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Interpreting Linear Regression

Let (Y, X, U) be a random vector where Y and U take values in R and X takes values in Rk+1. Assume
further that the first component of X is a constant equal to one, i.e., X = (X0, X1, . . . , Xk)

′ with X0 = 1.
Let β = (β0,β1, . . . ,βk)

′ ∈ Rk+1 be such that

Y = X ′β+ U .

β0 is an intercept parameter and the remaining βj are slope parameters. There are several ways to
interpret β depending on the assumptions imposed on (Y, X, U). We will study three such ways.

Three Interpretations of Linear Regression
I Linear Conditional Expectation

I Best Linear Approximation

I Causal Model
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1: Linear Conditional Expectation

I Suppose that:
E[Y|X] = X ′β

and define U = Y − E[Y|X].

I This has several implications:

I Descriptive: β is a convenient way of summarizing a feature of the joint distribution of Y and X.

I Question: can we interpret βj as the ceteris paribus (i.e., holding X−j and U constant) effect of a
one unit change in Xj on Y?
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QUESTIONS?
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2: “Best” Linear Approximation

I In general, the conditional expectation is probably NOT linear.

I Suppose that: E[Y2] <∞ and E[XX ′] <∞ (or, E[X2
j ] <∞ for 1 6 j 6 k)

I Under these assumptions, one may consider what is the “best” linear approximation (i.e., function of
the form X ′b for some choice of b ∈ Rk+1) to the conditional expectation.

I To this end, consider the minimization problem

min
b∈Rk+1

E
[
(E[Y|X] − X ′b)2

]
and denote by β a solution to this minimization problem.

I Descriptive: β is a convenient way of summarizing a feature of the joint distribution of Y and X.

I Question: can we interpret βj as the ceteris paribus (i.e., holding X−j and U constant) effect of a
one unit change in Xj on Y?
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Best Linear Predictor
CLAIM

β ∈ argmin
b∈Rk+1

E
[
(Y − X ′b)2

]
,

so β is also a convenient way of summarizing the “best” linear predictor of Y given X.

Proof:
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Two in one

I Two interpretations from equivalent optimization problems:

β ∈ argmin
b∈Rk+1

E
[
(E[Y|X] − X ′b)2

]
and β ∈ argmin

b∈Rk+1
E
[
(Y − X ′b)2

]
.

I Note E[(Y − X ′b)2] is convex (as a function of b) and this has the following implications.
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QUESTIONS?
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3: Causal Model

I Suppose that: Y = g(X, U), where X are the observed determinants of Y and U are the unobserved
determinants of Y.

I Such a relationship is a model of how Y is determined and may come from physics, economics, etc.

I The effect of Xj on Y holding X−j and U constant (i.e., ceteris paribus) is determined by g.

I If g is differentiable, then it is given by
DXj g(X, U) .

I If we assume further that
g(X, U) = X ′β+ U ,

then the ceteris paribus effect of Xj on Y is simply βj. We may normalize U so that E[U] = 0 (by
replacing U with U − E[U] and β0 with β0 + E[U] if this is not the case).

I On the other hand, E[U|X], E[U|Xj] and E[UXj] for 1 6 j 6 k may or may not equal zero.
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Potential Outcomes

I Potential outcomes: easy way to think about causal relationships.

I illustration: randomized controlled experiment where individuals are randomly assigned to a
treatment (a drug) that is intended to improve their health status.

I Notation: Let Y denote the observed health status and X ∈ {0, 1} denote whether the individual
takes the drug or not.

I The causal relationship between X and Y can be described using the so-called potential outcomes:

Y(0) potential outcome in the absence of treatment
Y(1) potential outcome in the presence of treatment

.

I Thus, we imagine two health status variables (Y(0), Y(1)) where Y(0) is the value of the outcome
that would have been observed if (possibly counter-to-fact) X were 0; and Y(1) is the value of the
outcome that would have been observed if (possibly counter-to-fact) X were 1.
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Treatment Effects

I The difference Y(1) − Y(0) is called the treatment effect.

I The quantity E[Y(1) − Y(0)] is usually referred to as the average treatment effect.

I Using this notation, we may rewrite the observed outcome as:
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Interpretation

Y = β0 +β1X + U with β1 = Y(1) − Y(0) .

I Not quite “the” linear model: the coefficient β1 is random.

I For β1 to be constant, we need to assume that Y(1) − Y(0) is constant across individuals.

I Under all these assumptions: we end up with a linear constant effect causal model with U⊥⊥X (from
the nature of the randomized experiment), E[U] = 0, and so E[XU] = 0.

I Without assuming constant treatment effects it can be shown that a regression of Y on X identifies
the average treatment effect,

β =
Cov[Y, X]

Var[X]
= E[Y(1) − Y(0)]

which is often called a causal parameter given that it is an average of causal effects.
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QUESTIONS?
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Linear Regression when E[XU] = 0

I Let (Y, X, U) be a random vector where Y and U take values in R and X takes values in Rk+1.
Assume further that X = (X0, X1, . . . , Xk)

′ with X0 = 1 and let β = (β0,β1, . . . ,βk)
′ ∈ Rk+1 be

such that
Y = X ′β+ U .

Suppose 1 E[XU] = 0 2 E[XX ′] <∞, and 3 that there is no perfect collinearity in X.

I The justification of 1 varies depending on which of the three preceding interpretations we invoke.

I 2 ensures that E[XX ′] exists.

I 3 is equivalent to the assumption that the matrix E[XX ′] is in fact invertible. Since E[XX ′] is
positive semi-definite, invertibility of E[XX ′] is equivalent to E[XX ′] being positive definite.
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Invertibility

DEFINITION

There is perfect collinearity or multicollinearity in X if there exists nonzero c ∈ Rk+1 such that
P{c ′X = 0} = 1, i.e., if we can express one component of X as a linear combination of the others.

LEMMA

Let X be such that E[XX ′] <∞. Then E[XX ′] is invertible iff there is no perfect collinearity in X.
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Solving for β

I E[UX] = 0 implies that E[X(Y − X ′β)] = 0, i.e.,

E[XY] = E[XX ′]β .

I Since E[XX ′] is invertible, there is a unique solution to this system of equations, namely,

β = E[XX ′]−1E[XY] .

I If E[XX ′] is not invertible there will be more than one solution to this system of equations. Any two
solutions β and β̃ will necessarily satisfy P{X ′β = X ′β̃} = 1.

I In this important?: It depends on the interpretation. For instance, in the second interpretation, each
such solution corresponds to the same “best” linear predictor of Y given X, whereas in the third
interpretation different values of β could have wildly different implications for how X affects Y holding
U constant.
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Estimating β: OLS

I Let (Y, X, U) be as described and let P the marginal distribution of (Y, X).

I Let (Y1, X1), . . . , (Yn, Xn) be an i.i.d. sequence of random vectors with distribution P.

I A natural estimator of β = (E[XX ′])−1E[XY] is simply

β̂n =

 1
n

∑
16i6n

XiX
′
i

−1  1
n

∑
16i6n

XiYi

 .

I This estimator is called the ordinary least squares (OLS) estimator of β because it can also be
derived as the solution to the following minimization problem:

min
b∈Rk+1

1
n

∑
16i6n

(Yi − X ′
i b)2 .
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Estimating β: OLS
CLAIM

β̂n solves the following minimization problem: minb∈Rk+1
1
n
∑

16i6n(Yi − X ′
i b)2 .
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QUESTIONS?
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Matrix Notation
Define

Y = (Y1, . . . , Yn)
′

X = (X1, . . . , Xn)
′

Ŷ = (Ŷ1, . . . , Ŷn)
′

= Xβ̂n

U = (U1, . . . , Un)
′

Û = (Û1, . . . , Ûn)
′

= Y − Ŷ

= Y − Xβ̂n .

In this notation,
β̂n = (X ′X)−1X ′Y

and may be equivalently described as the solution to

min
b∈Rk+1

|Y − Xb|2 .

Hence, Xβ̂n is the vector in the column space of X that is closest (in terms of Euclidean distance) to Y.
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Projection Matrices

Xβ̂n = X(X ′X)−1X ′Y

is the orthogonal projection of Y onto the ((k + 1)-dimensional) column space of X.

The matrix
P = X(X ′X)−1X ′

is known as a projection matrix. It projects a vector in Rn (such as Y) onto the column space of X. Note
that P2 = P, which reflects the fact that projecting something that already lies in the column space of X

onto the column space of X does nothing.

The matrix P is also symmetric. The matrix

M = I − P

is also a projection matrix. It projects a vector onto the ((n − k − 1)-dimensional) vector space orthogonal
to the column space of X. Hence, MX = 0. Note that MY = Û. For this reason, M is sometimes called
the “residual maker” matrix.
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