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Past & Future

PART I
I Linear Regression
I Properties and Interpretation
I Endogeneity
I Panel Data

PART II: TOPICS

I Non-parametric Regression
I RDD and Matching
I CART and Random Forest
I LASSO
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Setup

I Let (Y, X) be a random vector where Y and X take values in R.

I Let P be the distribution of (Y, X).

I The case where X ∈ Rk will be discussed later.

I We are interested in the conditional mean of Y given X.

m(x) = E[Y|X = x] .

I Let {(Y1, X1), . . . , (Yn, Xn)} be an i.i.d. sample from P.

I Discrete case: If X takes ` values {x1, x2, . . . , x`}, then

m̂(x) =
∑n

i=1 I{Xi = x}Yi∑n
i=1 I{Xi = x}

is a natural estimator of m(x) for x ∈ {x1, x2, . . . , x`}.

I Straightforward: m̂(x) is consistent and asymptotically normal if E[Y2] <∞.
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Nearest Neighbor Estimator

I Continuous X: the event {Xi = x} has zero probability.

I Affects the properties of the previous estimator.

I Assume m(x) is continuous: take average of observations that are “close” to x.

Q-NEAREST NEIGHBOR ESTIMATOR

Let Jq(x) be the set of indices in {1, . . . , n} associated with q closest-to-x values of {X1, . . . , Xn}. The
q-nearest neighbor estimator is defined as

m̂(x) =
1
q

∑
i∈Jq(x)

Yi .

I Jq(x) can be formally defined as follows:

Let di = |Xi − x| and denote by d(1), . . . , d(n) the ordered statistics. Then

Jq(x) = {i ∈ {1, . . . , n} : di 6 d(q)} .
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Nearest Neighbor Estimator

I Step 1: find the q observations with values of Xi closest to x.

I Step 2: average the outcomes of those observations.

I Intuition: is m(x) is smooth, it should not change too much as x varies in a small neighborhood.

I q = n: we use all of the observations and m̂(x) just becomes Ȳn.

... produces a perfectly flat estimated function. Variance in very low. Bias is high for many values of
x - unless m(x) truly flat.

I q = 1: we use Xi very close to x, so the bias should be relatively small. Few obs. so variance is high.

I Could pick q using cross-validation (later).
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Binned Estimator

I Flipped side of q-NN estimators.

I q-NN estimator takes an average according to the q observations closest to x.

I The number of “local” observations is always q.

I The distance of these observations is random. In particular,

h = max
i∈Jq(x)

|Xi − x|

is random.

I Alternative approach: fix h and consider all observations with |Xi − x| 6 h.

I Flipped side: the number of local observations is now random.
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Binned Estimator

BINNED ESTIMATOR

Let h > 0 be given. The binned estimator is defined as

m̂(x) =
∑n

i=1 I{|Xi − x| 6 h}Yi∑n
i=1 I{|Xi − x| 6 h}

.

I It can be alternatively written as a weighted average estimator

m̂(x) =
n∑

i=1

wi(x)Yi

with

wi(x) =
I{|Xi − x| 6 h}∑n

i=1 I{|Xi − x| 6 h}
.

I Note that
∑n

i=1 wi(x) = 1 so that m̂(x) is a weighted average of Yi.

I For x = 2 and h = 1
2 : m̂(x) is the average of the Yi for i such that Xi ∈ [1.5 6 x 6 2.5].
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Binned Estimator

I Coarse grid for x: step-function approximation to m(x). Squares in the figure.

Introduces jumps in the estimated function at the edges of the partitions.

I Fine grid for x: Evaluate m̂(x) on a fine grid of values (smoother solid line).
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QUESTIONS?
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Kernel Estimator

I One deficiency with the binned estimator is it is discontinuous at x = Xi ± h.

I Source of discontinuity: weights are based on indicator functions.

I Idea: continuous weights may lead to continuous estimators of m(x).

I The family of weights typically used are called “kernels”.

DEFINITION (2ND ORDER, NON-NEGATIVE, SYMMETRIC KERNEL)

A second-order kernel function k(u) : R→ R satisfies

1.
∫∞
−∞ k(u)du = 1 - definition of kernel

2. 0 6 k(u) <∞ - makes the kernel non-negative

3. k(u) = k(−u) - makes the kernel symmetric

4. κ2 =
∫∞
−∞ u2k(u)du ∈ (0,∞) - makes the kernel of order 2
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Kernel Estimator

I Note: definition of the kernel does not involve continuity.

I Indeed: the binned estimator can be written in terms of a kernel function! Let

k0(u) =
1
2

I{|u| 6 1}

be the uniform density on [−1, 1].

Note that

I{|Xi − x| 6 h} = I
{
|Xi − x|

h
6 1
}

= 2k0

(
Xi − x

h

)
so that we can write m̂(x) as

m̂(x) =

∑n
i=1 k0

(
Xi−x

h

)
Yi∑n

i=1 k0

(
Xi−x

h

) .

I This is a special case of the so-called Nadaraya-Watson estimator.
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Nadaraya-Watson

NADARAYA-WATSON KERNEL ESTIMATOR

Let k(u) be a second-order kernel and h > 0 be a bandwidth. Then, the Nadaraya-Watson estimator is
defined as

m̂(x) =

∑n
i=1 k

(
Xi−x

h

)
Yi∑n

i=1 k
(

Xi−x
h

) .

I Also known as kernel regression estimator or local constant estimator.

I The bandwidth h > 0 plays the same role as before

Large h: smoother estimates (but high bias): h→∞⇒ m̂(x)→ Ȳn.

Small h: erratic estimates (but low bias): h→ 0⇒ m̂(Xi)→ Yi.

I Popular continuous kernels:

Gaussian : kg(u) =
1√
2π

exp
(
−

u2

2

)
Epanechnikov : ke(u) =

3
4
(1 − u2)I{|u| 6 1} .
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Asymp. properties

We wish to show that for each x,
√

nh(m̂(x) − m(x)) =
√

nh∆1(x) +
√

nh∆2(x)

where
I
√

nh∆2(x) is asymp. normal centered at zero (as nh→∞)

I
√

nh∆1(x) determines asymptotic bias (as nh→∞)

I Question: why would nh be the rate of convergence?

... these are the “effective” number of observations we use.

I The second term adds to the asymptotic variance.

I The first term adds to the asymptotic bias.

I Asymptotic framework: n→∞, h→ 0, nh→∞.

I Go over sketch of the arguments.
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Asymp. properties: expansion
I Write Yi = m(Xi) + Ui so that E[Ui|Xi] = 0 and let σ2(x) = Var[Ui|Xi = x] .

I Fix x ∈ R and write
Yi = m(x) + (m(Xi) − m(x)) + Ui .

I Study the numerator of m̂(x):
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Asymp. properties: ∆2

m̂(x) − m(x) =
∆̂1(x)
f̂ (x)

+
∆̂2(x)
f̂ (x)

with ∆̂2(x) =
1

nh

n∑
i=1

k
(

Xi − x
h

)
Ui

Find E[∆̂2(x)] and Var
[
∆̂2(x)

]
.
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Asymp. properties: ∆2

Var
[
∆̂2(x)

]
=

1
nh2

∫∞
−∞ k

(
z − x

h

)2
σ2(z)f (z)dz change of vars u =

1
h
(z − x) .



17

Asymp. properties: ∆2

The term

R(k) =
∫∞
−∞ k (u)2 du

denote the roughness of the kernel. Our derivations then lead to

TERM ∆̂2(x)

Var
[
∆̂2(x)

]
=
σ2(x)f (x)R(k)

nh
+ o
(

1
nh

)
,

and so by the CLT, √
nh∆̂2(x)

d→ N
(

0,σ2(x)f (x)R(k)
)

.
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Asymp. properties: ∆1

∆̂1 =
1

nh

n∑
i=1

k
(

Xi − x
h

)
(m(Xi) − m(x)) .

Find E[∆̂1(x)]
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Asymp. properties: ∆1

∫∞
−∞ k (u)

(
m ′(x)hu +

h2u2

2
m ′′(x)

)(
f (x) + uhf ′(x)

)
du + o(h2) =

=

(∫∞
−∞ uk (u) du

)
m ′(x)f (x)h + h2

(∫∞
−∞ u2k (u) du

)(
1
2

m ′′(x)f (x) + m ′(x)f ′(x)
)
+ o(h2) .

= h2κ2f (x)B(x) + o(h2)

I Notation:

κ2 =

∫∞
−∞ u2k (u) du and B(x) =

(
1
2

m ′′(x) + f−1(x)m ′(x)f ′(x)
)

.

I Variance of ∆̂1(x) A similar expansion shows that Var
[
∆̂1(x)

]
= O

(
h2

nh

)
= o

(
1

nh

)
.

TERM ∆̂1(x)
By a triangular array CLT (and some conditions on h),

√
nh(∆̂1(x) − h2κ2f (x)B(x)) d→ 0 .
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Asymptotic Normality

Final step: put all the pieces together and use f̂ (x) P→ f (x).

ASYMPTOTIC NORMALITY

Suppose that

1. f (x) is continuously differentiable at the interior point x with f (x) > 0.

2. m(x) is twice continuously differentiable at x.

3. σ2(x) > 0 is continuous at x.

4. k(x) is a non-negative, symmetric, 2nd order kernel.

5. E[|Y|2+δ] <∞ for some δ > 0.

6. n→∞, h→ 0, nh→∞, and h = O(n−1/5).

It follows that
√

nh
(

m̂(x) − m(x) − h2κ2B(x)
)

d→ N
(

0,
σ2(x)R(k)

f (x)

)
.
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QUESTIONS?



22

Asymptotic MSE

ASYMPTOTIC MSE
The asymptotic mean squared error of the NW estimator is

MSE(x) = h4κ2
2B2(x) +

σ2(x)R(k)
nhf (x)

.

I Optimal rate h: Cn−1/5 with MSE convergence O(n−4/5).

I Same rate as in density estimation.

I The constant C is a function of (κ2, B(x),σ2(x), R(k), f (x)).

I Plug-in approach possible but cumbersome.

I Other methods, like Cross Validation, may be easier - See Econ 481.
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Comments

Kernel Choice
I Asymptotic distribution depends on the kernel through R(k) and κ2

I Optimal kernel minimizes R(k): same as for density estimation.

... Epanechnikov family is also optimal for regression.

On bandwidth choice
I The constant C for the optimal bandwidth depends on the first and second derivatives of the mean

function m(x).

... when the derivative function B(x) is large, the optimal bandwidths is small.

... when the derivative is small, the optimal bandwidth is large.

I For nonparametric regression, reference bandwidths (e.g., Silverman) are not natural.

... no natural reference m(x) which dictates the first and second derivative.
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Further Comments

Bias Term: needs to be estimated to obtain valid confidence intervals.
I B(x) depends on m ′(x), m ′′(x), f ′(x) and f (x). Estimating these objects is arguably more

complicated than the problem we started out with.

I Could use a (proper) residual bootstrap. See Econ 481.

Undersmoothing: researchers ignore the bias (arguing it is small)
I To justify this, h should be smaller than optimal.

I Undersmoothing is about choosing h such that
√

nhh2 → 0 ,

which makes the bias small, i.e., √
nhh2κ2B(x) ≈ 0 .

I Optimal choice (i.e., Cross validation) are incompatible with the above restriction as

nhh4 → C > 0 .

I Undersmoothing does not work well in finite samples. Better methods exist.
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Curse of dimensionality

I Let dx > 1 be the dimension of X (we don’t use k here to avoid confusion with the kernel).

I NW implementation similar to the one we just described

... but requires multivariate kernel and dx bandwidths.

I The rate of convergence of the NW estimator becomes√
nh1 . . . hdX or

√
nhdx .

I Curse of dimensionality: The higher dx, the slower the rate.

I Makes sense: it gets harder to find “effective” observations.

I Optimal bandwidths and MSE are

h = O(n
−1

4+dx ) and MSE = O(n
−4

4+dx ) .
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Limitations of NW

Linear conditional mean
I Suppose m(x) = β0 +β1x. The NW estimator may not perform well here.

I In fact, take Yi = β0 +β1Xi. (no error)

I NW performs poorly if the marginal distribution of Xi is not roughly uniform.

I NW estimator applied to purely linear data yields a nonlinear output.

I Larger h does not help: makes m̂(x) flatter but not linear.

Boundaries of the support
I The NW estimator may not perform well: bias of order O(h).

I Change of variable argument no longer applies.

I For x s.t. x 6 min{X1, . . . , Xn}; the NW estimator is an average only of Yi values for observations to
the right of x.

I If m(x) is positively sloped, the NW estimator will be upward biased.

... the estimator is inconsistent at the boundary.
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QUESTIONS?
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Local Linear Estimator

I The Nadaraya-Watson estimator is often called a local constant estimator.

I It locally (about x) approximates the CEF m(x) as a constant function.

I Interpretation: m̂(x) solves the minimization problem

m̂(x) = argmin
c

n∑
i=1

k
(

Xi − x
h

)
(Yi − c)2 . (1)

I This is a weighted regression of Yi on an intercept only.

I Without the weights, this estimation problem reduces to the sample mean. The NW estimator
generalizes this to a “local” mean.

I Insight: we may construct alternative nonparametric estimators of m(x) by alternative local
approximations.

I A popular choice is the local linear (LL) approximation.
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Local Linear Estimator

I Idea: Instead of approximating m(x) locally as a constant, the local linear approximation
approximates m(x) locally by a linear function.

I Estimation: use locally weighted least squares.

LOCAL LINEAR (LL) ESTIMATOR

For each x solve the following minimization problem,

{β̂0(x), β̂1(x)} = argmin
(b0,b1)

n∑
i=1

k
(

Xi − x
h

)
(Yi − b0 − b1(Xi − x))2 . (2)

The local linear estimator of m(x) is the local intercept: β̂0(x).

I The LL estimator of the derivative of m(x) is the estimated slope coefficient:

m̂ ′(x) = β̂1(x) .

I Note: If we write the local model

Yi = β0 +β1(Xi − x) + Ui with E[U|X = x] = 0 ,

then using the regressor Xi − x rather than Xi makes the intercept equal to m(x) = E[Y|X = x].
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LL estimator: example

I Scatter plot divided into three regions depending on the regressor x.

I Linear regression fit in each region, with the obs. weighted by the Epanechnikov kernel with h = 1.

I solid line: Then m̂(x) is evaluated not only at x ∈ {2, 4, 6} but at a fine grid.
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Least Squares formula

I For each x set
Zi(x) =

(
1, Xi − x

) ′
and

ki(x) = k
(

Xi − x
h

)
.

I Then (
β̂0(x)
β̂1(x)

)
=

( n∑
i=1

ki(x)Zi(x)Zi(x)
′
)−1 n∑

i=1

ki(x)Zi(x)Yi .

I For each x, the estimator is just weighted least squares of Y in Z(x).

I In fact: as h→∞, the LL estimator approaches the full-sample linear least-squares estimator

m̂(x) = β̂0 + β̂1x .

I As h→∞ all observations receive equal weight regardless of x.

I The LL estimator is a flexible generalization of the linear OLS estimator.
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Asymptotic Normality

I Deriving the asymp. distribution of the LL estimator involves similar tools to those used
with the NW estimator (but more involved). Skip here.

ASYMPTOTIC NORMALITY

Let m̂(x) be the LL estimator as previously defined. Under conditions 1-6 in the NW theorem,

√
nh
(

m̂(x) − m(x) − h2κ2
1
2

m ′′(x)
)

d→ N
(

0,
σ2(x)R(k)

f (x)

)
.

I Relative to the Bias of the NW estimator,

B(x) =
(

1
2

m ′′(x) + f−1(x)m ′(x)f ′(x)
)

the second term is no longer present. Simplified bias suggests reduced bias.

I Bias of LL does not depend of f (x): design adaptive.

I In theory, bias could be larger as opposing terms could cancel out.

I Indeed, weaker condition 1: only continuity of f (x) is required - no diff.
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NW vs LL: comments

I The LL estimator preserves linear data (in contrast to NW).

If Yi = β0 +β1Xi, then for any sub-sample, a local linear regression fits exactly, so m̂(x) = m(x).

I The distribution of the LL estimator is invariant to the first derivative of m: it has zero bias when the
true regression is linear.

I LL estimator has better properties at the boundary than the NW estimator.

Intuition: even if x is at the boundary, as the LL estimator fits a (weighted) LS line through data near
the boundary, if the true relationship is linear this estimator will be unbiased.

For the LL estimator the order of the bias is O(h2) at all x (vs O(h) for NW).

I Extensions that allow for discontinuities in m(x), f (x) and σ(x) exist.
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Further Comments

I LL estimators is perhaps the most popular judged by journal article counts.

I Particularly useful in RDD settings (next class).

I The LL estimator does not always beat the NW estimator in simulations.

If m(x) is quite flat⇒ NW estimator does better.

If m(x) is steeper and curvier⇒ LL estimator tends to do better.

I Explanation: in finite samples the NW estimator tends to have a smaller variance.

Gives it an advantage when bias is low ≈ m(x) is flat.

I Extension: LL extends to Local Polynomial estimator. Topic of 481.
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THE END!
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