ECON 480-3 LECTURE 1: LINEAR REGRESSION

Ivan A. Canay Northwestern University Let (Y, X, U) be a random vector where Y and U take values in \mathbf{R} and X takes values in \mathbf{R}^{k+1} . Assume further that the first component of X is a constant equal to one, i.e., $X = (X_0, X_1, \ldots, X_k)'$ with $X_0 = 1$. Let $\beta = (\beta_0, \beta_1, \ldots, \beta_k)' \in \mathbf{R}^{k+1}$ be such that

$$Y = X'\beta + U \,.$$

 β_0 is an intercept parameter and the remaining β_j are slope parameters. There are several ways to interpret β depending on the assumptions imposed on (*Y*, *X*, *U*). We will study three such ways.

Three Interpretations of Linear Regression

- Linear Conditional Expectation
- Best Linear Approximation
- Causal Model

Suppose that:

$$E[Y|X] = X'\beta$$

and define U = Y - E[Y|X].

This has several implications:

- **Descriptive:** β is a convenient way of summarizing a feature of the joint distribution of *Y* and *X*.
- Question: can we interpret β_j as the ceteris paribus (i.e., holding X_{-j} and U constant) effect of a one unit change in X_j on Y?

2: "Best" Linear Approximation

In general, the conditional expectation is probably NOT linear.

- Suppose that: $E[Y^2] < \infty$ and $E[XX'] < \infty$ (or, $E[X_i^2] < \infty$ for $1 \le j \le k$)
- Under these assumptions, one may consider what is the "best" linear approximation (i.e., function of the form X'b for some choice of b ∈ R^{k+1}) to the conditional expectation.
- To this end, consider the minimization problem

$$\min_{\mathbf{\in R}^{k+1}} E\Big[(E[Y|X] - X'b)^2 \Big]$$

and denote by β a solution to this minimization problem.

- Descriptive: β is a convenient way of summarizing a feature of the joint distribution of Y and X.
- Question: can we interpret β_j as the ceteris paribus (i.e., holding X_{-j} and U constant) effect of a one unit change in X_j on Y?

BEST LINEAR PREDICTOR

CLAIM

$$\beta \in \operatorname*{argmin}_{b \in \mathbf{R}^{k+1}} E\Big[(Y - X'b)^2\Big],$$

so β is also a convenient way of summarizing the "best" linear predictor of Y given X.

Proof:

TWO IN ONE

Two interpretations from equivalent optimization problems:

$$\beta \in \underset{b \in \mathbb{R}^{k+1}}{\operatorname{argmin}} E\Big[(E[Y|X] - X'b)^2 \Big] \quad \text{and} \quad \beta \in \underset{b \in \mathbb{R}^{k+1}}{\operatorname{argmin}} E\Big[(Y - X'b)^2 \Big] .$$

▶ Note $E[(Y - X'b)^2]$ is convex (as a function of *b*) and this has the following implications.

3: CAUSAL MODEL

- Suppose that: Y = g(X, U), where X are the observed determinants of Y and U are the unobserved determinants of Y.
- Such a relationship is a model of how Y is determined and may come from physics, economics, etc.
- The effect of X_i on Y holding X_{-i} and U constant (i.e., *ceteris paribus*) is determined by g.
- If g is differentiable, then it is given by

 $D_{X_j}g(X, U)$.

If we assume further that

 $g(X, U) = X'\beta + U ,$

then the *ceteris paribus* effect of X_j on Y is simply β_j . We may normalize U so that E[U] = 0 (by replacing U with U - E[U] and β_0 with $\beta_0 + E[U]$ if this is not the case).

▶ On the other hand, E[U|X], $E[U|X_i]$ and $E[UX_i]$ for $1 \le i \le k$ may or may not equal zero.

POTENTIAL OUTCOMES

- Potential outcomes: easy way to think about causal relationships.
- illustration: randomized controlled experiment where individuals are randomly assigned to a treatment (a drug) that is intended to improve their health status.
- Notation: Let Y denote the observed health status and $X \in \{0, 1\}$ denote whether the individual takes the drug or not.
- The causal relationship between X and Y can be described using the so-called potential outcomes:
 - Y(0) potential outcome in the absence of treatment
 - Y(1) potential outcome in the presence of treatment
- Thus, we imagine two health status variables (Y(0), Y(1)) where Y(0) is the value of the outcome that would have been observed if (possibly counter-to-fact) X were 0; and Y(1) is the value of the outcome that would have been observed if (possibly counter-to-fact) X were 1.

TREATMENT EFFECTS

- The difference Y(1) Y(0) is called the treatment effect.
- The quantity E[Y(1) Y(0)] is usually referred to as the average treatment effect.
- Using this notation, we may rewrite the observed outcome as:

 $Y = \beta_0 + \beta_1 X + U$ with $\beta_1 = Y(1) - Y(0)$.

Not quite "the" linear model: the coefficient β_1 is random.

- For β_1 to be constant, we need to assume that Y(1) Y(0) is constant across individuals.
- ▶ Under all these assumptions: we end up with a *linear constant effect causal model* with $U \perp X$ (from the nature of the randomized experiment), E[U] = 0, and so E[XU] = 0.
- Without assuming constant treatment effects it can be shown that a regression of Y on X identifies the average treatment effect,

$$\beta = \frac{\operatorname{Cov}[Y, X]}{\operatorname{Var}[X]} = E[Y(1) - Y(0)]$$

which is often called a causal parameter given that it is an average of causal effects.

LINEAR REGRESSION WHEN E[XU] = 0

► Let (Y, X, U) be a random vector where Y and U take values in **R** and X takes values in \mathbf{R}^{k+1} . Assume further that $X = (X_0, X_1, \dots, X_k)'$ with $X_0 = 1$ and let $\beta = (\beta_0, \beta_1, \dots, \beta_k)' \in \mathbf{R}^{k+1}$ be such that

$$Y = X'\beta + U .$$

Suppose 1 E[XU] = 0 $2 E[XX'] < \infty$, and 3 that there is *no perfect collinearity* in *X*.

- The justification of 1 varies depending on which of the three preceding interpretations we invoke.
- **2** ensures that E[XX'] exists.
- ▶ (3) is equivalent to the assumption that the matrix E[XX'] is in fact invertible. Since E[XX'] is positive semi-definite, invertibility of E[XX'] is equivalent to E[XX'] being positive definite.

INVERTIBILITY

DEFINITION

There is *perfect collinearity* or *multicollinearity* in *X* if there exists nonzero $c \in \mathbf{R}^{k+1}$ such that $P\{c'X = 0\} = 1$, i.e., if we can express one component of *X* as a linear combination of the others.

LEMMA

Let X be such that $E[XX'] < \infty$. Then E[XX'] is invertible iff there is no perfect collinearity in X.

Solving for β

• E[UX] = 0 implies that $E[X(Y - X'\beta)] = 0$, i.e.,

 $E[XY] = E[XX']\beta .$

Since E[XX'] is invertible, there is a unique solution to this system of equations, namely,

 $\beta = E[XX']^{-1}E[XY] \; .$

- If E[XX'] is not invertible there will be more than one solution to this system of equations. Any two solutions β and $\tilde{\beta}$ will necessarily satisfy $P\{X'\beta = X'\tilde{\beta}\} = 1$.
- In this important?: It depends on the interpretation. For instance, in the second interpretation, each such solution corresponds to the same "best" linear predictor of Y given X, whereas in the third interpretation different values of β could have wildly different implications for how X affects Y holding U constant.

Estimating β : **OLS**

- Let (Y, X, U) be as described and let P the marginal distribution of (Y, X).
- Let $(Y_1, X_1), \ldots, (Y_n, X_n)$ be an i.i.d. sequence of random vectors with distribution *P*.
- A natural estimator of $\beta = (E[XX'])^{-1}E[XY]$ is simply

$$\hat{\beta}_n = \left(\frac{1}{n} \sum_{1 \leq i \leq n} X_i X_i'\right)^{-1} \left(\frac{1}{n} \sum_{1 \leq i \leq n} X_i Y_i\right) \ .$$

This estimator is called the ordinary least squares (OLS) estimator of β because it can also be derived as the solution to the following minimization problem:

$$\min_{b\in \mathbf{R}^{k+1}}\frac{1}{n}\sum_{1\leqslant i\leqslant n}(Y_i-X_i'b)^2\;.$$

Estimating β : OLS

CLAIM

 $\hat{\beta}_n$ solves the following minimization problem: $\min_{b \in \mathbf{R}^{k+1}} \frac{1}{n} \sum_{1 \leq i \leq n} (Y_i - X'_i b)^2$.

MATRIX NOTATION

Define

$$\begin{split} \Psi &= (Y_1, \dots, Y_n)' \\ \mathbb{X} &= (X_1, \dots, X_n)' \\ \hat{\Psi} &= (\hat{Y}_1, \dots, \hat{Y}_n)' \\ &= \mathbb{X}\hat{\beta}_n \\ \mathbb{U} &= (U_1, \dots, U_n)' \\ \hat{\mathbb{U}} &= (\hat{U}_1, \dots, \hat{U}_n)' \\ &= \mathbb{Y} - \hat{\mathbb{Y}} \\ &= \mathbb{Y} - \mathbb{X}\hat{\beta}_n \,. \end{split}$$

In this notation,

$$\hat{\beta}_n = (X'X)^{-1}X'Y$$

and may be equivalently described as the solution to

$$\min_{b\in\mathbf{R}^{k+1}}|\mathbb{Y}-\mathbb{X}b|^2.$$

Hence, $X\hat{\beta}_n$ is the vector in the column space of X that is closest (in terms of Euclidean distance) to Y.

 $\mathbb{X}\hat{\beta}_n = \mathbb{X}(\mathbb{X}'\mathbb{X})^{-1}\mathbb{X}'\mathbb{Y}$

is the orthogonal projection of \mathbb{Y} onto the ((k + 1)-dimensional) column space of \mathbb{X} .

The matrix

$$\mathbb{P} = \mathbb{X}(\mathbb{X}'\mathbb{X})^{-1}\mathbb{X}'$$

is known as a projection matrix. It projects a vector in \mathbb{R}^n (such as \mathbb{Y}) onto the column space of \mathbb{X} . Note that $\mathbb{P}^2 = \mathbb{P}$, which reflects the fact that projecting something that already lies in the column space of \mathbb{X} onto the column space of \mathbb{X} does nothing.

The matrix \mathbb{P} is also symmetric. The matrix

 $\mathbb{M}=\mathbb{I}-\mathbb{P}$

is also a projection matrix. It projects a vector onto the ((n - k - 1)-dimensional) vector space orthogonal to the column space of \mathbb{X} . Hence, $\mathbb{M}\mathbb{X} = 0$. Note that $\mathbb{M}\mathbb{Y} = \hat{\mathbb{U}}$. For this reason, \mathbb{M} is sometimes called the "residual maker" matrix.