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Past & Future

LAST CLASS

I Interpretation of β in linear regression
I Solving and estimating β

TODAY

I Solving and estimating sub-vectors of β
I Properties of LS
I Estimating V



3

Sub-Vectors of β

Let (Y, X, U) be a random vector where Y and U take values in R and X takes values in Rk+1. Let
β = (β0,β1, . . . ,βk)

′ ∈ Rk+1 be such that

Y = X ′β+ U .

Partition X into X1 and X2, where X1 takes values in Rk1 and X2 takes values in Rk2 . Partition β into β1
and β2 analogously. In this notation,

Y = X ′1β1 + X ′2β2 + U .

Our preceding results imply that(
β1
β2

)
=

(
E[X1X ′1] E[X1X ′2]
E[X2X ′1] E[X2X ′2]

)−1 ( E[X1Y]
E[X2Y]

)
.

Question: Can we derive formulae for β1 and β2 that admit some interesting interpretations?
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Result Based on BLP

I BLP: for a random variable A and a random vector B, denote by BLP(A|B) the best linear predictor
of A given B, i.e.

BLP(A|B) ≡ B ′E[BB ′]−1E[BA] .

If A is a random vector, then define BLP(A|B) component-wise.

I Define Ỹ = Y − BLP(Y|X2) and X̃1 = X1 − BLP(X1|X2).

I Consider the linear regression

Ỹ = X̃ ′1β̃1 + Ũ where E[X̃1Ũ] = 0

(as, for example, in the second interpretation of the linear regression model described before).

CLAIM

β̃1 = E[X̃1X̃ ′1]
−1E[X̃1Ỹ] = β1
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Result Based on BLP
Notation: BLP(A|B) ≡ B ′E[BB ′]−1E[BA] and Ã = A − BLP(A|B).
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Interpretation

I β1 in the linear regression of Y on X1 and X2 is equal to the coefficient in a linear
regression of the error term from a linear regression of Y on X2 on the error terms from a linear
regression of the components of X1 on X2.

I This formalizes the common description of β1 as the “effect” of X1 on Y after “controlling for X2.”

I Take X2 = constant and X1 ∈ R. Then Ỹ = Y − E[Y] and X̃1 = X1 − E[X1]. Hence,

β1 = E[(X1 − E[X1])(X1 − E[X1])
′]−1E[(X1 − E[X1])(Y − E[Y])]

=
Cov[X1, Y]

Var[X1]
.

I If we use our formula to interpret the coefficient βj, we obtain

βj =
Cov[X̃j, Y]

Var[X̃j]
. (1)

⇒ each coefficient in a multivariate regression is the bivariate slope coefficient for the corresponding
regressor, after “partialling out” all the other variables in the model.
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QUESTIONS?
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Estimating Sub-Vectors of β

I Partition X and β as before and consider

Y = X ′1β1 + X ′2β2 + U .

I Let X1 = (X1,1, . . . , X1,n)
′ and X2 = (X2,1, . . . , X2,n)

′.

I Denote by P1 the projection matrix onto the column space of X1 and P2 the projection matrix onto
the column space of X2.

I Define M1 = I − P1 and M2 = I − P2.

I Denote by β̂n = (β̂ ′1,n, β̂ ′2,n)
′ the LS estimator of β in a regression of Y on X.

I We now derive estimation counterparts to the previous results about solving for sub-vectors of β.
That is, β̂1,n can also be obtained from a “residualized” regression.
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Frisch-Waugh-Lovell Decomposition

Start by noticing that: Y = X1β̂1,n + X2β̂2,n + Û and recall that M2 = I − P2.
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QUESTIONS?
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Properties of LS

I Let (Y, X, U) be a random vector where Y and U take values in R and X takes values in Rk+1.
Assume further that the first component of X is a constant equal to one. Let β ∈ Rk+1 be such that

Y = X ′β+ U .

I Suppose that 1 E[XU] = 0, 2 E[XX ′] <∞, and that 3 there is no perfect collinearity in X.

I Denote by P the marginal distribution of (Y, X).

I Let (Y1, X1), . . . , (Yn, Xn) be an i.i.d. sample of random vectors with distribution P.

I The properties we will discuss today are
1. Bias
2. Gauss-Markov Theorem
3. Consistency
4. Asymptotic Normality
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Bias

CLAIM

Under the assumption 1’ E[U|X] = 0 (i.e., E[Y|X] = X ′β) it follows that E[β̂n] = β.
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Gauss Markov Theorem

I Suppose 1’ E[U|X] = 0 and that 4’ Var[U|X] = σ2.

I When Var[U|X] is constant (and therefore does not depend on X) we say that U is homoskedastic.
Otherwise, we say that U is heteroskedastic.

I Guass-Markov Theorem: under these assumptions the OLS estimator is “best” in the sense that it
has the “smallest” value of Var[A ′Y|X1, . . . , Xn] among all estimators of the form

A ′Y

for some matrix A = A(X1, . . . , Xn) satisfying

E[A ′Y|X1, . . . , Xn] = β .

I “smallest” is understood as the partial order obtained by B > B̃ iff B − B̃ is positive semi-definite.

I This class of estimators includes the OLS estimator as a special case (by setting
A ′ = (X ′X)−1X ′). The property is sometimes expressed as saying that OLS is the “best linear
unbiased estimator (BLUE)” of β under these assumptions.
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GMT: Reformulating what we need to show

The estimator is A ′Y for A = A(X1, . . . , Xn) and satisfies E[A ′Y|X1, . . . , Xn] = β .
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GMT: Completing the argument

Want to show A ′A − (X ′X)−1 is positive semi-definite for any A satisfying A ′X = I.
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Consistency

Under our three main assumptions, β̂n
P→ β as n→∞
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Asymptotic Normality
Suppose in addition to 1 - 3 that 4 Var[XU] = E[XX ′U2] <∞. Then, as n→∞,

√
n(β̂n −β)

d→ N(0, V) where V = E[XX ′]−1E[XX ′U2]E[XX ′]−1 .
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QUESTIONS?
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Estimation V

I Inference: often requires a consistent estimator of

V = E[XX ′]−1E[XX ′U2]E[XX ′]−1 .

I Note that V has the so-called sandwich form.

I “bread”: can be consistently estimated as before.

I “meat”: consider the case where 1’ E[U|X] = 0 and 4’ Var[U|X] = σ2 (i.e., homoskedasticity).
Under these conditions,

Var[XU] = E[XX ′U2] = E[XX ′]σ2 .
Hence,

V = E[XX ′]−1σ2 .
A natural choice of estimator is therefore

V̂n =

 1
n

∑
16i6n

XiX
′
i

−1

σ̂2
n ,

where σ̂2
n is a consistent estimator of σ2.
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Estimation V under homoskedasticity

A natural choice for an estimator of σ2 is σ̂2
n = 1

n
∑

16i6n Û2
i . Claim: σ̂2

n
P→ σ2.



21

Estimation V via HC estimator

I When we do not assume Var[U|X] = σ2, a natural choice of estimator is

V̂n =

 1
n

∑
16i6n

XiX
′
i

−1 1
n

∑
16i6n

XiX
′
i Û2

i

 1
n

∑
16i6n

XiX
′
i

−1

. (2)

I Later in the class we will prove that this estimator is consistent, i.e.,

V̂n
P→ V as n→∞ ,

regardless of the functional form of Var[U|X]. Only requires 1 to 4

I This estimator is called the Heteroskedasticity Consistent (HC) estimator of V.

I The standard errors used to construct t-statistics are the square roots of the diagonal elements of
V̂n, and this is the topic of the third part of this class.

I Important: by default, Stata and R report homoskedastic-only standard errors.
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QUESTIONS?
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Measures of Fit

Common Practice: report the measure of fit

R2 =
ESS
TSS

= 1 −
SSR
TSS

,

where

TSS =
∑

16i6n

(Yi − Ȳn)
2

ESS =
∑

16i6n

(Ŷi − Ȳn)
2

SSR =
∑

16i6n

Û2
i .

I R2 = 1 if and only if SSR = 0, i.e., Ûi = 0 for all
1 6 i 6 n.

I R2 = 0 if and only if ESS = 0, i.e., Ŷi = Ȳn for
all 1 6 i 6 n.

I View 1
n
∑

16i6n(Yi − Ȳn)
2 as an estimator of

Var[Yi] .

I View 1
n
∑

16i6n Û2
i as an estimator of

Var[Ui] .

I R2 may be then viewed as an estimator of

1 −
Var[Ui]

Var[Yi]
.

Replacing these estimators with their unbiased
counterparts yields “adjusted” R2,

R̄2 = 1 −
n − 1

n − k − 1
SSR
TSS

.

I R2 always increases with the inclusion of an
additional regressor, whereas R̄2 may not.
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