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Past & Future

PART III SO FAR

I Confidence Sets and Pivots
I Bootstrap: Algorithm
I Bootstrap: Sample Mean
I Discussion

LAST CLASS!
I Subsampling
I Subsampling vs Bootstrap
I Randomization Tests
I Example: Permutation tests
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Intro to Subsampling

I Data: {Xi, i = 1, . . . , n} is an i.i.d. sequence of random variables with distribution P ∈ P.

I Parameter of interest: some real-valued θ(P)

I Estimator: θ̂n = θ̂n(X1, . . . , Xn).

I Root:
Rn =

√
n(θ̂n − θ(P)) ,

where root stands for a functional depending on both, the data and θ(P).

I Let Jn(P) denote the sampling distribution of Rn and define the corresponding cdf as,

Jn(x, P) = P{Rn 6 x} . (1)

I Goal: to estimate Jn(x, P) so we can make inferences about θ(P). For example, we would like to
estimate quantiles of Jn(x, P), so we can construct confidence sets for θ(P).
Unfortunately, we do not know P, and, as a result, we do not know Jn(x, P).
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Main Requirement

I The bootstrap: solved this problem simply by replacing the unknown P with an estimate P̂n.

I In the case of i.i.d. data, a typical choice of P̂n is the empirical distribution of the Xi, i = 1, . . . , n.

I Condition: for this approach to work, we essentially required that Jn(x, P) when viewed as a function
of P was continuous in a certain neighborhood of P.

I An alternative to the bootstrap known as subsampling, originally due to Politis and Romano (1994),
does not impose this requirement but rather the following much weaker condition.

ASSUMPTION

There exists a limiting law J(P) such that Jn(P) converges weakly to J(P) as n→∞.



5

Intuition

I Suppose for the time being that θ(P) is known.

I Suppose Xi, i = 1, . . . , m is an i.i.d. sequence of random variables with distribution P with m = nk for
some very big k (so we have many samples of size n).

I We could then estimate Jn(x, P) by looking at the empirical distribution of

√
n
(
θ̂n(Xn(j−1)+1, . . . , Xnj) − θ(P)

)
, j = 1, . . . , k .

I This is an i.i.d. sequence of k rvs with distribution Jn(x, P). By the Glivenko-Cantelli theorem, we
know that the empirical distribution is a good estimate of Jn(x, P), at least for large k.

I Improvement: we can do better by using all possible sets of data of size n from the m observations,

√
n
(
θ̂n,j − θ(P)

)
, j = 1, . . . ,

(
m
n

)
,

where θ̂n,j is the estimate of θ(P) using the jth set of data of size n from the original m observations.



6

Reality

I In practice m = n, so, even if we knew θ(P), this idea won’t work.

I Key idea! replace n with some smaller number b that is much smaller than n.

I We would then expect
√

b
(
θ̂b,j − θ(P)

)
, j = 1, . . . ,

(
n
b

)
,

where θ̂b,j is the estimate of θ(P) computed using the jth set of data of size b from the original n
observations, to be a good estimate of Jb(x, P), at least if

(n
b
)

is large.

I But: we are interested in Jn(x, P), not Jb(x, P). We therefore need some way to force Jn(x, P) and
Jb(x, P) to be close to one another.

I To ensure this, it suffices to assume that Jn(x, P)→ J(x, P). Therefore, Jb(x, P) and Jn(x, P) are both
close to J(x, P), and thus close to one another as well, at least for large b and n.

|Jb(x, P) − Jn(x, P)| 6 |Jb(x, P) − J(x, P)|+ |Jn(x, P) − J(x, P)| .
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Intuition

I Both b and
(n

b
)

need to be large: it suffices to assume that b→∞, but b/n→ 0.

I This procedure is still not feasible because in practice we typically do not know θ(P). But we can
replace θ(P) with θ̂n provided

√
b(θ̂n − θ(P)) =

√
b√
n
√

n(θ̂n − θ(P))

is small, which follows from b/n→ 0 in this case.

I All we required was that Jn(x, P) converged in distribution to a limit distribution J(x, P). The bootstrap
required this and that Jn(x, P) was continuous in a certain sense.

I Showing continuity of Jn(x, P) is very problem specific. On the flip side, we now have a tuning
parameter: b.



8

QUESTIONS?
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Main Theorem

THEOREM

Assume Assumption A. Also, let Jn(P) denote the sampling distribution of τn(θ̂n − θ(P)) for some
normalizing sequence τn →∞, Nn =

(n
b
)
, and assume that τb/τn → 0, b→∞, and b/n→ 0 as n→∞.

I) If x is a continuity point of J(·, P), then Ln,b(x)→ J(x, P) in probability, where

Ln,b(x) =
1

Nn

Nn∑
j=1

I{τb(θ̂n,b,j − θ̂n) 6 x} .

II) If J(·, P) is continuous, then

sup
x

|Ln,b(x) − Jn(x, P)|→ 0 in probability .

III) Let
cn,b(1 −α) = inf{x : Ln,b(x) > 1 −α} and c(1 −α, P) = inf{x : J(x, P) > 1 −α} .

If J(·, P) is continuous at c(1 −α, P), then

P{τn(θ̂n − θ(P)) 6 cn,b(1 −α)}→ 1 −α as n→∞ .
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Implementing Subsampling

Except for the first step, implementing the bootstrap and subsampling requires the same algorithm.

NONPARAMETRICS BOOTSTRAP

1 Conditional on the data (X1, . . . , Xn), draw B samples of size n from the original observations with
replacement (each observation has probability 1/n). Denote the jth sample by

(X∗1,j, . . . , X∗n,j) for j = 1, . . . , B .

SUBSAMPLING

1 Conditional on the data (X1, . . . , Xn), draw Nn samples of size b from the original observations
without replacement. Denote the jth sample by

(X∗1,j, . . . , X∗b,j) for j = 1, . . . , Nn .

In practice, Nn is too large to actually compute Ln(x), so what one would do is randomly sample B of the
Nn possible data sets of size b and just use B in place of Nn when computing Ln(x).
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Comments

I Bootstrap: there are examples where Jn(x, P)→ J(x, P), but the continuity on P fails (e.g., the
extreme order statistic).

I Subsampling would have no problems handling the extreme order statistic.

I Typically, when both the bootstrap and subsampling are valid, the bootstrap works better in the
sense of higher-order asymptotics but subsampling is more generally valid.

I There is a variant of the bootstrap known as the m-out-of-n bootstrap.

I Instead of using Jn(x, P̂n) to approximate Jn(x, P), one uses Jm(x, P̂n) where m is much smaller than n.

I Assuming m2/n→ 0, then all the conclusions of the theorem remain valid with Jm(x, P̂n) in place of Ln(x).

I This follows because if m2/n→ 0, then (i) m/n→ 0 and (ii) with probability tending to 1, the approximation
to Jm(x, P̂n) is the same as the approximation to Ln(x) because the probability of drawing all distinct
observations tends to 1 (see formal proof in class notes).
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QUESTIONS?
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Randomization Tests: motivation

EXAMPLE (SIGN CHANGES)
I Let X = (X1, . . . , X10) ∼ P be an i.i.d. sample of size 10 where each Xi takes values in R, has a finite

mean θ ∈ R, and has a distribution that is symmetric about θ.

I Let P be the collection of all distributions P satisfying these conditions.

I Consider testing
H0 : θ = 0 vs H1 : θ 6= 0 .

I n = 10 so using an asymptotic approximation does not seem fruitful. At the same time, this is more
general than the normal location model so exploiting normality is not possible.

I Suppose we decided to use the absolute value of X̄10 to test the above hypothesis: T(X) = |X̄10|.

I Question: how do we compute a critical value that delivers a valid test? It turns out we can do this
by exploiting symmetry.
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Randomization Tests: motivation

EXAMPLE (SIGN CHANGES)
I Let εi take on either the value 1 or −1 for i = 1, . . . , 10.

I Note that the distribution of X = (X1, . . . , X10) is symmetric about 0 under the null hypothesis.

I Now consider a transformation g = (ε1, . . . , ε10) of R10 that defines the following mapping

(X1, . . . , X10) 7→ gX = (ε1X1, . . . , ε10X10) .

I Let G be the M = 210 collection of such transformations.
⇒ the random variable X and gX have the same distribution under the null hypothesis.

I What this means is that we can get “new samples” from P by simply applying g to X. We can get a
total of M = 1, 024 samples and use these samples to simulate the distribution of T(X).

I This approach leads to a test that is valid in finite samples as the next section shows.
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Randomization Tests: definition

I Data: X ∼ P taking values in a sample space X. Note! P is now the distribution of the entire sample.

I Want to test the null hypothesis H0 : P ∈ P0, where P0 ⊂ P.

I Let G be a finite group of transformations g : X 7→ X.

I The following assumption allows for a general test construction.

DEFINITION (RANDOMIZATION HYPOTHESIS)

Under the null hypothesis, the distribution of X is invariant under the transformations in G; that is, for
every g ∈ G, gX and X have the same distribution whenever X ∼ P ∈ P0.

I Note: We do not require the alternative hypothesis parameter space to remain invariant under g in
G. Only the space P0 is assumed invariant.

I Note: a Group always include the identity transformation.
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The Test

I Let T(X) be any test statistic for testing H0. Let |G| = M. Given X = x, let

T(1)(x) 6 T(2)(x) 6 · · · 6 T(k)(x) 6 · · · 6 T(M)(x)

be ordered values of T(gX) as g varies in G.

I For a nominal level α ∈ (0, 1), let k be defined as

k = d(1 −α)Me

where dMαe denotes the smallest integer greater than or equal to Mα. Let

M+(x) =
M∑

j=1

I
{

T(j)(x) > T(k)(x)
}

and M0(x) =
M∑

j=1

I
{

T(j)(x) = T(k)(x)
}

.

I Now set

a(x) =
Mα− M+(x)

M0(x)
and φ(x) =


1 T(x) > T(k)(x)
a(x) T(x) = T(k)(x)
0 T(x) < T(k)(x)

. (2)

I Note: M+(x) 6 M − k 6 Mα and M+(x) + M0(x) > M − k + 1 > Mα imply a(x) ∈ [0, 1).
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Comments

I Under the randomization hypothesis, Hoeffding (1952) shows that:

1 this construction results in a test of exact level α,

2 this is true for any choice of test statistic T(X).

I This is possibly a randomized test if bMαc is not an integer and there are ties in the ordered values.

I Randomized tests are useful for theoretical purposes but not so useful for empirical practice.

I In practice, one may prefer not to randomized, and so the slightly conservative but not randomized
test that rejects when T(X) > T(k) is level α:

φnr(x) = I{T(x) > T(k)(x)} .
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Theorem

THEOREM

Suppose that X has distribution P in X and the problem is to test the null hypothesis P ∈ P0.
Let G be a finite group of transformations of X onto itself.
Suppose the randomization hypothesis holds. Given a test statistic T(X), let φ be the randomization
test as described above.
Then, φ(X) is a similar α level test, i.e.,

EP[φ(X)] = α, for all P ∈ P0. (3)

REMARK

The randomization test not only is of level α for all n, but also “similar”, meaning that EP[φ(X)] is never
below α for any P ∈ P0.
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Proof

M+(x) =

M∑
j=1

I{T(j)(x) > T(k)(x)} and M0(x) =

M∑
j=1

I{T(j)(x) = T(k)(x)}.

a(x) =
Mα− M+(x)

M0(x)
and φ(x) =


1 T(x) > T(k)(x)
a(x) T(x) = T(k)(x)
0 T(x) < T(k)(x)

.
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QUESTIONS?
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Special case: Permutation Tests

Economics: popular application of randomization tests are the so-called permutation tests.

EXAMPLE (TWO SAMPLE PROBLEM)
I Suppose that Y1, . . . , Ym are i.i.d. observations from a distribution PY and, independently, Z1, . . . , Zn

are i.i.d. observations from a distribution PZ.

I We have two samples that are not paired, i.e., Z1 and Y1 do not correspond to the same “unit”.

I Here X is given by
X = (Y1, . . . , Ym, Z1, . . . , Zn) .

I Consider testing
H0 : PY = PZ vs H1 : PY 6= PZ .

I Group of transformations: Let N = m + n and for x = (x1, . . . , xN) ∈ RN, let gx ∈ RN be

(x1, . . . , xN) 7→ gx = (xπ(1), . . . , xπ(N)) , (4)

where (π(1), . . . ,π(N)) is a permutation of {1, . . . , N}. Let G be the collection of all such g, so that
M = N!. It follows that whenever PY = PZ, X and gX have the same distribution.
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Comments

I In essence, each transformation g produces a new data set gx

I The first m elements are used as the Y sample and the remaining n as the Z sample to recompute
the test statistic.

I If a test statistic is chosen that is invariant under permutations within each of the Y and Z samples,
like

Ȳm − Z̄n ,

it is enough to consider the
(N

m
)

transformed data sets obtained by taking m observations from all N
as the Y observations and the remaining n as the Z observations

I This is equivalent to using a subgroup G ′ of G.

I Note: The randomization hypothesis here holds when PY = PZ.
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Permutation Tests and Treatment Effects

EXAMPLE (TREATMENT EFFECTS)
I Data: random sample {(Y1, D1), . . . , (Yn, Dn)} from a randomized controlled trial where

Y = Y(1)D + (1 − D)Y(0)

is the observed outcome and D ∈ {0, 1} is the exogenous treatment assignment.

I Suppose that we are interested in testing the hypothesis that the distribution Q0 of Y(0) is the same
as the distribution Q1 of Y(1):

H0 : Q0 = Q1 vs. H1 : Q0 6= Q1 . (5)

I Under the null hypothesis in (5), it follows that the distribution of

{(Y1, D1), . . . , (Yn, Dn)} and {(Y1, Dπ(1)), . . . , (Yn, Dπ(n))}

are the same for any permutation (π(1), . . . ,π(n)) of {1, . . . , n}.

I A permutation test that permutes individual from “treatment” to “control” (or from “control” to
“treatment”) delivers a test that is valid in finite samples.
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Permutation Tests and Treatment Effects

I Researchers: often interested in hypotheses about the average treatment effect (ATE):

H0 : E[Y(1)] = E[Y(0)] v.s. H1 : E[Y(1)] 6= E[Y(0)] . (6)

I One may still consider the permutation test that permutes the vector of treatment assignments.

I Unfortunately, such an approach does not lead to a valid test and may over-reject in finite samples.

I These test may be asymptotically valid though, after carefully choosing the test statistic.

I The distinction between the null hypothesis in (5) and that in (6) and their implications on the
properties of permutation tests are often ignored in applied research.

I Randomization test are often dismissed in applied research due to the belief that the randomization
hypothesis is too strong to hold in a real empirical application. However:
I Randomization tests may be asymptotically valid even when P is not symmetric. See Bugni, Canay, and

Shaikh (2018) for an example in the context of randomized controlled experiments.

I Recent developments on “approximate” randomization tests show that they may be particularly useful in
regression models with a fixed (and small) number of clusters, see Canay, Romano, Shaikh (2017).
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THANK YOU FOR NOT FORCING ME TO TALK TO
A BLACK SCREEN EVERY WEEK!
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