left|X_{i}-x\right| \leqslant h\right\}}{\sum_{i=1}^{n} I\left\{\left|X_{i}-x\right| \leqslant h\right\}}
$$

- Note that $\sum_{i=1}^{n} w_{i}(x)=1$ so that $\hat{m}(x)$ is a weighted average of Y_{i}.
- For $x=2$ and $h=\frac{1}{2}: \hat{m}(x)$ is the average of the Y_{i} for i such that $X_{i} \in[1.5 \leqslant x \leqslant 2.5]$.

Binnet Estimator

Figure 11.1: Scatter of $\left(y_{i}, x_{i}\right)$ and Nadaraya-Watson regression

- Coarse grid for x : step-function approximation to $m(x)$. Squares in the figure.

Introduces jumps in the estimated function at the edges of the partitions.

- Fine grid for x : Evaluate $\hat{m}(x)$ on a fine grid of values (smoother solid line).
$\overline{3}$
- One deficiency with the binned estimator is it is discontinuous at $x=X_{i} \pm h$.
- Source of discontinuity: weights are based on indicator functions.
- Idea: continuous weights may lead to continuous estimators of $m(x)$.
- The family of weights typically used are called "kernels".

DEFINITION (2ND ORDER, NON-NEGATIVE, SYMMETRIC KERNEL)

A second-order kernel function $k(u): \mathbf{R} \rightarrow \mathbf{R}$ satisfies

1. $\int_{-\infty}^{\infty} k(u) d u=1$

- definition of kernel

2. $0 \leqslant k(u)<\infty$

- makes the kernel non-negative

3. $k(u)=k(-u)$ - makes the kernel symmetric
4. $\kappa_{2}=\int_{-\infty}^{\infty} u^{2} k(u) d u \in(0, \infty)$ - makes the kernel of order 2

- Note: definition of the kernel does not involve continuity.
- Indeed: the binned estimator can be written in terms of a kernel function! Let

$$
k_{0}(u)=\frac{1}{2} I\{|u| \leqslant 1\}
$$

be the uniform density on $[-1,1]$.
Note that

$$
I\left\{\left|X_{i}-x\right| \leqslant h\right\}=I\left\{\frac{\left|X_{i}-x\right|}{h} \leqslant 1\right\}=2 k_{0}\left(\frac{X_{i}-x}{h}\right)
$$

so that we can write $\hat{m}(x)$ as

$$
\hat{m}(x)=\frac{\sum_{i=1}^{n} k_{0}\left(\frac{X_{i}-x}{h}\right) Y_{i}}{\sum_{i=1}^{n} k_{0}\left(\frac{X_{i}-x}{h}\right)}
$$

- This is a special case of the so-called Nadaraya-Watson estimator.

NadARAYA-WATSON KERNEL Estimator

Let $k(u)$ be a second-order kernel and $h>0$ be a bandwidth. Then, the Nadaraya-Watson estimator is defined as

$$
\hat{m}(x)=\frac{\sum_{i=1}^{n} k\left(\frac{X_{i}-x}{h}\right) Y_{i}}{\sum_{i=1}^{n} k\left(\frac{X_{i}-x}{h}\right)}
$$

- Also known as kernel regression estimator or local constant estimator.
- The bandwidth $h>0$ plays the same role as before

Large h : smoother estimates (but high bias): $h \rightarrow \infty \Rightarrow \hat{m}(x) \rightarrow \bar{Y}_{n}$.
Small h : erratic estimates (but low bias): $h \rightarrow 0 \Rightarrow \hat{m}\left(X_{i}\right) \rightarrow Y_{i}$.

- Popular continuous kernels:

$$
\begin{aligned}
& \text { Gaussian: } \quad k_{g}(u)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{u^{2}}{2}\right) \\
& \text { Epanechnikov: } \quad k_{e}(u)=\frac{3}{4}\left(1-u^{2}\right) I\{|u| \leqslant 1\}
\end{aligned}
$$

ASYMP. PRRDPERTIES

We wish to show that for each x,

$$
\sqrt{n h}(\hat{m}(x)-m(x))=\sqrt{n h} \Delta_{1}(x)+\sqrt{n h} \Delta_{2}(x)
$$

where
$-\sqrt{n h} \Delta_{2}(x)$ is asymp. normal centered at zero (as $n h \rightarrow \infty$)

- $\sqrt{n h} \Delta_{1}(x)$ determines asymptotic bias (as $n h \rightarrow \infty$)
- Question: why would $n h$ be the rate of convergence?
... these are the "effective" number of observations we use.
- The second term adds to the asymptotic variance.
- The first term adds to the asymptotic bias.
- Asymptotic framework: $n \rightarrow \infty, h \rightarrow 0, n h \rightarrow \infty$.
- Go over sketch of the arguments.

ASYMIP. PROPERRTIES: EXPANSIDN

- Write $Y_{i}=m\left(X_{i}\right)+U_{i}$ so that $E\left[U_{i} \mid X_{i}\right]=0$ and let $\sigma^{2}(x)=\operatorname{Var}\left[U_{i} \mid X_{i}=x\right]$.
- Fix $x \in \mathbf{R}$ and write

$$
Y_{i}=m(x)+\left(m\left(X_{i}\right)-m(x)\right)+U_{i} .
$$

- Study the numerator of $\hat{m}(x)$:

ASYMP. PRIDPERTIES: Δ_{2}

$$
\hat{m}(x)-m(x)=\frac{\hat{\Delta}_{1}(x)}{\hat{f}(x)}+\frac{\hat{\Delta}_{2}(x)}{\hat{f}(x)} \quad \text { with } \quad \hat{\Delta}_{2}(x)=\frac{1}{n h} \sum_{i=1}^{n} k\left(\frac{X_{i}-x}{h}\right) U_{i}
$$

Find $E\left[\hat{\Delta}_{2}(x)\right]$ and $\operatorname{Var}\left[\hat{\Delta}_{2}(x)\right]$.

ASYMP. PRIDPERTIES: Δ_{2}

$$
\operatorname{Var}\left[\hat{\Delta}_{2}(x)\right]=\frac{1}{n h^{2}} \int_{-\infty}^{\infty} k\left(\frac{z-x}{h}\right)^{2} \sigma^{2}(z) f(z) d z \quad \text { change of vars } \quad u=\frac{1}{h}(z-x) .
$$

ASYMP. PROPERTIES: Δ_{2}

The term

$$
R(k)=\int_{-\infty}^{\infty} k(u)^{2} d u
$$

denote the roughness of the kernel. Our derivations then lead to

TERM $\hat{\Delta}_{2}(x)$

$$
\operatorname{Var}\left[\hat{\Delta}_{2}(x)\right]=\frac{\sigma^{2}(x) f(x) R(k)}{n h}+o\left(\frac{1}{n h}\right)
$$

and so by the CLT,

$$
\sqrt{n h} \hat{\Delta}_{2}(x) \xrightarrow{d} N\left(0, \sigma^{2}(x) f(x) R(k)\right) .
$$

Asymp. PROPPERTIES: Δ_{1}

$$
\hat{\Delta}_{1}=\frac{1}{n h} \sum_{i=1}^{n} k\left(\frac{X_{i}-x}{h}\right)\left(m\left(X_{i}\right)-m(x)\right) .
$$

Find $E\left[\hat{\Delta}_{1}(x)\right]$

ASYMP. PRRDPERTIES: Δ_{1}

$$
\begin{aligned}
& \int_{-\infty}^{\infty} k(u)\left(m^{\prime}(x) h u+\frac{h^{2} u^{2}}{2} m^{\prime \prime}(x)\right)\left(f(x)+u h f^{\prime}(x)\right) d u+o\left(h^{2}\right)= \\
& \quad=\left(\int_{-\infty}^{\infty} u k(u) d u\right) m^{\prime}(x) f(x) h+h^{2}\left(\int_{-\infty}^{\infty} u^{2} k(u) d u\right)\left(\frac{1}{2} m^{\prime \prime}(x) f(x)+m^{\prime}(x) f^{\prime}(x)\right)+o\left(h^{2}\right) \\
& \quad=h^{2} \kappa_{2} f(x) B(x)+o\left(h^{2}\right)
\end{aligned}
$$

- Notation:

$$
\kappa_{2}=\int_{-\infty}^{\infty} u^{2} k(u) d u \quad \text { and } \quad B(x)=\left(\frac{1}{2} m^{\prime \prime}(x)+f^{-1}(x) m^{\prime}(x) f^{\prime}(x)\right) .
$$

- Variance of $\hat{\Delta}_{1}(x)$ A similar expansion shows that $\operatorname{Var}\left[\hat{\Delta}_{1}(x)\right]=O\left(\frac{h^{2}}{n h}\right)=o\left(\frac{1}{n h}\right)$.

TERM $\hat{\Delta}_{1}(x)$

By a triangular array CLT (and some conditions on h),

$$
\sqrt{n h}\left(\hat{\Delta}_{1}(x)-h^{2} \kappa_{2} f(x) B(x)\right) \xrightarrow{d} 0 .
$$

Asymptotic Normality

Final step: put all the pieces together and use $\hat{f}(x) \xrightarrow{P} f(x)$.

ASYMPTOTIC NORMALITY

Suppose that

1. $f(x)$ is continuously differentiable at the interior point x with $f(x)>0$.
2. $m(x)$ is twice continuously differentiable at x.
3. $\sigma^{2}(x)>0$ is continuous at x.
4. $k(x)$ is a non-negative, symmetric, 2nd order kernel.
5. $E\left[|Y|^{2+\delta}\right]<\infty$ for some $\delta>0$.
6. $n \rightarrow \infty, h \rightarrow 0$, $n h \rightarrow \infty$, and $h=O\left(n^{-1 / 5}\right)$.

It follows that

$$
\sqrt{n h}\left(\hat{m}(x)-m(x)-h^{2} \kappa_{2} B(x)\right) \xrightarrow{d} N\left(0, \frac{\sigma^{2}(x) R(k)}{f(x)}\right) .
$$

$\overline{3}$

ASYMPTOTIC MSE

AsYMPTOTIC MSE

The asymptotic mean squared error of the NW estimator is

$$
\operatorname{MSE}(x)=h^{4} \kappa_{2}^{2} B^{2}(x)+\frac{\sigma^{2}(x) R(k)}{n h f(x)} .
$$

- Optimal rate h : $C n^{-1 / 5}$ with MSE convergence $O\left(n^{-4 / 5}\right)$.
- Same rate as in density estimation.
- The constant C is a function of $\left(\kappa_{2}, B(x), \sigma^{2}(x), R(k), f(x)\right)$.
- Plug-in approach possible but cumbersome.
- Other methods, like Cross Validation, may be easier - See Econ 481.

Comments

Kernel Choice

- Asymptotic distribution depends on the kernel through $R(k)$ and κ_{2}
- Optimal kernel minimizes $R(k)$: same as for density estimation.
... Epanechnikov family is also optimal for regression.

On bandwidth choice

- The constant C for the optimal bandwidth depends on the first and second derivatives of the mean function $m(x)$.
... when the derivative function $B(x)$ is large, the optimal bandwidths is small.
... when the derivative is small, the optimal bandwidth is large.
- For nonparametric regression, reference bandwidths (e.g., Silverman) are not natural.
... no natural reference $m(x)$ which dictates the first and second derivative.

Bias Term: needs to be estimated to obtain valid confidence intervals.

- $B(x)$ depends on $m^{\prime}(x), m^{\prime \prime}(x), f^{\prime}(x)$ and $f(x)$. Estimating these objects is arguably more complicated than the problem we started out with.
- Could use a (proper) residual bootstrap. See Econ 481.

Undersmoothing: researchers ignore the bias (arguing it is small)

- To justify this, h should be smaller than optimal.
- Undersmoothing is about choosing h such that

$$
\sqrt{n h} h^{2} \rightarrow 0
$$

which makes the bias small, i.e.,

$$
\sqrt{n h} h^{2} \kappa_{2} B(x) \approx 0
$$

- Optimal choice (i.e., Cross validation) are incompatible with the above restriction as

$$
n h h^{4} \rightarrow C>0
$$

- Undersmoothing does not work well in finite samples. Better methods exist.
- Let $d_{x}>1$ be the dimension of X (we don't use k here to avoid confusion with the kernel).
- NW implementation similar to the one we just described
\ldots but requires multivariate kernel and d_{x} bandwidths.
- The rate of convergence of the NW estimator becomes

$$
\sqrt{n h_{1} \ldots h_{d_{X}}} \text { or } \sqrt{n h^{d_{x}}} .
$$

- Curse of dimensionality: The higher d_{x}, the slower the rate.
- Makes sense: it gets harder to find "effective" observations.
- Optimal bandwidths and MSE are

$$
h=O\left(n^{\frac{-1}{4+d_{x}}}\right) \text { and } M S E=O\left(n^{\frac{-4}{4+d_{x}}}\right)
$$

Linear conditional mean

Suppose $m(x)=\beta_{0}+\beta_{1} x$. The NW estimator may not perform well here.

- In fact, take $Y_{i}=\beta_{0}+\beta_{1} X_{i}$. (no error)
- NW performs poorly if the marginal distribution of X_{i} is not roughly uniform.
- NW estimator applied to purely linear data yields a nonlinear output.
- Larger h does not help: makes $\hat{m}(x)$ flatter but not linear.

Boundaries of the support

- The NW estimator may not perform well: bias of order $O(h)$.
- Change of variable argument no longer applies.
- For x s.t. $x \leqslant \min \left\{X_{1}, \ldots, X_{n}\right\}$; the NW estimator is an average only of Y_{i} values for observations to the right of x.
- If $m(x)$ is positively sloped, the NW estimator will be upward biased.
... the estimator is inconsistent at the boundary.
$\overline{3}$
- The Nadaraya-Watson estimator is often called a local constant estimator.
- It locally (about x) approximates the CEF $m(x)$ as a constant function.
- Interpretation: $\hat{m}(x)$ solves the minimization problem

$$
\begin{equation*}
\hat{m}(x)=\underset{c}{\operatorname{argmin}} \sum_{i=1}^{n} k\left(\frac{X_{i}-x}{h}\right)\left(Y_{i}-c\right)^{2} . \tag{1}
\end{equation*}
$$

- This is a weighted regression of Y_{i} on an intercept only.
- Without the weights, this estimation problem reduces to the sample mean. The NW estimator generalizes this to a "local" mean.
- Insight: we may construct alternative nonparametric estimators of $m(x)$ by alternative local approximations.
- A popular choice is the local linear (LL) approximation.
- Idea: Instead of approximating $m(x)$ locally as a constant, the local linear approximation approximates $m(x)$ locally by a linear function.
- Estimation: use locally weighted least squares.

LOCAL LINEAR (LL) ESTIMATOR

For each x solve the following minimization problem,

$$
\begin{equation*}
\left\{\hat{\beta}_{0}(x), \hat{\beta}_{1}(x)\right\}=\underset{\left(b_{0}, b_{1}\right)}{\operatorname{argmin}} \sum_{i=1}^{n} k\left(\frac{X_{i}-x}{h}\right)\left(Y_{i}-b_{0}-b_{1}\left(X_{i}-x\right)\right)^{2} . \tag{2}
\end{equation*}
$$

The local linear estimator of $m(x)$ is the local intercept: $\hat{\beta}_{0}(x)$.

- The LL estimator of the derivative of $m(x)$ is the estimated slope coefficient:

$$
\hat{m}^{\prime}(x)=\hat{\beta}_{1}(x) .
$$

- Note: If we write the local model

$$
Y_{i}=\beta_{0}+\beta_{1}\left(X_{i}-x\right)+U_{i} \quad \text { with } \quad E[U \mid X=x]=0
$$

then using the regressor $X_{i}-x$ rather than X_{i} makes the intercept equal to $m(x)=E[Y \mid X=x]$.

LL ESTIMATOR: EXAMPLE

Figure 11.2: Scatter of $\left(y_{i}, x_{i}\right)$ and Local Linear fitted regression

- Scatter plot divided into three regions depending on the regressor x.
- Linear regression fit in each region, with the obs. weighted by the Epanechnikov kernel with $h=1$.
- solid line: Then $\hat{m}(x)$ is evaluated not only at $x \in\{2,4,6\}$ but at a fine grid.

Least Squares formula

- For each x set

$$
Z_{i}(x)=\left(1, X_{i}-x\right)^{\prime}
$$

and

$$
k_{i}(x)=k\left(\frac{X_{i}-x}{h}\right) .
$$

- Then

$$
\binom{\hat{\beta}_{0}(x)}{\hat{\beta}_{1}(x)}=\left(\sum_{i=1}^{n} k_{i}(x) Z_{i}(x) Z_{i}(x)^{\prime}\right)^{-1} \sum_{i=1}^{n} k_{i}(x) Z_{i}(x) Y_{i} .
$$

- For each x, the estimator is just weighted least squares of Y in $Z(x)$.
- In fact: as $h \rightarrow \infty$, the LL estimator approaches the full-sample linear least-squares estimator

$$
\hat{m}(x)=\hat{\beta}_{0}+\hat{\beta}_{1} x .
$$

- As $h \rightarrow \infty$ all observations receive equal weight regardless of x.
- The LL estimator is a flexible generalization of the linear OLS estimator.

Asymptotic Normality

- Deriving the asymp. distribution of the LL estimator involves similar tools to those used with the NW estimator (but more involved). Skip here.

ASYMPTOTIC NORMALITY

Let $\hat{m}(x)$ be the LL estimator as previously defined. Under conditions 1-6 in the NW theorem,

$$
\sqrt{n h}\left(\hat{m}(x)-m(x)-h^{2} \kappa_{2} \frac{1}{2} m^{\prime \prime}(x)\right) \xrightarrow{d} N\left(0, \frac{\sigma^{2}(x) R(k)}{f(x)}\right) .
$$

- Relative to the Bias of the NW estimator,

$$
B(x)=\left(\frac{1}{2} m^{\prime \prime}(x)+f^{-1}(x) m^{\prime}(x) f^{\prime}(x)\right)
$$

the second term is no longer present. Simplified bias suggests reduced bias.

- Bias of LL does not depend of $f(x)$: design adaptive.
- In theory, bias could be larger as opposing terms could cancel out.
- Indeed, weaker condition 1: only continuity of $f(x)$ is required - no diff.
- The LL estimator preserves linear data (in contrast to NW).

If $Y_{i}=\beta_{0}+\beta_{1} X_{i}$, then for any sub-sample, a local linear regression fits exactly, so $\hat{m}(x)=m(x)$.

- The distribution of the LL estimator is invariant to the first derivative of m : it has zero bias when the true regression is linear.
- LL estimator has better properties at the boundary than the NW estimator.

Intuition: even if x is at the boundary, as the LL estimator fits a (weighted) LS line through data near the boundary, if the true relationship is linear this estimator will be unbiased.

For the LL estimator the order of the bias is $O\left(h^{2}\right)$ at all x (vs $O(h)$ for NW).

- Extensions that allow for discontinuities in $m(x), f(x)$ and $\sigma(x)$ exist.
- LL estimators is perhaps the most popular judged by journal article counts.
- Particularly useful in RDD settings (next class).
- The LL estimator does not always beat the NW estimator in simulations.

If $m(x)$ is quite flat \Rightarrow NW estimator does better.

If $m(x)$ is steeper and curvier $\Rightarrow \mathrm{LL}$ estimator tends to do better.

- Explanation: in finite samples the NW estimator tends to have a smaller variance.

Gives it an advantage when bias is low $\approx m(x)$ is flat.

- Extension: LL extends to Local Polynomial estimator. Topic of 481.
3

