ECDN 480-3
 LECTURE 2: MORE LINEAR REGRESSION

Ivan A. Canay
Northwestern University

LAST CLASS

- Interpretation of β in linear regression
- Solving and estimating β

TODAY

- Solving and estimating sub-vectors of β
- Properties of LS
- Estimating \mathbb{V}

Let (Y, X, U) be a random vector where Y and U take values in \mathbf{R} and X takes values in \mathbf{R}^{k+1}. Let $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)^{\prime} \in \mathbf{R}^{k+1}$ be such that

$$
Y=X^{\prime} \beta+U
$$

Partition X into X_{1} and X_{2}, where X_{1} takes values in $\mathbf{R}^{k_{1}}$ and X_{2} takes values in $\mathbf{R}^{k_{2}}$. Partition β into β_{1} and β_{2} analogously. In this notation,

$$
Y=X_{1}^{\prime} \beta_{1}+X_{2}^{\prime} \beta_{2}+U
$$

Our preceding results imply that

$$
\binom{\beta_{1}}{\beta_{2}}=\left(\begin{array}{ll}
E\left[X_{1} X_{1}^{\prime}\right] & E\left[X_{1} X_{2}^{\prime}\right] \\
E\left[X_{2} X_{1}^{\prime}\right] & E\left[X_{2} X_{2}^{\prime}\right]
\end{array}\right)^{-1}\binom{E\left[X_{1} Y\right]}{E\left[X_{2} Y\right]}
$$

Question: Can we derive formulae for β_{1} and β_{2} that admit some interesting interpretations?

Result based on blp

- BLP: for a random variable A and a random vector B, denote by $\operatorname{BLP}(A \mid B)$ the best linear predictor of A given B, i.e.

$$
\operatorname{BLP}(A \mid B) \equiv B^{\prime} E\left[B B^{\prime}\right]^{-1} E[B A] .
$$

If A is a random vector, then define $\operatorname{BLP}(A \mid B)$ component-wise.

- Define $\tilde{Y}=Y-\operatorname{BLP}\left(Y \mid X_{2}\right)$ and $\tilde{X}_{1}=X_{1}-\operatorname{BLP}\left(X_{1} \mid X_{2}\right)$.
- Consider the linear regression

$$
\tilde{Y}=\tilde{X}_{1}^{\prime} \tilde{\beta}_{1}+\tilde{U} \quad \text { where } \quad E\left[\tilde{X}_{1} \tilde{U}\right]=0
$$

(as, for example, in the second interpretation of the linear regression model described before).
CLAIM

$$
\tilde{\beta}_{1}=E\left[\tilde{X}_{1} \tilde{X}_{1}^{\prime}\right]^{-1} E\left[\tilde{X}_{1} \tilde{Y}\right]=\beta_{1}
$$

Result Based on Blp

Notation: $\operatorname{BLP}(A \mid B) \equiv B^{\prime} E\left[B B^{\prime}\right]^{-1} E[B A]$ and $\tilde{A}=A-\operatorname{BLP}(A \mid B)$.

- β_{1} in the linear regression of Y on X_{1} and X_{2} is equal to the coefficient in a linear regression of the error term from a linear regression of Y on X_{2} on the error terms from a linear regression of the components of X_{1} on X_{2}.
- This formalizes the common description of β_{1} as the "effect" of X_{1} on Y after "controlling for X_{2}."
- Take $X_{2}=$ constant and $X_{1} \in \mathbf{R}$. Then $\tilde{Y}=Y-E[Y]$ and $\tilde{X}_{1}=X_{1}-E\left[X_{1}\right]$. Hence,

$$
\begin{aligned}
\beta_{1} & =E\left[\left(X_{1}-E\left[X_{1}\right]\right)\left(X_{1}-E\left[X_{1}\right]\right)^{\prime}\right]^{-1} E\left[\left(X_{1}-E\left[X_{1}\right]\right)(Y-E[Y])\right] \\
& =\frac{\operatorname{Cov}\left[X_{1}, Y\right]}{\operatorname{Var}\left[X_{1}\right]} .
\end{aligned}
$$

- If we use our formula to interpret the coefficient β_{j}, we obtain

$$
\begin{equation*}
\beta_{j}=\frac{\operatorname{Cov}\left[\tilde{X}_{j}, Y\right]}{\operatorname{Var}\left[\tilde{X}_{j}\right]} \tag{1}
\end{equation*}
$$

\Rightarrow each coefficient in a multivariate regression is the bivariate slope coefficient for the corresponding regressor, after "partialling out" all the other variables in the model.
$\overline{3}$

Estimating Suib-Vectidrs df β

- Partition X and β as before and consider

$$
Y=X_{1}^{\prime} \beta_{1}+X_{2}^{\prime} \beta_{2}+U
$$

Let $\mathbb{X}_{1}=\left(X_{1,1}, \ldots, X_{1, n}\right)^{\prime}$ and $\mathbb{X}_{2}=\left(X_{2,1}, \ldots, X_{2, n}\right)^{\prime}$.

- Denote by \mathbb{P}_{1} the projection matrix onto the column space of \mathbb{X}_{1} and \mathbb{P}_{2} the projection matrix onto the column space of \mathbb{X}_{2}.
- Define $\mathbb{M}_{1}=\mathbb{I}-\mathbb{P}_{1}$ and $\mathbb{M}_{2}=\mathbb{I}-\mathbb{P}_{2}$.
- Denote by $\hat{\beta}_{n}=\left(\hat{\beta}_{1, n}^{\prime}, \hat{\beta}_{2, n}^{\prime}\right)^{\prime}$ the LS estimator of β in a regression of Y on X.
- We now derive estimation counterparts to the previous results about solving for sub-vectors of β. That is, $\hat{\beta}_{1, n}$ can also be obtained from a "residualized" regression.

Frisch-W/augh-Lovell Decomposition

Start by noticing that: $\mathbb{Y}=\mathbb{X}_{1} \hat{\beta}_{1, n}+\mathbb{X}_{2} \hat{\beta}_{2, n}+\hat{\mathbb{U}}$ and recall that $\mathbb{M}_{2}=\mathbb{I}-\mathbb{P}_{2}$.
$\overline{3}$

- Let (Y, X, U) be a random vector where Y and U take values in \mathbf{R} and X takes values in \mathbf{R}^{k+1}. Assume further that the first component of X is a constant equal to one. Let $\beta \in \mathbf{R}^{k+1}$ be such that

$$
Y=X^{\prime} \beta+U .
$$

- Suppose that (1) $E[X U]=0$, (2) $E\left[X X^{\prime}\right]<\infty$, and that (3) there is no perfect collinearity in X.
- Denote by P the marginal distribution of (Y, X).
- Let $\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)$ be an i.i.d. sample of random vectors with distribution P.
- The properties we will discuss today are

1. Bias
2. Gauss-Markov Theorem
3. Consistency
4. Asymptotic Normality

Under the assumption (1) $E[U \mid X]=0$ (i.e., $E[Y \mid X]=X^{\prime} \beta$) it follows that $E\left[\hat{\beta}_{n}\right]=\beta$.

- Suppose (1) $E[U \mid X]=0$ and that (4) $\operatorname{Var}[U \mid X]=\sigma^{2}$.
- When $\operatorname{Var}[U \mid X]$ is constant (and therefore does not depend on X) we say that U is homoskedastic. Otherwise, we say that U is heteroskedastic.
- Guass-Markov Theorem: under these assumptions the OLS estimator is "best" in the sense that it has the "smallest" value of $\operatorname{Var}\left[\mathbb{A}^{\prime} \mathbb{Y} \mid X_{1}, \ldots, X_{n}\right]$ among all estimators of the form

$$
\mathbb{A}^{\prime} \mathbb{Y}
$$

for some matrix $\mathbb{A}=\mathbb{A}\left(X_{1}, \ldots, X_{n}\right)$ satisfying

$$
E\left[\mathbb{A}^{\prime} \mathbb{Y} \mid X_{1}, \ldots, X_{n}\right]=\beta
$$

- "smallest" is understood as the partial order obtained by $B \geqslant \tilde{B}$ iff $B-\tilde{B}$ is positive semi-definite.
- This class of estimators includes the OLS estimator as a special case (by setting $\left.\mathbb{A}^{\prime}=\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1} \mathbb{X}^{\prime}\right)$. The property is sometimes expressed as saying that OLS is the "best linear unbiased estimator (BLUE)" of β under these assumptions.

GMT: Reformulating what we need to show

The estimator is $\mathbb{A}^{\prime} \mathbb{Y}$ for $\mathbb{A}=\mathbb{A}\left(X_{1}, \ldots, X_{n}\right)$ and satisfies $E\left[\mathbb{A}^{\prime} \mathbb{Y} \mid X_{1}, \ldots, X_{n}\right]=\beta$.

GMT: Соmpleting the argument

Want to show $\mathbb{A}^{\prime} \mathbb{A}-\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1}$ is positive semi-definite for any \mathbb{A} satisfying $\mathbb{A}^{\prime} \mathbb{X}=\mathbb{I}$.

Consistency

Under our three main assumptions, $\hat{\beta}_{n} \xrightarrow{P} \beta$ as $n \rightarrow \infty$

Asymptotic Normality

Suppose in addition to (1) (3) that (4) $\operatorname{Var}[X U]=E\left[X X^{\prime} U^{2}\right]<\infty$. Then, as $n \rightarrow \infty$,

$$
\sqrt{n}\left(\hat{\beta}_{n}-\beta\right) \xrightarrow{d} N(0, \mathbb{V}) \quad \text { where } \quad \mathbb{V}=E\left[X X^{\prime}\right]^{-1} E\left[X X^{\prime} U^{2}\right] E\left[X X^{\prime}\right]^{-1}
$$

$\overline{3}$

- Inference: often requires a consistent estimator of

$$
\mathbb{V}=E\left[X X^{\prime}\right]^{-1} E\left[X X^{\prime} U^{2}\right] E\left[X X^{\prime}\right]^{-1}
$$

- Note that \mathbb{V} has the so-called sandwich form.
\downarrow "bread": can be consistently estimated as before.
- "meat": consider the case where (1) $E[U \mid X]=0$ and 4 " $\operatorname{Var}[U \mid X]=\sigma^{2}$ (i.e., homoskedasticity). Under these conditions,

$$
\operatorname{Var}[X U]=E\left[X X^{\prime} U^{2}\right]=E\left[X X^{\prime}\right] \sigma^{2}
$$

Hence,

$$
\mathbb{V}=E\left[X X^{\prime}\right]^{-1} \sigma^{2}
$$

A natural choice of estimator is therefore

$$
\hat{\mathbb{V}}_{n}=\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime}\right)^{-1} \hat{\sigma}_{n}^{2}
$$

where $\hat{\sigma}_{n}^{2}$ is a consistent estimator of σ^{2}.

ESTIMATION V UNDER HOMOSKEDASTICITY

A natural choice for an estimator of σ^{2} is $\hat{\sigma}_{n}^{2}=\frac{1}{n} \sum_{1 \leqslant i \leqslant n} \hat{U}_{i}^{2}$. Claim: $\hat{\sigma}_{n}^{2} \xrightarrow{P} \sigma^{2}$.

Estimation \mathbb{V} via HC Estimator

- When we do not assume $\operatorname{Var}[U \mid X]=\sigma^{2}$, a natural choice of estimator is

$$
\begin{equation*}
\hat{\mathbb{V}}_{n}=\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime}\right)^{-1}\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime} \hat{U}_{i}^{2}\right)\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime}\right)^{-1} \tag{2}
\end{equation*}
$$

- Later in the class we will prove that this estimator is consistent, i.e.,

$$
\hat{\mathbb{V}}_{n} \xrightarrow{P} \mathbb{V} \text { as } n \rightarrow \infty
$$

regardless of the functional form of $\operatorname{Var}[U \mid X]$. Only requires (1) to 4)

- This estimator is called the Heteroskedasticity Consistent (HC) estimator of \mathbb{V}.
- The standard errors used to construct t-statistics are the square roots of the diagonal elements of $\hat{\mathbb{V}}_{n}$, and this is the topic of the third part of this class.
- Important: by default, Stata and R report homoskedastic-only standard errors.
$\overline{3}$

Measures of Fit

Common Practice: report the measure of fit

$$
R^{2}=\frac{E S S}{T S S}=1-\frac{S S R}{T S S}
$$

where

$$
\begin{aligned}
T S S & =\sum_{1 \leqslant i \leqslant n}\left(Y_{i}-\bar{Y}_{n}\right)^{2} \\
E S S & =\sum_{1 \leqslant i \leqslant n}\left(\hat{Y}_{i}-\bar{Y}_{n}\right)^{2} \\
S S R & =\sum_{1 \leqslant i \leqslant n} \hat{U}_{i}^{2} .
\end{aligned}
$$

$R^{2}=1$ if and only if $S S R=0$, i.e., $\hat{U}_{i}=0$ for all $1 \leqslant i \leqslant n$.

- $R^{2}=0$ if and only if $E S S=0$, i.e., $\hat{Y}_{i}=\bar{Y}_{n}$ for all $1 \leqslant i \leqslant n$.
- View $\frac{1}{n} \sum_{1 \leqslant i \leqslant n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}$ as an estimator of

$$
\operatorname{Var}\left[Y_{i}\right] .
$$

- View $\frac{1}{n} \sum_{1 \leqslant i \leqslant n} \hat{U}_{i}^{2}$ as an estimator of

$$
\operatorname{Var}\left[U_{i}\right]
$$

- R^{2} may be then viewed as an estimator of

$$
1-\frac{\operatorname{Var}\left[U_{i}\right]}{\operatorname{Var}\left[Y_{i}\right]}
$$

Replacing these estimators with their unbiased counterparts yields "adjusted" R^{2},

$$
\bar{R}^{2}=1-\frac{n-1}{n-k-1} \frac{S S R}{T S S} .
$$

- R^{2} always increases with the inclusion of an additional regressor, whereas \bar{R}^{2} may not.

