ECON 480-3

LECTURE 18: SUBSAMPLING AND RANDOMIZATION TESTS

Ivan A. Canay Northwestern University

PART III SO FAR

- Confidence Sets and Pivots
- Bootstrap: Algorithm
- Bootstrap: Sample Mean
- Discussion

LAST CLASS!

- Subsampling
- Subsampling vs Bootstrap
- Randomization Tests
- Example: Permutation tests

INTRO TO SUBSAMPLING

- **Data**: { X_i , i = 1, ..., n} is an i.i.d. sequence of random variables with distribution $P \in \mathbf{P}$.
- **Parameter of interest**: some real-valued $\theta(P)$
- **Estimator**: $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$.
- ► Root:

$$R_n = \sqrt{n}(\hat{\theta}_n - \theta(P))$$
,

where root stands for a functional depending on both, the data and $\theta(P)$.

Let $J_n(P)$ denote the sampling distribution of R_n and define the corresponding cdf as,

$$J_n(x,P) = P\{R_n \leqslant x\}.$$
⁽¹⁾

Goal: to estimate $J_n(x, P)$ so we can make inferences about $\theta(P)$. For example, we would like to estimate quantiles of $J_n(x, P)$, so we can construct confidence sets for $\theta(P)$. Unfortunately, we do not know P, and, as a result, we do not know $J_n(x, P)$. **The bootstrap**: solved this problem simply by replacing the unknown *P* with an estimate \hat{P}_n .

- In the case of i.i.d. data, a typical choice of \hat{P}_n is the empirical distribution of the X_i , i = 1, ..., n.
- Condition: for this approach to work, we essentially required that $J_n(x, P)$ when viewed as a function of *P* was continuous in a certain neighborhood of *P*.
- An alternative to the bootstrap known as subsampling, originally due to Politis and Romano (1994), does not impose this requirement but rather the following much weaker condition.

ASSUMPTION

There exists a limiting law J(P) such that $J_n(P)$ converges weakly to J(P) as $n \to \infty$.

INTUITION

- Suppose for the time being that $\theta(P)$ is known.
- Suppose X_i , i = 1, ..., m is an i.i.d. sequence of random variables with distribution P with m = nk for some very big k (so we have many samples of size n).
- We could then estimate $J_n(x, P)$ by looking at the empirical distribution of

$$\sqrt{n}\Big(\hat{\theta}_n(X_{n(j-1)+1},\ldots,X_{nj})-\theta(P)\Big), \quad j=1,\ldots,k.$$

- This is an i.i.d. sequence of k rvs with distribution $J_n(x, P)$. By the Glivenko-Cantelli theorem, we know that the empirical distribution is a good estimate of $J_n(x, P)$, at least for large k.
- Improvement: we can do better by using all possible sets of data of size n from the m observations,

$$\sqrt{n} \left(\hat{\theta}_{n,j} - \theta(P) \right), \quad j = 1, \dots, \binom{m}{n},$$

where $\hat{\theta}_{n,j}$ is the estimate of $\theta(P)$ using the *j*th set of data of size *n* from the original *m* observations.

REALITY

- In practice m = n, so, even if we knew $\theta(P)$, this idea won't work.
- **Key idea!** replace *n* with some smaller number *b* that is much smaller than *n*.
- We would then expect

$$\sqrt{b} \Big(\hat{\theta}_{b,j} - \theta(P) \Big), \quad j = 1, \dots, \binom{n}{b},$$

where $\hat{\theta}_{b,j}$ is the estimate of $\theta(P)$ computed using the *j*th set of data of size *b* from the original *n* observations, to be a good estimate of $J_b(x, P)$, at least if $\binom{n}{b}$ is large.

- **But**: we are interested in $J_n(x, P)$, not $J_b(x, P)$. We therefore need some way to force $J_n(x, P)$ and $J_b(x, P)$ to be close to one another.
- ▶ To ensure this, it suffices to assume that $J_n(x, P) \rightarrow J(x, P)$. Therefore, $J_b(x, P)$ and $J_n(x, P)$ are both close to J(x, P), and thus close to one another as well, at least for large *b* and *n*.

 $|J_b(x, P) - J_n(x, P)| \leq |J_b(x, P) - J(x, P)| + |J_n(x, P) - J(x, P)|.$

INTUITION

- **Both** *b* and $\binom{n}{b}$ need to be large: it suffices to assume that $b \to \infty$, but $b/n \to 0$.
- This procedure is still not feasible because in practice we typically do not know $\theta(P)$. But we can replace $\theta(P)$ with $\hat{\theta}_n$ provided

$$\sqrt{b}(\hat{\theta}_n - \theta(P)) = \frac{\sqrt{b}}{\sqrt{n}}\sqrt{n}(\hat{\theta}_n - \theta(P))$$

is **small**, which follows from $b/n \rightarrow 0$ in this case.

- All we required was that $J_n(x, P)$ converged in distribution to a limit distribution J(x, P). The bootstrap required this and that $J_n(x, P)$ was continuous in a certain sense.
- Showing continuity of $J_n(x, P)$ is very problem specific. On the flip side, we now have a tuning parameter: *b*.

MAIN THEOREM

THEOREM

Assume Assumption A. Also, let $J_n(P)$ denote the sampling distribution of $\tau_n(\hat{\theta}_n - \theta(P))$ for some normalizing sequence $\tau_n \to \infty$, $N_n = {n \choose b}$, and assume that $\tau_b/\tau_n \to 0$, $b \to \infty$, and $b/n \to 0$ as $n \to \infty$.

1) If x is a continuity point of $J(\cdot, P)$, then $L_{n,b}(x) \to J(x, P)$ in probability, where

$$L_{n,b}(x) = \frac{1}{N_n} \sum_{j=1}^{N_n} I\{\tau_b(\hat{\theta}_{n,b,j} - \hat{\theta}_n) \leqslant x\}.$$

II) If $J(\cdot, P)$ is continuous, then

$$\sup_{x} |L_{n,b}(x) - J_n(x,P)| \to 0 \text{ in probability }.$$

111) Let

 $c_{n,b}(1-\alpha) = \inf\{x : L_{n,b}(x) \ge 1-\alpha\} \quad \text{and} \quad c(1-\alpha, P) = \inf\{x : J(x, P) \ge 1-\alpha\}.$

If $J(\cdot, P)$ is continuous at $c(1 - \alpha, P)$, then

 $P\{\tau_n(\hat{\theta}_n - \theta(P)) \leq c_{n,b}(1-\alpha)\} \to 1-\alpha \text{ as } n \to \infty$.

Except for the first step, implementing the bootstrap and subsampling requires the same algorithm.

NONPARAMETRICS BOOTSTRAP

) Conditional on the data $(X_1, ..., X_n)$, draw *B* samples of size *n* from the original observations with replacement (each observation has probability 1/n). Denote the *j*th sample by

 $(X_{1,j}^*, \dots, X_{n,j}^*)$ for $j = 1, \dots, \mathbf{B}$.

SUBSAMPLING

) Conditional on the data $(X_1, ..., X_n)$, draw N_n samples of size *b* from the original observations without replacement. Denote the *j*th sample by

 $(X_{1,j}^*, \dots, X_{b,j}^*)$ for $j = 1, \dots, \mathbf{N_n}$.

In practice, N_n is too large to actually compute $L_n(x)$, so what one would do is randomly sample *B* of the N_n possible data sets of size *b* and just use *B* in place of N_n when computing $L_n(x)$.

COMMENTS

- **Bootstrap**: there are examples where $J_n(x, P) \rightarrow J(x, P)$, but the continuity on *P* fails (e.g., the extreme order statistic).
- Subsampling would have no problems handling the extreme order statistic.
- Typically, when both the bootstrap and subsampling are valid, the bootstrap works better in the sense of higher-order asymptotics but subsampling is more generally valid.
- There is a variant of the bootstrap known as the *m*-out-of-*n* bootstrap.
 - Instead of using $J_n(x, \hat{P}_n)$ to approximate $J_n(x, P)$, one uses $J_m(x, \hat{P}_n)$ where *m* is much smaller than *n*.
 - Assuming $m^2/n \to 0$, then all the conclusions of the theorem remain valid with $J_m(x, \hat{P}_n)$ in place of $L_n(x)$.
 - ▶ This follows because if $m^2/n \to 0$, then (i) $m/n \to 0$ and (ii) with probability tending to 1, the approximation to $J_m(x, \hat{P}_n)$ is the same as the approximation to $L_n(x)$ because the probability of drawing all distinct observations tends to 1 (see formal proof in class notes).

RANDOMIZATION TESTS: MOTIVATION

EXAMPLE (SIGN CHANGES)

- Let X = (X₁,..., X₁₀) ~ P be an i.i.d. sample of size 10 where each X_i takes values in **R**, has a finite mean θ ∈ **R**, and has a distribution that is symmetric about θ.
- Let P be the collection of all distributions P satisfying these conditions.
- Consider testing

 $H_0: \theta = 0$ vs $H_1: \theta \neq 0$.

- \triangleright n = 10 so using an asymptotic approximation does not seem fruitful. At the same time, this is more general than the normal location model so exploiting normality is not possible.
- Suppose we decided to use the absolute value of \bar{X}_{10} to test the above hypothesis: $T(X) = |\bar{X}_{10}|$.
- Question: how do we compute a critical value that delivers a valid test? It turns out we can do this by exploiting symmetry.

EXAMPLE (SIGN CHANGES)

- Let ϵ_i take on either the value 1 or -1 for i = 1, ..., 10.
- Note that the distribution of $X = (X_1, ..., X_{10})$ is symmetric about 0 under the null hypothesis.
- Now consider a transformation $g = (\epsilon_1, \dots, \epsilon_{10})$ of \mathbf{R}^{10} that defines the following mapping

$$(X_1,\ldots,X_{10})\mapsto gX=(\epsilon_1X_1,\ldots,\epsilon_{10}X_{10}).$$

Let **G** be the $M = 2^{10}$ collection of such transformations. \Rightarrow the random variable X and gX have the same distribution under the null hypothesis.

- What this means is that we can get "new samples" from *P* by simply applying *g* to *X*. We can get a total of M = 1,024 samples and use these samples to simulate the distribution of T(X).
- This approach leads to a test that is valid in finite samples as the next section shows.

RANDOMIZATION TESTS: DEFINITION

- **Data:** $X \sim P$ taking values in a sample space \mathcal{X} . Note! P is now the distribution of the entire sample.
- Want to test the null hypothesis $H_0 : P \in \mathbf{P}_0$, where $\mathbf{P}_0 \subset \mathbf{P}$.
- Let **G** be a finite group of transformations $g : \mathcal{X} \mapsto \mathcal{X}$.
- ▶ The following assumption allows for a general test construction.

DEFINITION (RANDOMIZATION HYPOTHESIS)

Under the null hypothesis, the distribution of *X* is invariant under the transformations in **G**; that is, for every $g \in \mathbf{G}$, gX and *X* have the same distribution whenever $X \sim P \in \mathbf{P}_0$.

- Note: We do not require the alternative hypothesis parameter space to remain invariant under g in G. Only the space P₀ is assumed invariant.
- Note: a Group always include the identity transformation.

Тне Теят

Let T(X) be any test statistic for testing H_0 . Let $|\mathbf{G}| = M$. Given X = x, let

 $T^{(1)}(x) \leq T^{(2)}(x) \leq \cdots \leq T^{(k)}(x) \leq \cdots \leq T^{(M)}(x)$

be ordered values of T(gX) as g varies in **G**.

For a nominal level $\alpha \in (0, 1)$, let k be defined as

 $k = \lceil (1 - \alpha) M \rceil$

where $[M\alpha]$ denotes the smallest integer greater than or equal to $M\alpha$. Let

$$M^{+}(x) = \sum_{j=1}^{M} I\Big\{T^{(j)}(x) > T^{(k)}(x)\Big\} \text{ and } M^{0}(x) = \sum_{j=1}^{M} I\Big\{T^{(j)}(x) = T^{(k)}(x)\Big\}.$$

Now set

$$a(x) = \frac{M\alpha - M^{+}(x)}{M^{0}(x)} \quad \text{and} \quad \phi(x) = \begin{cases} 1 & T(x) > T^{(k)}(x) \\ a(x) & T(x) = T^{(k)}(x) \\ 0 & T(x) < T^{(k)}(x) \end{cases}$$

 $\blacktriangleright \quad \text{Note: } M^+(x) \leqslant M - k \leqslant M\alpha \text{ and } M^+(x) + M^0(x) \geqslant M - k + 1 > M\alpha \text{ imply } a(x) \in [0,1).$

(2)

COMMENTS

Under the randomization hypothesis, Hoeffding (1952) shows that:

1) this construction results in a test of **exact level** α ,

(2) this is true for **any choice** of test statistic T(X).

- This is possibly a randomized test if $|M\alpha|$ is not an integer and there are ties in the ordered values.
- Randomized tests are useful for theoretical purposes but not so useful for empirical practice.
- In practice, one may prefer not to randomized, and so the slightly conservative but not randomized test that rejects when $T(X) > T^{(k)}$ is level α :

 $\phi^{\rm nr}(x) = I\{T(x) > T^{(k)}(x)\}.$

THEOREM

THEOREM

Suppose that X has distribution P in \mathfrak{X} and the problem is to test the null hypothesis $P \in \mathbf{P}_0$. Let **G** be a finite group of transformations of \mathfrak{X} onto itself. Suppose the **randomization hypothesis** holds. Given a test statistic T(X), let ϕ be the randomization test as described above. Then, $\phi(X)$ is a similar α level test, i.e.,

 $E_P[\phi(X)] = \alpha, \text{ for all } P \in \mathbf{P}_0.$ (3)

Remark

The randomization test not only is of level α for all n, but also "similar", meaning that $E_P[\phi(X)]$ is never below α for any $P \in \mathbf{P}_0$.

PROOF

$$\begin{split} M^+(x) &= \sum_{j=1}^M I\{T^{(j)}(x) > T^{(k)}(x)\} \quad \text{and} \quad M^0(x) = \sum_{j=1}^M I\{T^{(j)}(x) = T^{(k)}(x)\},\\ a(x) &= \frac{M\alpha - M^+(x)}{M^0(x)} \quad \text{and} \quad \varphi(x) = \begin{cases} 1 & T(x) > T^{(k)}(x)\\ a(x) & T(x) = T^{(k)}(x)\\ 0 & T(x) < T^{(k)}(x) \end{cases}. \end{split}$$

SPECIAL CASE: PERMUTATION TESTS

Economics: popular application of randomization tests are the so-called permutation tests.

EXAMPLE (TWO SAMPLE PROBLEM)

Suppose that Y₁,..., Y_m are i.i.d. observations from a distribution P_Y and, independently, Z₁,..., Z_n are i.i.d. observations from a distribution P_Z.

We have two samples that are not paired, i.e., Z_1 and Y_1 do not correspond to the same "unit".

Here X is given by

$$X = (Y_1, \ldots, Y_m, Z_1, \ldots, Z_n)$$

Consider testing

$$H_0: P_Y = P_Z \text{ vs } H_1: P_Y \neq P_Z$$
.

• Group of transformations: Let N = m + n and for $x = (x_1, \dots, x_N) \in \mathbf{R}^N$, let $gx \in \mathbf{R}^N$ be

$$(x_1, \dots, x_N) \mapsto gx = (x_{\pi(1)}, \dots, x_{\pi(N)}),$$
 (4)

where $(\pi(1), \ldots, \pi(N))$ is a **permutation** of $\{1, \ldots, N\}$. Let **G** be the collection of all such *g*, so that M = N!. It follows that whenever $P_Y = P_Z$, *X* and *gX* have the **same distribution**.

COMMENTS

- In essence, each transformation g produces a new data set gx
- The first *m* elements are used as the Y sample and the remaining *n* as the Z sample to recompute the test statistic.
- If a test statistic is chosen that is invariant under permutations within each of the Y and Z samples, like

$$\bar{Y}_m - \bar{Z}_n$$
,

it is enough to consider the $\binom{N}{m}$ transformed data sets obtained by taking *m* observations from all *N* as the *Y* observations and the remaining *n* as the *Z* observations

- ▶ This is equivalent to using a subgroup G' of G.
- ▶ Note: The randomization hypothesis here holds when $P_Y = P_Z$.

PERMUTATION TESTS AND TREATMENT EFFECTS

EXAMPLE (TREATMENT EFFECTS)

Data: random sample $\{(Y_1, D_1), \ldots, (Y_n, D_n)\}$ from a randomized controlled trial where

Y = Y(1)D + (1 - D)Y(0)

is the observed outcome and $D \in \{0, 1\}$ is the exogenous treatment assignment.

Suppose that we are interested in testing the hypothesis that the distribution Q_0 of Y(0) is the same as the distribution Q_1 of Y(1):

$$H_0: Q_0 = Q_1 \text{ vs. } H_1: Q_0 \neq Q_1$$
 (5)

Under the null hypothesis in (5), it follows that the distribution of

 $\{(Y_1, D_1), \dots, (Y_n, D_n)\}$ and $\{(Y_1, D_{\pi(1)}), \dots, (Y_n, D_{\pi(n)})\}$

are the same for any permutation $(\pi(1), \ldots, \pi(n))$ of $\{1, \ldots, n\}$.

A permutation test that permutes individual from "treatment" to "control" (or from "control" to "treatment") delivers a test that is valid in finite samples.

PERMUTATION TESTS AND TREATMENT EFFECTS

Researchers: often interested in hypotheses about the average treatment effect (ATE):

 $H_0: E[Y(1)] = E[Y(0)] \text{ v.s. } H_1: E[Y(1)] \neq E[Y(0)].$ (6)

- One may still consider the permutation test that permutes the vector of treatment assignments.
- Unfortunately, such an approach does not lead to a valid test and may over-reject in finite samples.
- These test may be asymptotically valid though, after carefully choosing the test statistic.
- The distinction between the null hypothesis in (5) and that in (6) and their implications on the properties of permutation tests are often ignored in applied research.
- Randomization test are often dismissed in applied research due to the belief that the randomization hypothesis is too strong to hold in a real empirical application. However:
 - Randomization tests may be asymptotically valid even when P is not symmetric. See Bugni, Canay, and Shaikh (2018) for an example in the context of randomized controlled experiments.
 - Recent developments on "approximate" randomization tests show that they may be particularly useful in regression models with a fixed (and small) number of clusters, see Canay, Romano, Shaikh (2017).

THANK YOU FOR NOT FORCING ME TO TALK TO A BLACK SCREEN EVERY WEEK!