ECON 480-3 LECTURE 2: MORE LINEAR REGRESSION

Ivan A. Canay Northwestern University

LAST CLASS

- Interpretation of β in linear regression
- **b** Solving and estimating β

TODAY

- Solving and estimating sub-vectors of β
- Properties of LS
- ► Estimating V

SUB-VECTORS OF β

Let (Y, X, U) be a random vector where Y and U take values in \mathbf{R} and X takes values in \mathbf{R}^{k+1} . Let $\beta = (\beta_0, \beta_1, \dots, \beta_k)' \in \mathbf{R}^{k+1}$ be such that

$$Y = X'\beta + U .$$

Partition X into X_1 and X_2 , where X_1 takes values in \mathbf{R}^{k_1} and X_2 takes values in \mathbf{R}^{k_2} . Partition β into β_1 and β_2 analogously. In this notation,

$$Y = X_1' \beta_1 + X_2' \beta_2 + U \; .$$

Our preceding results imply that

$$\begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} E[X_1X_1'] & E[X_1X_2'] \\ E[X_2X_1'] & E[X_2X_2'] \end{pmatrix}^{-1} \begin{pmatrix} E[X_1Y] \\ E[X_2Y] \end{pmatrix} .$$

Question: Can we derive formulae for β_1 and β_2 that admit some interesting interpretations?

RESULT BASED ON BLP

BLP: for a random variable A and a random vector B, denote by BLP(A|B) the best linear predictor of A given B, i.e.

 $\mathsf{BLP}(A|B) \equiv B'E[BB']^{-1}E[BA] \; .$

If A is a random vector, then define BLP(A|B) component-wise.

- ▶ Define $\tilde{Y} = Y \mathsf{BLP}(Y|X_2)$ and $\tilde{X}_1 = X_1 \mathsf{BLP}(X_1|X_2)$.
- Consider the linear regression

$$ilde{Y} = ilde{X}_1' ilde{eta}_1 + ilde{U}$$
 where $E[ilde{X}_1 ilde{U}] = 0$

(as, for example, in the second interpretation of the linear regression model described before).

CLAIM

$$\tilde{\beta}_1 = E[\tilde{X}_1 \tilde{X}_1']^{-1} E[\tilde{X}_1 \tilde{Y}] = \beta_1$$

RESULT BASED ON BLP

Notation: $BLP(A|B) \equiv B'E[BB']^{-1}E[BA]$ and $\tilde{A} = A - BLP(A|B)$.

NTERPRETATION

- β₁ in the linear regression of Y on X₁ and X₂ is equal to the coefficient in a linear regression of the error term from a linear regression of Y on X₂ on the error terms from a linear regression of the components of X₁ on X₂.
- This formalizes the common description of β_1 as the "effect" of X_1 on Y after "controlling for X_2 ."
- ► Take $X_2 = constant$ and $X_1 \in \mathbf{R}$. Then $\tilde{Y} = Y E[Y]$ and $\tilde{X}_1 = X_1 E[X_1]$. Hence, $\beta_1 = E[(X_1 - E[X_1])(X_1 - E[X_1])']^{-1}E[(X_1 - E[X_1])(Y - E[Y])]$ $= \frac{Cov[X_1, Y]}{Var[X_1]}.$
- lf we use our formula to interpret the coefficient β_i , we obtain

$$B_j = \frac{\text{Cov}[\tilde{X}_j, Y]}{\text{Var}[\tilde{X}_j]} .$$
(1)

 \Rightarrow each coefficient in a multivariate regression is the bivariate slope coefficient for the corresponding regressor, after "partialling out" all the other variables in the model.

Estimating Sub-Vectors of β

Partition X and β as before and consider

 $Y = X_1'\beta_1 + X_2'\beta_2 + U \ .$

- Let $X_1 = (X_{1,1}, \dots, X_{1,n})'$ and $X_2 = (X_{2,1}, \dots, X_{2,n})'$.
- Denote by P₁ the projection matrix onto the column space of X₁ and P₂ the projection matrix onto the column space of X₂.
- Define $\mathbb{M}_1 = \mathbb{I} \mathbb{P}_1$ and $\mathbb{M}_2 = \mathbb{I} \mathbb{P}_2$.
- Denote by $\hat{\beta}_n = (\hat{\beta}'_{1,n}, \hat{\beta}'_{2,n})'$ the LS estimator of β in a regression of Y on X.
- We now derive estimation counterparts to the previous results about solving for sub-vectors of β . That is, $\hat{\beta}_{1,n}$ can also be obtained from a "residualized" regression.

FRISCH-WAUGH-LOVELL DECOMPOSITION

Start by noticing that: $\mathbb{Y} = \mathbb{X}_1 \hat{\beta}_{1,n} + \mathbb{X}_2 \hat{\beta}_{2,n} + \hat{\mathbb{U}}$ and recall that $\mathbb{M}_2 = \mathbb{I} - \mathbb{P}_2$.

PROPERTIES OF LS

Let (Y, X, U) be a random vector where Y and U take values in **R** and X takes values in \mathbf{R}^{k+1} . Assume further that the first component of X is a constant equal to one. Let $\beta \in \mathbf{R}^{k+1}$ be such that

 $Y = X'\beta + U .$

- Suppose that 1 E[XU] = 0, $2 E[XX'] < \infty$, and that 3 there is no perfect collinearity in X.
- Denote by *P* the marginal distribution of (Y, X).
- Let $(Y_1, X_1), \ldots, (Y_n, X_n)$ be an i.i.d. sample of random vectors with distribution *P*.
- The properties we will discuss today are
 - 1. Bias
 - 2. Gauss-Markov Theorem
 - 3. Consistency
 - 4. Asymptotic Normality

CLAIM

Under the assumption $(1)^{*} E[U|X] = 0$ (i.e., $E[Y|X] = X'\beta$) it follows that $E[\hat{\beta}_n] = \beta$.

GAUSS MARKOV THEOREM

Suppose 1'
$$E[U|X] = 0$$
 and that 4' $Var[U|X] = \sigma^2$.

- When Var[U|X] is constant (and therefore does not depend on X) we say that U is *homoskedastic*. Otherwise, we say that U is *heteroskedastic*.
- **Guass-Markov Theorem:** under these assumptions the OLS estimator is "best" in the sense that it has the "smallest" value of $Var[\mathbb{A}' \mathbb{Y} | X_1, \ldots, X_n]$ among all estimators of the form

$$\mathbb{A}'\mathbb{Y}$$

for some matrix $\mathbb{A} = \mathbb{A}(X_1, \ldots, X_n)$ satisfying

 $E[\mathbb{A}'\mathbb{Y}|X_1,\ldots,X_n]=\beta$.

- "smallest" is understood as the partial order obtained by $B \ge \tilde{B}$ iff $B \tilde{B}$ is positive semi-definite.
- This class of estimators includes the OLS estimator as a special case (by setting A' = (X'X)⁻¹X'). The property is sometimes expressed as saying that OLS is the "best linear unbiased estimator (BLUE)" of β under these assumptions.

GMT: REFORMULATING WHAT WE NEED TO SHOW

The estimator is $\mathbb{A}'\mathbb{Y}$ for $\mathbb{A} = \mathbb{A}(X_1, \dots, X_n)$ and satisfies $E[\mathbb{A}'\mathbb{Y}|X_1, \dots, X_n] = \beta$.

GMT: COMPLETING THE ARGUMENT

Want to show $\mathbb{A}'\mathbb{A} - (\mathbb{X}'\mathbb{X})^{-1}$ is positive semi-definite for any \mathbb{A} satisfying $\mathbb{A}'\mathbb{X} = \mathbb{I}$.

CONSISTENCY

Under our three main assumptions, $\hat{\beta}_n \xrightarrow{P} \beta$ as $n \to \infty$

Asymptotic Normality

Suppose in addition to (1)-(3) that (4) $Var[XU] = E[XX'U^2] < \infty$. Then, as $n \to \infty$,

 $\sqrt{n}(\hat{\beta}_n - \beta) \xrightarrow{d} N(0, \mathbb{V})$ where $\mathbb{V} = E[XX']^{-1}E[XX'U^2]E[XX']^{-1}$.

Estimation $\mathbb V$

Inference: often requires a consistent estimator of

 $\mathbb{V} = E[XX']^{-1}E[XX'U^2]E[XX']^{-1} .$

- Note that \mathbb{V} has the so-called sandwich form.
- "bread": can be consistently estimated as before.
- "meat": consider the case where 1' E[U|X] = 0 and $4' Var[U|X] = \sigma^2$ (i.e., homoskedasticity). Under these conditions,

$$\operatorname{Var}[XU] = E[XX'U^2] = E[XX']\sigma^2 .$$

Hence,

 $\mathbb{V} = E[XX']^{-1}\sigma^2 \; .$

A natural choice of estimator is therefore

$$\hat{Y}_n = \left(rac{1}{n}\sum_{1\leqslant i\leqslant n}X_iX_i'
ight)^{-1}\hat{\sigma}_n^2$$
 ,

where $\hat{\sigma}_n^2$ is a consistent estimator of σ^2 .

Estimation ${\mathbb V}$ under homoskedasticity

A natural choice for an estimator of σ^2 is $\hat{\sigma}_n^2 = \frac{1}{n} \sum_{1 \le i \le n} \hat{U}_i^2$. Claim: $\hat{\sigma}_n^2 \xrightarrow{P} \sigma^2$.

Estimation $\mathbb V$ via HC estimator

When we do not assume $Var[U|X] = \sigma^2$, a natural choice of estimator is

$$\hat{\mathbb{V}}_n = \left(\frac{1}{n} \sum_{1 \le i \le n} X_i X_i'\right)^{-1} \left(\frac{1}{n} \sum_{1 \le i \le n} X_i X_i' \hat{\mathcal{U}}_i^2\right) \left(\frac{1}{n} \sum_{1 \le i \le n} X_i X_i'\right)^{-1} .$$
(2)

Later in the class we will prove that this estimator is consistent, i.e.,

$$\hat{\mathbb{V}}_n \stackrel{P}{\rightarrow} \mathbb{V} \text{ as } n \to \infty$$
 ,

regardless of the functional form of Var[U|X]. Only requires (1) to (4)

- ▶ This estimator is called the Heteroskedasticity Consistent (HC) estimator of V.
- The standard errors used to construct *t*-statistics are the square roots of the diagonal elements of \hat{W}_n , and this is the topic of the third part of this class.
- Important: by default, Stata and R report homoskedastic-only standard errors.

MEASURES OF FIT

Common Practice: report the measure of fit

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{SSR}{TSS} \; , \qquad$$

where

$$TSS = \sum_{1 \leq i \leq n} (Y_i - \bar{Y}_n)^2$$

$$ESS = \sum_{1 \leq i \leq n} (\hat{Y}_i - \bar{Y}_n)^2$$

$$SSR = \sum_{1 \leq i \leq n} \hat{U}_i^2.$$

- ▶ $R^2 = 1$ if and only if SSR = 0, i.e., $\hat{U}_i = 0$ for all $1 \leq i \leq n$.
- ► $R^2 = 0$ if and only if ESS = 0, i.e., $\hat{Y}_i = \bar{Y}_n$ for all $1 \leq i \leq n$.

- View ¹/_n ∑_{1≤i≤n}(Y_i − Ȳ_n)² as an estimator of Var[Y_i].
 View ¹/_n ∑_{1≤i≤n} Û²_i as an estimator of Var[U_i].
 - \blacktriangleright R^2 may be then viewed as an estimator of

$$1 - \frac{\operatorname{Var}[U_i]}{\operatorname{Var}[Y_i]} \; .$$

Replacing these estimators with their unbiased counterparts yields "adjusted" R^2 ,

$$\bar{R}^2 = 1 - \frac{n-1}{n-k-1} \frac{SSR}{TSS} \; .$$

 R² always increases with the inclusion of an additional regressor, whereas R
² may not.