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Past & Future

LAST CLASS

I Solving and estimating sub-vectors of β
I Properties of LS
I Estimating V

TODAY
I Basic Principles for Inference
I Linear Regression when E[XU] 6= 0
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Inference

I Let (Y, X, U) be a random vector where Y and U take values in R and X ∈ Rk+1.
Assume further that the first component of X is a constant equal to one. Let β ∈ Rk+1 be such that

Y = X ′β+ U .

I Assume 1 E[XU] = 0, 2 E[XX ′] <∞, 3 no perfect collinearity in X, and 4 Var[XU] <∞.

I Under these assumptions, we established the asymptotic normality of the OLS estimator β̂n,

√
n(β̂n −β)

d→ N(0, V)

with
V = E[XX ′]−1E[XX ′U2]E[XX ′]−1 .

I We also described a consistent estimator V̂n of the limiting variance V.

I We now develop methods for inference under the assumption that 5 E[XX ′U2] is non-singular.
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Background

I Consider the following version of a testing problem. One observes an i.i.d. sample
Wi = (Yi, Xi), i = 1, . . . , n, from the dist. P ∈ P = {Pβ : β ∈ Rk+1} and wishes to test

H0 : β ∈ B0 versus H1 : β ∈ B1

where B0 and B1 form a partition of Rk+1.

I In our context, β will be the coefficient in a linear regression.

I Test function: a function
φn = φn(W1, . . . , Wn)

that returns the probability of rejecting the null hypothesis after observing W1, . . . , Wn.

I non-randomized tests: means that the function φn takes only two values:
I it takes the value 1 for rejection
I it takes the value 0 for non-rejection.



5

Background

COMMON CASE

Most often, φn is the indicator function of a certain test statistic Tn = Tn(W1, . . . , Wn) being greater than
some critical value cn(1 −α); i.e.:

φn = I {Tn > cn(1 −α)} .

I Examples of tests that take the above form as: Wald tests, quasi-likelihood ratio tests, and Lagrange
multiplier tests.

I The critical value could be deterministic (e.g., the quantile of a normally distributed random variable)
or could be a random variable itself (e.g., the bootstrap). We will cover both cases in class.

I The test is said to be (pointwise) asymptotically of level α (or consistent in levels) if,

lim sup
n→∞ EPβ

[φn] = lim sup
n→∞ Pβ{φn = 1} 6 α , ∀β ∈ B0 .
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Tests of A Single Linear Restriction

I Let r be a nonzero (k + 1)-dimensional vector and c be a scalar. Consider testing

H0 : r ′β = c versus H1 : r ′β 6= c .

I Important case: r selects the sth component of β,

H0 : βs = c versus H1 : βs 6= c .

I The CMT implies:
√

n(r ′β̂n − r ′β) d→ N(0, r ′Vr) as n→∞ .

I Since V is non-singular, r ′Vr > 0. The CMT implies that r ′V̂nr P→ r ′Vr as n→∞.

I A natural choice of test statistic for this problem is the absolute value of the t-statistic,

tstat =

√
n(r ′β̂n − c)√

r ′V̂nr
,

so that Tn = |tstat|. When r selects the sth component of β, we get r ′V̂nr = V̂n,[s,s], i.e., the sth
diagonal element of V̂n.
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Tests of A Single Linear Restriction

Critical value: A suitable choice of critical value for this test statistic is z1−α
2

.
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Comments

I The construction may be modified in a straightforward fashion for testing “one-sided” hypotheses, i.e.,

H0 : r ′β 6 c versus H1 : r ′β > c .

I By using the duality between hypothesis testing and the construction of confidence regions, we may
construct a confidence region of level α for each component βs of β as

Cn =

c ∈ R :

∣∣∣∣∣∣
√

n(β̂n,s − c)√
V̂n,[s,s]

∣∣∣∣∣∣ 6 z1−α
2


=

β̂n,s − z1−α
2

√
V̂n,[s,s]

n
, β̂n,s + z1−α

2

√
V̂n,[s,s]

n

 .

I This confidence region satisfies
P{βs ∈ Cn}→ 1 −α

as n→∞. It is straightforward to modify this to construct a confidence region of level α for r ′β.
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CI: Graphical Illustration
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QUESTIONS?
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Tests of Multiple Linear Restrictions

I Let R be a p× (k + 1)-dimensional matrix and c be a p-dimensional vector. Consider testing,

H0 : Rβ = c versus H1 : Rβ 6= c .

I No redundant equations: the rows of R are linearly independent.

I The CMT implies that
√

n(Rβ̂n − Rβ) d→ N(0, RVR ′) asn→∞ .

I Because V is assumed to be non-singular, RVR ′ is also non-singular.
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Tests of Multiple Linear Restrictions

I From our earlier results, as n→∞
n(Rβ̂n − Rβ) ′(RV̂nR ′)−1(Rβ̂n − Rβ) d→ χ2

p

I Test statistic: A natural choice is Tn = n(Rβ̂n − c) ′(RV̂nR ′)−1(Rβ̂n − c)

I Critical value: A suitable choice is cp,1−α - the 1 −α quantile of χ2
p.

I The test that rejects H0 when Tn > cp,1−α is consistent in levels.

I By duality, we may construct a confidence region of level α for β as

Cn = {c ∈ Rk+1 : n(β̂n − c) ′V̂−1
n (β̂n − c) 6 ck+1,1−α} .

I This confidence region satisfies

P{β ∈ Cn}→ 1 −α as n→∞ .
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Tests of Nonlinear Restrictions

I Consider testing
H0 : f (β) = 0 versus H1 : f (β) 6= 0 ,

where f : Rk+1 → Rp, at level α.

I Assume that f is continuously differentiable at β and denote by Dβf (β) the p× (k + 1)-dimensional
matrix of partial derivatives of f evaluated at β.

I Assume that the rows of Dβf (β) are linearly independent.

I The Delta Method implies that
√

n(f (β̂n) − f (β)) d→ N(0, Dβf (β)VDβf (β) ′) as n→∞ .

The CMT implies that

Dβf (β̂n)V̂nDβf (β̂n)
′ P→ Dβf (β)VDβf (β) ′ as n→∞ .

I Straightforward to develop a test and/or a confidence region in this setting following steps as before.
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QUESTIONS?
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Linear Regression when E[XU] 6= 0

I Let (Y, X, U) be a random vector where Y and U take values in R and X ∈ Rk+1.
Assume further that X = (X0, X1, . . . , Xk)

′ with X0 = 1 and let β = (β0,β1, . . . ,βk)
′ ∈ Rk+1 be

such that
Y = X ′β+ U .

I We do not assume E[XU] = 0. Any Xj such that E[XjU] = 0 is said to be exogenous; any Xj such
that E[XjU] 6= 0 is said to be endogenous. Normalizing β0 if necessary, we view X0 as exogenous.

I Note that it must be the case that we are interpreting this regression as a causal model. WHY?
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Linear Regression when E[XU] 6= 0

Question: What about OLS in this setting?
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Omitted Variables

I Suppose k = 2, so
Y = β0 +β1X1 +β2X2 + U .

I We are interpreting this regression as a causal model and are willing to assume that E[XU] = 0 (i.e.,
E[U] = E[X1U] = E[X2U] = 0), but X2 is unobserved. An example of a situation like this is when Y
is wages, X1 is education, and X2 is ability.

I Given unobserved ability, we may rewrite this model as:
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Omitted Variables

Y = β∗0 +β∗1 X1 + U∗ with


β∗0 = β0 +β2E[X2]

β∗1 = β1

U∗ = β2(X2 − E[X2]) + U .
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Measurement Error

I Partition X into X0 and X1, where X0 = 1 and X1 takes values in Rk. Partition β analogously.

Y = β0 + X ′1β1 + U .

I We are interpreting this regression as a causal model and are willing to assume that E[XU] = 0, but
X1 is not observed. Instead, X̂1 is observed, where

X̂1 = X1 + V .

I Assume a E[V] = 0, b Cov[X1, V] = 0, and c Cov[U, V] = 0.

I We may therefore rewrite this model as:
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Measurement Error

Y = β∗0 + X̂ ′1β
∗
1 + U∗ with


β∗0 = β0

β∗1 = β1

U∗ = −V ′β1 + U .
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Simultaneity

I Classical example: supply and demand. Let Qs be quantity supplied and
Qd be quantity demanded. As a function of (non-market clearing) price P̃, assume

Qd = βd
0 +β

d
1P̃ + Ud

Qs = βs
0 +β

s
1P̃ + Us ,

where E[Us] = E[Ud] = E[UsUd] = 0. We observe (Q, P), where Q and P are such that the market
clears, i.e., Qs = Qd. This implies:
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QUESTIONS?
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