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INTERPRETING LINEAR REGRESSION

Let (Y, X, U) be a random vector where Y and U take values in R and X takes values in Rkt Assume
further that the first component of X is a constant equal to one, i.e., X = (X, X1, ..., Xi)’ with Xy = 1.
Let B = (Bo, B1.--., Bx)’ € RF1 be such that

Y= X+

3¢ is an intercept parameter and the remaining [5/ are slope parameters. There are several ways to
interpret 3 depending on the assumptions imposed on (Y, X, U). We will study three such ways.

Three Interpretations of Linear Regression
» Linear Conditional Expectation

> Best Linear Approximation

» Causal Model



1: LinEaAr ConpiTionAL EXPECTATION

» Suppose that:
ElYIX]=X'p
and define U = Y — E[Y|X].

» This has several implications:

» Descriptive: 3 is a convenient way of summarizing a feature of the joint distribution of Y and X.

> Question: can we interpret [3; as the ceteris paribus (i.e., holding X_; and U constant) effect of a
one unit change in X; on Y?



OUESTIONS?




2: “BEST” LINEFAR APPROXIMATION

> In general, the conditional expectation is probably NOT linear.
» Suppose that: E[Y?] < oo and E[XX'] < o (or, E[X].Z} <ooforl <j<k)

> Under these assumptions, one may consider what is the “best” linear approximation (i.e., function of
the form X’b for some choice of b € R¥"1) to the conditional expectation.
> To this end, consider the minimization problem
min E[(E[Y\X}-X’b)z}
beRk+1

and denote by (3 a solution to this minimization problem.
» Descriptive: 3 is a convenient way of summarizing a feature of the joint distribution of Y and X.

> Question: can we interpret (3; as the ceteris paribus (i.e., holding X ; and U constant) effect of a
one unit change in Xjon Y



BEstT LInEArR PREDICTOR

CLAIM

B € argmin E [(Y _ X’b)z] ,
beRk+1

so f3 is also a convenient way of summarizing the “best” linear predictor of Y given X.

Proof:



Tweo IN ONE

» Two interpretations from equivalent optimization problems:

B e argminE[(E[YlX] —X’b)z] and B € argminE {(Y—X’b)z] i
beRk+1 beRk+1

> Note E[(Y — X’b)?] is convex (as a function of b) and this has the following implications.



OUESTIONS?




3¢ CAusaL MoDpEL

> Suppose that: Y = g(X, U), where X are the observed determinants of Y and U are the unobserved
determinants of Y.

> Such a relationship is a model of how Y is determined and may come from physics, economics, etc.
> The effect of X; on Y holding X_jand U constant (i.e., ceteris paribus) is determined by g.

> If ¢ is differentiable, then it is given by
Dng(X, u .

> If we assume further that
X, U)=X'B+U,
then the ceteris paribus effect of X; on Y is simply 3;. We may normalize U so that E[U] =0 (by
replacing U with U — E[U] and B with 3¢ + E[U] if this is not the case).

» On the other hand, E[LI|X], E[U\Xj} and E[UX,} for 1 <j < k may or may not equal zero.



PorTeEnTIAL OUTCOMES

> Potential outcomes: easy way to think about causal relationships.

> illustration: randomized controlled experiment where individuals are randomly assigned to a
treatment (a drug) that is intended to improve their health status.

> Notation: Let Y denote the observed health status and X € {0, 1} denote whether the individual
takes the drug or not.

> The causal relationship between X and Y can be described using the so-called potential outcomes:

Y(0) potential outcome in the absence of treatment
Y(1) potential outcome in the presence of treatment

» Thus, we imagine two health status variables (Y(0), Y(1)) where Y(0) is the value of the outcome
that would have been observed if (possibly counter-to-fact) X were 0; and Y (1) is the value of the
outcome that would have been observed if (possibly counter-to-fact) X were 1.



TreEATMENT EFFECTS

> The difference Y(1) — Y(0) is called the treatment effect.

» The quantity E[Y(1) — Y/(0)] is usually referred to as the average treatment effect.

> Using this notation, we may rewrite the observed outcome as:



INTERPRETATION

Y=Bg+p1X+U with B7=Y(1)—-Y(0).
> Not quite “the” linear model: the coefficient 31 is random.
» For 31 to be constant, we need to assume that Y(1) — Y(0) is constant across individuals.

» Under all these assumptions: we end up with a linear constant effect causal model with U 1l X (from
the nature of the randomized experiment), E[U] = 0, and so E[XU] = 0.

> Without assuming constant treatment effects it can be shown that a regression of Y on X identifies

the average treatment effect,
Cov[Y, X] e

which is often called a causal parameter given that it is an average of causal effects.



OUESTIONS?




LinEArR REGRESSION WHEN E[XU] =0

> Let (Y, X, U) be a random vector where Y and U take values in R and X takes values in RAHL,
Assume further that X = (X, X1, ..., Xi)’ with Xo =1 and let B = (Bo, B1,- .., Br)’ € R¥L be
such that
¥ =xX"B4lU.

Suppose @ EPl =@ @ E[XX'] < o0, and @ that there is no perfect collinearity in X.
> The justification of @ varies depending on which of the three preceding interpretations we invoke.
> @ ensures that E[XX'] exists.

> @ is equivalent to the assumption that the matrix E[XX'] is in fact invertible. Since E[XX'] is
positive semi-definite, invertibility of E[XX'] is equivalent to E[XX'] being positive definite.



INVERTIBILITY

DEFINITION

There is perfect collinearity or multicollinearity in X if there exists nonzero ¢ € Rk such that
P{c’X =0} =1, i.e., if we can express one component of X as a linear combination of the others.

LEMMA

Let X be such that E[XX'] < oco. Then E[XX'] is invertible iff there is no perfect collinearity in X.



SOLVING FOR f3

> E[UX] = 0 implies that E[X(Y — X'B)] =0, i.e.,
EIXY] = E[XX']B .

> Since E[XX'] is invertible, there is a unique solution to this system of equations, namely,

B = EXX'I'E[XY].

> If E[XX'] is not ir_wertible there will be more than one splution to this system of equations. Any two
solutions B and (3 will necessarily satisfy P{X'p = X'} = 1.

> In this important?: It depends on the interpretation. For instance, in the second interpretation, each
such solution corresponds to the same “best” linear predictor of Y given X, whereas in the third
interpretation different values of 3 could have wildly different implications for how X affects Y holding
U constant.



EsTiMATING [3: OLS

> Let (Y, X, U) be as described and let P the marginal distribution of (Y, X).
> Let (Yq1,Xq),...,(Yy, Xy,) be an i.i.d. sequence of random vectors with distribution P.

> A natural estimator of p = (E[XX'])'E[XY] is simply
=il

B={: > xx| |- X x

1<i<n 1<i<n

» This estimator is called the ordinary least squares (OLS) estimator of 3 because it can also be
derived as the solution to the following minimization problem:

1
min — Y (Y;—X/b)*.
beRk+H1 1 1<<n



EsTiMATING [3: OLS

CLAIM

B solves the following minimization problem: minycge 1 % > i<icnYi —X/b)?.



OUESTIONS?




MAaTrIX NOTATION

Define
Y. = (Vpooos V)
PP
e S
b XB’A
I (LT A
W = (UhyeseoUL,)
= Y-V
= Y XB,

In this notation, 3
B, = (X'X)"IX'Y

and may be equivalently described as the solution to

min [Y —Xb|?.
beRk+l

Hence, X {3, is the vector in the column space of X that is closest (in terms of Euclidean distance) to Y.



ProjseEcTion MMATRICES

XBr = XX'X)"IX'Y
is the orthogonal projection of Y onto the ((k + 1)-dimensional) column space of X.

The matrix
P = X(X'X)"1x/

is known as a projection matrix. It projects a vector in R” (such as Y) onto the column space of X. Note
that P2 = IP, which reflects the fact that projecting something that already lies in the column space of X
onto the column space of X does nothing.

The matrix IP is also symmetric. The matrix
M=I-P

is also a projection matrix. It projects a vector onto the ((n — k — 1)-dimensional) vector space orthogonal
to the column space of X. Hence, MX = 0. Note that MY = U. For this reason, M is sometimes called
the “residual maker” matrix.
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