ECON 480-3 LECTURE 3: BASIC INFERENCE & ENDOGENEITY

Ivan A. Canay Northwestern University

LAST CLASS

- Solving and estimating sub-vectors of β
- Properties of LS
- ► Estimating V

TODAY

- Basic Principles for Inference
- Linear Regression when $E[XU] \neq 0$



INFERENCE

Let (Y, X, U) be a random vector where Y and U take values in **R** and $X \in \mathbf{R}^{k+1}$. Assume further that the first component of X is a constant equal to one. Let $\beta \in \mathbf{R}^{k+1}$ be such that

 $Y = X'\beta + U .$

▶ Assume 1 E[XU] = 0, 2 $E[XX'] < \infty$, 3 no perfect collinearity in X, and 4 $Var[XU] < \infty$.

• Under these assumptions, we established the asymptotic normality of the OLS estimator $\hat{\beta}_n$,

$$\sqrt{n}(\hat{\beta}_n - \beta) \xrightarrow{d} N(0, \mathbb{V})$$

with

$$\mathbb{V} = E[XX']^{-1}E[XX'U^2]E[XX']^{-1} .$$

- We also described a consistent estimator $\hat{\mathbb{V}}_n$ of the limiting variance \mathbb{V} .
- We now develop methods for inference under the assumption that $(5) E[XX'U^2]$ is non-singular.

BACKGROUND

Consider the following version of a testing problem. One observes an i.i.d. sample $W_i = (Y_i, X_i), i = 1, ..., n$, from the dist. $P \in \mathbf{P} = \{P_\beta : \beta \in \mathbf{R}^{k+1}\}$ and wishes to test

 $H_0: \beta \in \mathbf{B}_0$ versus $H_1: \beta \in \mathbf{B}_1$

where \mathbf{B}_0 and \mathbf{B}_1 form a partition of \mathbf{R}^{k+1} .

- ln our context, β will be the coefficient in a linear regression.
- Test function: a function

 $\phi_n = \phi_n(W_1, \ldots, W_n)$

that returns the probability of rejecting the null hypothesis after observing W_1, \ldots, W_n .

- **non-randomized tests:** means that the function ϕ_n takes only two values:
 - it takes the value 1 for rejection
 - ▶ it takes the value 0 for non-rejection.

COMMON CASE

Most often, ϕ_n is the indicator function of a certain test statistic $T_n = T_n(W_1, \dots, W_n)$ being greater than some critical value $c_n(1 - \alpha)$; i.e.:

$$\phi_n = I\{T_n > c_n(1-\alpha)\} .$$

- Examples of tests that take the above form as: Wald tests, quasi-likelihood ratio tests, and Lagrange multiplier tests.
- The critical value could be deterministic (e.g., the quantile of a normally distributed random variable) or could be a random variable itself (e.g., the bootstrap). We will cover both cases in class.
- The test is said to be (pointwise) asymptotically of level α (or consistent in levels) if,

$$\limsup_{n \to \infty} E_{P_{\beta}} \left[\varphi_n \right] = \limsup_{n \to \infty} P_{\beta} \{ \varphi_n = 1 \} \leqslant \alpha \;, \quad \forall \beta \in \mathbf{B}_0 \;.$$

TESTS OF A SINGLE LINEAR RESTRICTION

Let *r* be a nonzero (k + 1)-dimensional vector and *c* be a scalar. Consider testing $H_0: r'\beta = c \text{ versus } H_1: r'\beta \neq c.$

Important case: r selects the sth component of β,

 $H_0: \beta_s = c \text{ versus } H_1: \beta_s \neq c$.

► The CMT implies: $\sqrt{n}(r'\hat{\beta}_n - r'\beta) \xrightarrow{d} N(0, r'\mathbb{V}r)$ as $n \to \infty$.

Since \mathbb{V} is non-singular, $r'\mathbb{V}r > 0$. The CMT implies that $r'\hat{\mathbb{V}}_n r \xrightarrow{P} r'\mathbb{V}r$ as $n \to \infty$.

A natural choice of test statistic for this problem is the absolute value of the t-statistic,

$$t_{
m stat} = rac{\sqrt{n}(r'\hat{eta}_n-c)}{\sqrt{r'\hat{\mathbb{V}}_n r}} \; ,$$

so that $T_n = |t_{\text{stat}}|$. When *r* selects the *s*th component of β , we get $r'\hat{\mathbb{V}}_n r = \hat{\mathbb{V}}_{n,[s,s]}$, i.e., the *s*th diagonal element of $\hat{\mathbb{V}}_n$.

TESTS OF A SINGLE LINEAR RESTRICTION

Critical value: A suitable choice of critical value for this test statistic is $z_{1-\frac{\alpha}{2}}$.

COMMENTS

> The construction may be modified in a straightforward fashion for testing "one-sided" hypotheses, i.e.,

 $H_0: r'\beta \leqslant c \text{ versus } H_1: r'\beta > c$.

By using the duality between hypothesis testing and the construction of confidence regions, we may construct a confidence region of level α for each component β_s of β as

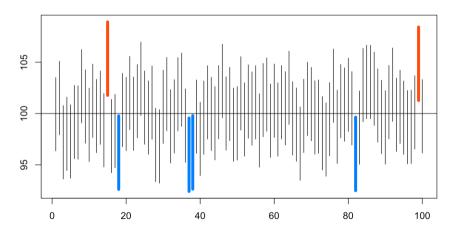
$$C_n = \left\{ c \in \mathbf{R} : \left| \frac{\sqrt{n}(\hat{\beta}_{n,s} - c)}{\sqrt{\hat{\mathbb{V}}_{n,[s,s]}}} \right| \leq z_{1-\frac{\alpha}{2}} \right\}$$
$$= \left\{ \hat{\beta}_{n,s} - z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{\mathbb{V}}_{n,[s,s]}}{n}}, \hat{\beta}_{n,s} + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{\mathbb{V}}_{n,[s,s]}}{n}} \right\}$$

This confidence region satisfies

$$P\{\beta_s \in C_n\} \to 1-\alpha$$

as $n \to \infty$. It is straightforward to modify this to construct a confidence region of level α for $r'\beta$.

CI: GRAPHICAL ILLUSTRATION



100 random 95% confidence intervals where μ = 100

Note: 6% of the random confidence intervals do not contain μ =100

TESTS OF MULTIPLE LINEAR RESTRICTIONS

Let R be a $p \times (k+1)$ -dimensional matrix and c be a p-dimensional vector. Consider testing,

 $H_0: R\beta = c$ versus $H_1: R\beta \neq c$.

- No redundant equations: the rows of *R* are linearly independent.
- The CMT implies that

 $\sqrt{n}(R\hat{\beta}_n - R\beta) \xrightarrow{d} N(0, R\mathbb{V}R') \quad \operatorname{as} n \to \infty.$

▶ Because V is assumed to be non-singular, RVR' is also non-singular.

Tests of Multiple Linear Restrictions

From our earlier results, as $n \to \infty$

$$n(R\hat{\beta}_n - R\beta)'(R\hat{\mathbb{V}}_n R')^{-1}(R\hat{\beta}_n - R\beta) \xrightarrow{d} \chi_p^2$$

- **Test statistic:** A natural choice is $T_n = n(R\hat{\beta}_n c)'(R\hat{\mathbb{V}}_n R')^{-1}(R\hat{\beta}_n c)$
- **Critical value:** A suitable choice is $c_{p,1-\alpha}$ the $1-\alpha$ quantile of χ_p^2 .
- ► The test that rejects H_0 when $T_n > c_{p,1-\alpha}$ is consistent in levels.
- **b** By duality, we may construct a confidence region of level α for β as

$$C_n = \{c \in \mathbf{R}^{k+1} : n(\hat{\beta}_n - c)' \hat{\mathbb{V}}_n^{-1}(\hat{\beta}_n - c) \leq c_{k+1,1-\alpha} \}$$

This confidence region satisfies

$$P\{\beta \in C_n\} \to 1-\alpha \quad \text{as} \quad n \to \infty .$$

TESTS OF NONLINEAR RESTRICTIONS

Consider testing

 $H_0: f(\beta) = 0$ versus $H_1: f(\beta) \neq 0$,

where $f : \mathbf{R}^{k+1} \to \mathbf{R}^p$, at level α .

- Assume that f is continuously differentiable at β and denote by $D_{\beta}f(\beta)$ the $p \times (k+1)$ -dimensional matrix of partial derivatives of f evaluated at β .
- Assume that the rows of $D_{\beta}f(\beta)$ are linearly independent.
- The Delta Method implies that

$$\sqrt{n}(f(\hat{\beta}_n) - f(\beta)) \xrightarrow{d} N(0, D_\beta f(\beta) \mathbb{V} D_\beta f(\beta)') \quad \text{ as } \quad n \to \infty \; .$$

The CMT implies that

$$D_{\beta}f(\hat{\beta}_n)\hat{\mathbb{V}}_n D_{\beta}f(\hat{\beta}_n)' \xrightarrow{P} D_{\beta}f(\beta)\mathbb{V}D_{\beta}f(\beta)' \text{ as } n \to \infty.$$

Straightforward to develop a test and/or a confidence region in this setting following steps as before.

LINEAR REGRESSION WHEN $E[XU] \neq 0$

► Let (Y, X, U) be a random vector where Y and U take values in **R** and $X \in \mathbf{R}^{k+1}$. Assume further that $X = (X_0, X_1, \dots, X_k)'$ with $X_0 = 1$ and let $\beta = (\beta_0, \beta_1, \dots, \beta_k)' \in \mathbf{R}^{k+1}$ be such that

$$Y = X'\beta + U \; .$$

- ► We do not assume E[XU] = 0. Any X_j such that $E[X_jU] = 0$ is said to be *exogenous*; any X_j such that $E[X_jU] \neq 0$ is said to be *endogenous*. Normalizing β_0 if necessary, we view X_0 as exogenous.
- Note that it must be the case that we are interpreting this regression as a causal model. WHY?

Question: What about OLS in this setting?

OMITTED VARIABLES

Suppose k = 2, so

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + U \,.$$

- We are interpreting this regression as a causal model and are willing to assume that E[XU] = 0 (i.e., $E[U] = E[X_1U] = E[X_2U] = 0$), but X_2 is unobserved. An example of a situation like this is when Y is wages, X_1 is education, and X_2 is ability.
- Given unobserved ability, we may rewrite this model as:

Omitted Variables

$$Y = \beta_0^* + \beta_1^* X_1 + U^* \quad \text{with} \quad \begin{cases} \beta_0^* &= \beta_0 + \beta_2 E[X_2] \\ \beta_1^* &= \beta_1 \\ U^* &= \beta_2 (X_2 - E[X_2]) + U \end{cases}.$$

MEASUREMENT ERROR

Partition X into X_0 and X_1 , where $X_0 = 1$ and X_1 takes values in \mathbf{R}^k . Partition β analogously.

 $Y = \beta_0 + X_1' \beta_1 + U \; .$

We are interpreting this regression as a causal model and are willing to assume that E[XU] = 0, but X_1 is *not* observed. Instead, \hat{X}_1 is observed, where

$$\hat{X}_1 = X_1 + V \,.$$

- Assume (a) E[V] = 0, (b) $Cov[X_1, V] = 0$, and (c) Cov[U, V] = 0.
- We may therefore rewrite this model as:

MEASUREMENT ERROR

$$Y = \beta_0^* + \hat{X}_1' \beta_1^* + U^* \quad \text{with} \quad \begin{cases} \beta_0^* &= \beta_0 \\ \beta_1^* &= \beta_1 \\ U^* &= -V' \beta_1 + U \end{cases}$$

SIMULTANEITY

Classical example: supply and demand. Let Q^s be quantity supplied and Q^d be quantity demanded. As a function of (non-market clearing) price \tilde{P} , assume

$$egin{array}{rcl} Q^d&=η_0^d+eta_1^d ilde P+U^d\ Q^s&=η_0^s+eta_1^s ilde P+U^s\ , \end{array}$$

where $E[U^s] = E[U^d] = E[U^sU^d] = 0$. We observe (Q, P), where Q and P are such that the market clears, i.e., $Q^s = Q^d$. This implies:

