ECDN 480-3
 LECTURE 1: LINEAR REGRESSIDN

Ivan A. Canay

Northwestern University

Let (Y, X, U) be a random vector where Y and U take values in \mathbf{R} and X takes values in \mathbf{R}^{k+1}. Assume further that the first component of X is a constant equal to one, i.e., $X=\left(X_{0}, X_{1}, \ldots, X_{k}\right)^{\prime}$ with $X_{0}=1$. Let $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)^{\prime} \in \mathbf{R}^{k+1}$ be such that

$$
Y=X^{\prime} \beta+U .
$$

β_{0} is an intercept parameter and the remaining β_{j} are slope parameters. There are several ways to interpret β depending on the assumptions imposed on (Y, X, U). We will study three such ways.
Three Interpretations of Linear Regression

- Linear Conditional Expectation
- Best Linear Approximation
- Causal Model
- Suppose that:

$$
E[Y \mid X]=X^{\prime} \beta
$$

and define $U=Y-E[Y \mid X]$.

- This has several implications:

Descriptive: β is a convenient way of summarizing a feature of the joint distribution of Y and X.

- Question: can we interpret β_{j} as the ceteris paribus (i.e., holding X_{-j} and U constant) effect of a one unit change in X_{j} on Y ?
$\overline{3}$
- In general, the conditional expectation is probably NOT linear.
- Suppose that: $E\left[Y^{2}\right]<\infty$ and $E\left[X X^{\prime}\right]<\infty$ (or, $E\left[X_{j}^{2}\right]<\infty$ for $1 \leqslant j \leqslant k$)
- Under these assumptions, one may consider what is the "best" linear approximation (i.e., function of the form $X^{\prime} b$ for some choice of $b \in \mathbf{R}^{k+1}$) to the conditional expectation.
- To this end, consider the minimization problem

$$
\min _{b \in \mathbf{R}^{k+1}} E\left[\left(E[Y \mid X]-X^{\prime} b\right)^{2}\right]
$$

and denote by β a solution to this minimization problem.

- Descriptive: β is a convenient way of summarizing a feature of the joint distribution of Y and X.
- Question: can we interpret β_{j} as the ceteris paribus (i.e., holding X_{-j} and U constant) effect of a one unit change in X_{j} on Y ?

Best Linear Predictor

CLAIM

$$
\beta \in \underset{b \in \mathbf{R}^{k+1}}{\operatorname{argmin}} E\left[\left(Y-X^{\prime} b\right)^{2}\right],
$$

so β is also a convenient way of summarizing the "best" linear predictor of Y given X.
Proof:

- Two interpretations from equivalent optimization problems:

$$
\beta \in \underset{b \in \mathbf{R}^{k+1}}{\operatorname{argmin}} E\left[\left(E[Y \mid X]-X^{\prime} b\right)^{2}\right] \quad \text { and } \quad \beta \in \underset{b \in \mathbf{R}^{k+1}}{\operatorname{argmin}} E\left[\left(Y-X^{\prime} b\right)^{2}\right] .
$$

- Note $E\left[\left(Y-X^{\prime} b\right)^{2}\right]$ is convex (as a function of b) and this has the following implications.
$\overline{3}$
- Suppose that: $Y=g(X, U)$, where X are the observed determinants of Y and U are the unobserved determinants of Y.
- Such a relationship is a model of how Y is determined and may come from physics, economics, etc.
- The effect of X_{j} on Y holding X_{-j} and U constant (i.e., ceteris paribus) is determined by g.
- If g is differentiable, then it is given by

$$
D_{X_{j}} g(X, U)
$$

- If we assume further that

$$
g(X, U)=X^{\prime} \beta+U
$$

then the ceteris paribus effect of X_{j} on Y is simply β_{j}. We may normalize U so that $E[U]=0$ (by replacing U with $U-E[U]$ and β_{0} with $\beta_{0}+E[U]$ if this is not the case).

- On the other hand, $E[U \mid X], E\left[U \mid X_{j}\right]$ and $E\left[U X_{j}\right]$ for $1 \leqslant j \leqslant k$ may or may not equal zero.
- Potential outcomes: easy way to think about causal relationships.
- illustration: randomized controlled experiment where individuals are randomly assigned to a treatment (a drug) that is intended to improve their health status.
- Notation: Let Y denote the observed health status and $X \in\{0,1\}$ denote whether the individual takes the drug or not.
- The causal relationship between X and Y can be described using the so-called potential outcomes:
$Y(0)$ potential outcome in the absence of treatment
$Y(1)$ potential outcome in the presence of treatment
- Thus, we imagine two health status variables $(Y(0), Y(1))$ where $Y(0)$ is the value of the outcome that would have been observed if (possibly counter-to-fact) X were 0 ; and $Y(1)$ is the value of the outcome that would have been observed if (possibly counter-to-fact) X were 1.

Treatment Effects

- The difference $Y(1)-Y(0)$ is called the treatment effect.
- The quantity $E[Y(1)-Y(0)]$ is usually referred to as the average treatment effect.
- Using this notation, we may rewrite the observed outcome as:

$$
Y=\beta_{0}+\beta_{1} X+U \quad \text { with } \quad \beta_{1}=Y(1)-Y(0) .
$$

- Not quite "the" linear model: the coefficient β_{1} is random.
- For β_{1} to be constant, we need to assume that $Y(1)-Y(0)$ is constant across individuals.
- Under all these assumptions: we end up with a linear constant effect causal model with $U \Perp X$ (from the nature of the randomized experiment), $E[U]=0$, and so $E[X U]=0$.
- Without assuming constant treatment effects it can be shown that a regression of Y on X identifies the average treatment effect,

$$
\beta=\frac{\operatorname{Cov}[Y, X]}{\operatorname{Var}[X]}=E[Y(1)-Y(0)]
$$

which is often called a causal parameter given that it is an average of causal effects.
$\overline{3}$

Linear Regression when $E[X U]=0$

- Let (Y, X, U) be a random vector where Y and U take values in \mathbf{R} and X takes values in \mathbf{R}^{k+1}. Assume further that $X=\left(X_{0}, X_{1}, \ldots, X_{k}\right)^{\prime}$ with $X_{0}=1$ and let $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)^{\prime} \in \mathbf{R}^{k+1}$ be such that

$$
Y=X^{\prime} \beta+U .
$$

Suppose (1) $E[X U]=0$ (2) $E\left[X X^{\prime}\right]<\infty$, and (3) that there is no perfect collinearity in X.

- The justification of 1 varies depending on which of the three preceding interpretations we invoke.
- 2) ensures that $E\left[X X^{\prime}\right]$ exists.
- (3) is equivalent to the assumption that the matrix $E\left[X X^{\prime}\right]$ is in fact invertible. Since $E\left[X X^{\prime}\right]$ is positive semi-definite, invertibility of $E\left[X X^{\prime}\right]$ is equivalent to $E\left[X X^{\prime}\right]$ being positive definite.

【NVERRTIBIILITY

DEFINITION

There is perfect collinearity or multicollinearity in X if there exists nonzero $c \in \mathbf{R}^{k+1}$ such that $P\left\{c^{\prime} X=0\right\}=1$, i.e., if we can express one component of X as a linear combination of the others.

LEMMA

Let X be such that $E\left[X X^{\prime}\right]<\infty$. Then $E\left[X X^{\prime}\right]$ is invertible iff there is no perfect collinearity in X.

- $E[U X]=0$ implies that $E\left[X\left(Y-X^{\prime} \beta\right)\right]=0$, i.e.,

$$
E[X Y]=E\left[X X^{\prime}\right] \beta
$$

- Since $E\left[X X^{\prime}\right]$ is invertible, there is a unique solution to this system of equations, namely,

$$
\beta=E\left[X X^{\prime}\right]^{-1} E[X Y] .
$$

- If $E\left[X^{\prime}\right]$ is not invertible there will be more than one solution to this system of equations. Any two solutions β and $\tilde{\beta}$ will necessarily satisfy $P\left\{X^{\prime} \beta=X^{\prime} \tilde{\beta}\right\}=1$.
- In this important?: It depends on the interpretation. For instance, in the second interpretation, each such solution corresponds to the same "best" linear predictor of Y given X, whereas in the third interpretation different values of β could have wildly different implications for how X affects Y holding U constant.

Estimating β : DLS

- Let (Y, X, U) be as described and let P the marginal distribution of (Y, X).
- Let $\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)$ be an i.i.d. sequence of random vectors with distribution P.
- A natural estimator of $\beta=\left(E\left[X X^{\prime}\right]\right)^{-1} E[X Y]$ is simply

$$
\hat{\beta}_{n}=\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime}\right)^{-1}\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} Y_{i}\right)
$$

- This estimator is called the ordinary least squares (OLS) estimator of β because it can also be derived as the solution to the following minimization problem:

$$
\min _{b \in \mathbf{R}^{k+1}} \frac{1}{n} \sum_{1 \leqslant i \leqslant n}\left(Y_{i}-X_{i}^{\prime} b\right)^{2}
$$

Estimating β : DLS

CLAIM

$\hat{\beta}_{n}$ solves the following minimization problem: $\min _{b \in \mathbf{R}^{k+1}} \frac{1}{n} \sum_{1 \leqslant i \leqslant n}\left(Y_{i}-X_{i}^{\prime} b\right)^{2}$.
$\overline{3}$

Matrix Notation

Define

$$
\begin{aligned}
\mathbb{Y} & =\left(Y_{1}, \ldots, Y_{n}\right)^{\prime} \\
\mathbb{X} & =\left(X_{1}, \ldots, X_{n}\right)^{\prime} \\
\hat{\mathbb{Y}} & =\left(\hat{Y}_{1}, \ldots, \hat{Y}_{n}\right)^{\prime} \\
& =\mathbb{X} \hat{\beta}_{n} \\
\mathbb{U} & =\left(U_{1}, \ldots, U_{n}\right)^{\prime} \\
\hat{\mathbb{U}} & =\left(\hat{U}_{1}, \ldots, \hat{U}_{n}\right)^{\prime} \\
& =\mathbb{Y}-\hat{\mathbb{Y}} \\
& =\mathbb{Y}-\mathbb{X} \hat{\beta}_{n} .
\end{aligned}
$$

In this notation,

$$
\hat{\beta}_{n}=\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1} \mathbb{X}^{\prime} \mathbb{Y}
$$

and may be equivalently described as the solution to

$$
\min _{b \in \mathbf{R}^{k+1}}|\mathbb{Y}-\mathbb{X} b|^{2}
$$

Hence, $\mathbb{X} \hat{\beta}_{n}$ is the vector in the column space of \mathbb{X} that is closest (in terms of Euclidean distance) to \mathbb{Y}.

$$
\mathbb{X} \hat{\beta}_{n}=\mathbb{X}\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1} \mathbb{X}^{\prime} \mathbb{Y}
$$

is the orthogonal projection of \mathbb{Y} onto the $((k+1)$-dimensional) column space of \mathbb{X}.
The matrix

$$
\mathbb{P}=\mathbb{X}\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1} \mathbb{X}^{\prime}
$$

is known as a projection matrix. It projects a vector in \mathbf{R}^{n} (such as \mathbb{Y}) onto the column space of \mathbb{X}. Note that $\mathbb{P}^{2}=\mathbb{P}$, which reflects the fact that projecting something that already lies in the column space of \mathbb{X} onto the column space of \mathbb{X} does nothing.

The matrix \mathbb{P} is also symmetric. The matrix

$$
\mathbb{M}=\mathbb{I}-\mathbb{P}
$$

is also a projection matrix. It projects a vector onto the (($n-k-1$)-dimensional) vector space orthogonal to the column space of \mathbb{X}. Hence, $\mathbb{M} \mathbb{X}=0$. Note that $\mathbb{M} \mathbb{Y}=\hat{\mathbb{U}}$. For this reason, \mathbb{M} is sometimes called the "residual maker" matrix.

