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Past & Future

LAST CLASS
I Non-Parametric Regression
I q-NN Estimator
I Nadaraya-Watson Estimator
I Local Linear Regression

TODAY
I The Regression Discontinuity Design
I Sharp and Fuzzy RDD
I Bandwidth Choice
I Matching Estimators
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Evaluation Methods

Main goal: learn about treatment effect of policy or intervention on an outcome.

Key requirement: constructing counterfactuals in a convincing way.

Five approaches: to deal with endogenous selection

I Randomized controlled experiments (or RCTs)
... exploit controlled/randomized assignment rule.

I Natural experiments
... exploit some “natural” randomization - a type of DiD approach.

I Instrumental methods and control function methods
...rely on exclusion restrictions or models for the assignment rule.

I Matching methods
...attempt to reproduce the treatment group among the non-treated.

I Discontinuity design methods
...exploit discreteness in assignment rule.
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General notation

I Potential outcomes:

Y(0) potential outcome in the absence of treatment
Y(1) potential outcome in the presence of treatment

.

I Treatment assignment
D ∈ {0, 1} .

I Common parameters of interest:

Y(1) − Y(0) treatment effect
E[Y(1) − Y(0)] average treatment effect (ATE)
E[Y(1) − Y(0)|D = 1] average treatment on the treated (ATT)

.

I Problem: Only one potential outcome is observed for each unit.
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RDD: basics

I RD Designs are defined by a triplet: score, cutoff, treatment.

I Units receive a score (e.g., grade in the SAT).

I A treatment is assigned based on the score and a known cutoff (e.g., 2100).

I The treatment (e.g., scholarship):

is given to units whose score is above the cutoff.

is withheld from units whose score is below the cutoff.

I The abrupt change in the probability of treatment assignment allows us to learn something about
effect of treatment.
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RDD: notation

I Score or running variable: Zi ∈ R observed for all units.

I Cutoff: a known constant c. We normalize to 0 wlog.

I Treatment assignment (sharp):
Di = I{Zi > 0} .

I Observed outcome Yi is given by (c normalized to 0)

Yi =

{
Yi(0) if Zi < 0
Yi(1) if Zi > 0

and therefore it follow that

E[Y|Z = z] =

{
E[Y(0)|Z = z] if z < 0
E[Y(1)|Z = z] if z > 0

.

I Idea: Exploit discontinuity in E[Y|Z].
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RDD: graphical intuition

−4 −2 0 2 4

−4

−2

0

2

4

6

8

E[Y(1)|Z]

E[Y(0)|Z]

Z

E(
Y
(a
)|

Z
)

control treatment



7

RDD: graphical intuition
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Continuity: key assumption

I A special situation occurs at the cutoff Z = 0
... only point at which we may “almost” observe both curves .

I Consider two groups of units:

with score equal to 0, Zi = 0 → treated

with with score barely below 0, Zi = −ε→ control

I If the values of E[Y(0)|Z = −ε] are not abruptly different from E[Y(0)|Z = 0], then units with Zi = −ε
are a valid counterfactual to units with Zi = 0.

I More formally,

E[Y(1) − Y(0)|Z = 0] = E[Y(1)|Z = 0]︸ ︷︷ ︸
E[Y|Z=0]

− E[Y(0)|Z = 0]︸ ︷︷ ︸
limz→0− E[Y|Z=z]

.

I Requirement: E[Y(0)|Z = z] is continuous at z = 0.
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RDD parameter

θsrd = E[Y(1) − Y(0)|Z = 0] = E[Y|Z = 0] − lim
z↑0

E[Y|Z = z] .

I Local: θsrd is a “local” average treatment effect like the LATE parameter discussed under IV, but is
not necessarily the same parameter.

I Trick: RDD uses the discontinuous dependence of D on Z to identify a local average treatment effect

P{D = 1|Z = z} is discontinuous at z = 0 .

I In the so-called Sharp design there is perfect compliance:

I every unit with score above 0 receives treatment
I every unit with score below 0 is in the control group

P{D = 1|Z = z} =

{
0 if z < 0
1 if z > 0

.

I In the so-called Fuzzy design there may be imperfect compliance (Later)
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QUESTIONS?
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Estimation: sharp RDD

I Nonparametric estimators of E[Y|Z = 0] and limz→0− E[Y|Z = z] could be constructed using data to
the right and left of 0.

I Boundary issue: the point of interest, E[Y|Z = 0], is always on the boundary.

I LL estimators have better properties at the boundary than kernel estimators.

I Bias of LL at boundary: order h2.

I Bias of NW at boundary: order h > h2.

I Local linear regression is especially easy in this case:

I Only care about estimation at the cut-off c = 0.

I Compute kernel weights based on c = 0 and run a weighted least squares regression on observations
either above (or below) zero.

I With uniform kernel: LL is the same as two unweighted linear regressions on observations with
Zi ∈ [−hn, 0) and Zi ∈ [0, hn].
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More on Estimation

I Estimator of E[Y|Z = 0].

{β̂+0 , β̂+1 } = argmin
(b+0 ,b+1 )

n∑
i=1

k
(

Zi
h

)
I{Zi > 0}(Yi − b+0 − b+1 Zi)

2 .

I Estimator of limz→0− E[Y|Z = z].

{β̂−0 , β̂−1 } = argmin
(b−0 ,b−1 )

n∑
i=1

k
(

Zi
h

)
I{Zi < 0}(Yi − b−0 − b−1 Zi)

2 .

I Note: the regressor is (Zi − c) but c = 0 here.

Estimator of θsrd

θ̂srd = β̂+0 − β̂−0 .
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Local Linear Regression
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Local Linear Regression
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Local Linear Regression
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Bandwidth choice

I How to choose hn?

I Key idea: bias and variance trade-off. Heuristically:

↑ hn ⇒↑ Bias but ↑ hn ⇒↓ Variance

I Imbens & Kalyanaraman (2012,REStud): “optimal” plug-in,

ĥIK = ĈIK · n−1/5

I Calonico, Cattaneo & Titiunik (2014, ECMA): improvement of IK

ĥCCT = ĈCCT · n−1/5 .

Important: also propose bias correction methods and new variance estimators that account for the
additional noise introduced by estimating bias.

I Still common to see papers based on undersmoothing, i.e., use nh5 → 0 and ignore asymptotic bias.
CCT is a better approach.
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Bias in LL Regression - bandwidth
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QUESTIONS?
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Other RD designs

I Sharp RD (SRD) and Fuzzy RD (FRD)

I Sharp: perfect compliance.

I Fuzzy: P{D = 1|Z = z} discontinuous at c but not necessarily from 0 to 1.

some units above c may decide not to get treatment (e.g. voting eligibility at 18).

I Kink RD (KRD) and Kink Fuzzy RD (KFRD)

I P{D = 1|Z = z} has a kink at c (but it is continuous)

I Introduces kinks of E[Y|Z = z] at c.

I Multiple scores RD and Geographic RD

I Discontinuity happens in R2 (or higher).

I E.g., need high scores in “math” and “English”.

I Multiple Cutoff RD

Inference methods use similar tools (LL regression, etc) but are different.
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Fuzzy RD

I Imperfect compliance:

I probability of receiving treatment changes at c, but not necessarily from 0 to 1.

I some units with score above c may decide not to take up treatment

I E.g., Z is a test score and D is receipt of a scholarship: having a score larger than c makes the application
“strong” but does not guarantee a scholarship.

I Allows for identification of another local treatment effect.

I Argument is similar to LATE, but a little subtler due to limits.

I Canonical parameter:

θfrd =
E[Yi(1)|Zi = c] − E[Yi(0)|Zi = c]
E[Di(1)|Zi = c] − E[Di(0)|Zi = c]

=
limz↓c E[Yi|Zi = z] − limz↑c E[Yi|Zi = z]
limz↓c E[Di|Zi = z] − limz↑c E[Di|Zi = z]

.

I Interpretation: ATE for units with Zi = c (by regression discontinuity), and only for compliers (people
who are affected by the threshold).
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Fuzzy RD: Estimation

I We now need 4 local linear regressions at c

{β̂+0 , β̂+1 } = argmin
(b+0 ,b+1 )

n∑
i=1

k
(

Zi − c
h

)
I{Zi > c}(Yi − b+0 − b+1 (Zi − c))2

{β̂−0 , β̂−1 } = argmin
(b−0 ,b−1 )

n∑
i=1

k
(

Zi − c
h

)
I{Zi < c}(Yi − b−0 − b−1 (Zi − c))2

{γ̂+0 , γ̂+1 } = argmin
(g+0 ,g+1 )

n∑
i=1

k
(

Zi − c
h

)
I{Zi > c}(Di − g+0 − g+1 (Zi − c))2

{γ̂−0 , γ̂−1 } = argmin
(g−0 ,g−1 )

n∑
i=1

k
(

Zi − c
h

)
I{Zi < c}(Di − g−0 − g−1 (Zi − c))2

I Then estimate θfrd as

θ̂frd =
β̂+0 − β̂−0
γ̂+0 − γ̂−0
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Fuzzy RD as TSLS

I We can define T = I{Z > c} as the intention to treat

I Then, T is a valid instrument for D.

I Conditional on Z, T is exogenous.

I Similar to the situation we found in LATE.

FUZZY AS TSLS
The LL approach with uniform kernels and same bandwidths is numerically equivalent to a TSLS
regression:

Yi = δ0 + θfrdDi + δ1(Zi − c) + δ2Ti(Zi − c) + Ui

with Ti as the excluded instrument for Di on the sample {i : c − hn 6 Zi 6 c + hn}.
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Validity of RD: manipulation

I RD imposes relatively weak assumptions.

I It also identifies a very specific and local parameter.

I Identification follows from continuity of E[Y(d)|Z = z] at z = 0.

I Assumption is fundamentally untestable.

I Concern about the following situation:

I Running variable is a test score.

I Individuals know the threshold and have the option of re-taking the test, and may do so if scores are just
below the threshold.

I Leads to a discontinuity of the density fZ(z) of Z at the threshold c, and possibly a discontinuity of
E[Y(d)|Z = z] since

E[Y(d)|Z = z] =
∫

y fY(d)|Z(y|z)dy where fY|Z(y|z) =
fYZ(y, z)

fZ(z)
.

I This invalidates the design!

I This problem is called “manipulation” of the running variable, McCrary (2008).
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Validity of RD: discontinuity in covariates

I Suppose there are other observed (X) and unobserved (U) factors that affect potential outcomes,

Y(d) = md(Z, X) + U .

I Suppose that the dist. of X is discontinuous at z = 0.

I The discontinuity in X at 0 may affect the outcome, and these effects may be attributed erroneously
to the treatment of interest.

I Common practice: construct a test of the null that

H0 : lim
z↑0

E(X|Z = z) = lim
z↓0

E(X|Z = z)

I Rejection: suggestive that E(Y(d)|Z = z) may not be continuous either.

I The discontinuity in X may confound the effect of the treatment.

I Intuition is about the entire distribution of X; not only its mean: see Canay and Kamat (2018).
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Validity of RD: Two tests

Manipulation

I McCrary (2008, JoE) proposes a test for continuity of the density of fz(z) at the cut-off c.

I In principle, one does not need continuity of the density of Z at c, but a discontinuity is suggestive of
violations of the no-manipulation assumption.

I Bugni and Canay (2021) propose a new test based on order statistics that does not require
smoothness assumptions.

Continuity of Covariates

I Canay and Kamat (2018) propose a test for the continuity of FX|Z(x|z) at the cut-off value.

I Test is easy to implement and based on permutation tests.

I Novel asymptotic arguments involved.
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RD Packages

https://rdpackages.github.io

I rdrobust package: estimation, inference and graphical presentation using local polynomials,
partitioning, and spacings estimators.

I rdrobust: RD inference (point estimation and CI; classic, bias-corrected, robust).

I rdbwselect: bandwidth or window selection (IK, CV, CCT).

I rdplot: plots data (with “optimal" block length).

I rddensity package: discontinuity in density test at cutoff (a.k.a. manipulation testing) using local
polynomial density estimator.

I rddensity: manipulation testing using local polynomial density estimation.

I rdbwdensity: bandwidth or window selection.

http://sites.northwestern.edu/iac879/software

I rdperm package: approximate permutation test for RDD

I rdcont package: approximate sign-test for RDD

https://rdpackages.github.io
https://sites.northwestern.edu/iac879/software/
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QUESTIONS?
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Matching Estimators

Matching Estimators

I Suppose we observe (Y, D, X) and consider the following assumption.

UNCONFOUNDEDNESS

(Y(0), Y(1))⊥⊥D | X

I Other names: selection on observables, conditional independence, etc.

I Idea: find (or “match”) units in the treatment group (D = 1) and control group (D = 0) with the same
value of X, i.e., X = x,

E[Y|D = 1, X = x] − E[Y|D = 0, X = x] .

I Unconfoundedness: identifies the “conditional” ATE,

E[Y(1) − Y(0)|X = x] = E[Y(1)|D = 1, X = x] − E[Y(0)|D = 0, X = x]
= E[Y|D = 1, X = x] − E[Y|D = 0, X = x]

where the first line follows by unconfoundedness.
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On unconfoundedness

I Unconfoundedness: for subgroups of agents with the same X there are no unobservable
differences between the treatment and control groups.

I Using the “matching” approach then identifies the CATE.

I To be able to “match”, we need an overlap assumption:

0 < P{D = 1|X = x} < 1

I Complication arises when X is continuously distributed.

I Overlap: Compare with sharp RDD⇒ never holds!

P{D = 1|Z < c} = 0 and P{D = 0|Z > c} = 0 .

I Unconfoundedness: Compare with sharp RDD⇒ always holds!

D = I{Z > c} so (Y(0), Y(1))⊥⊥D | Z trivially .
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Matching Metric

I If X ∈ Rk has continuous components, the event {X = x} has measure zero
.... so previous strategy is not feasible

I Idea: match X’s that are “close” according to some matching metric.

MAHALANOBIS DISTANCE

A common matching metric is given by

Mij = (Xi − Xj)
′Σ−1(Xi − Xj)

where Σ = Var[X]. Then j is the qth closest to Xi if

n∑
s=1

I{Mis 6 Mij} = q .

I Other metrics: Euclidean
Mij = |Xi − Xj|

or the diagonal version of the Mahalanobis distance,

Mij = (Xi − Xj)
′ diag[Σ−1](Xi − Xj) .
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Matching Estimator

I For a fix q, let jq(i) be the index j ∈ {1, . . . , n} that solves

Opposing treatment Dj = 1 − Di

Opposing qth closest to i
∑

s:Ds=1−Di
I{Mis 6 Mij} = q .

I jq(i) is the index of the unit that is the qth closest to unit i in terms of the covariate values, among the
units with the treatment opposite to that of unit i.

I Let Jq(i) denote the set of indices for the first q matches for unit i:

Jq(i) = {j1(i), . . . , jq(i)}

I The matching estimator of θate = E[Y(1) − Y(0)] is given by

MATCHING ESTIMATOR

θ̂ate =
1
n

n∑
i=1

(Ŷi(1) − Ŷi(0)) where Ŷ(d) =

{
Yi if Di = d
1
q
∑

j∈Jq(i) Yj if Di 6= d
.
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Properties of Matching

I Note: it is a type of nearest neighbor (NN) estimator.

I As q increases the variance goes down, but the bias goes up.

I Abadie and Imbens (2006,ECMA) study asymptotic properties of θ̂ate under a fixed number of
matches (as n→∞):

I Consistency: θ̂ate is consistent as n →∞ for fixed q.

I Bias: is of order O(n−1/kc), where kc is the dimension of the (cont.) covariates.

I Rate of convergence: variance is of order O(1/n). However,
√

nBias → 0, C, or∞ if kc = 1, kc = 2, or
kc > 2, respectively. So, if kc > 2, estimator is not

√
n-asympt. normal.

I Efficiency: θ̂ate is generally not efficient. Even if the bias is low enough, the estimators are not efficient
given a fixed number of matches.

I Bootstrap: AI(08) show that the bootstrap is generally invalid for matching estimators due to
nonsmoothness in the matching process.

I Subsampling: valid for kc 6 2.
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Propensity Score Matching

I Let p(x) = P{Di = 1|Xi = x} denote the propensity score.

I Unconfoundedness implies that
(Y(0), Y(1))⊥⊥D | p(X) .

I Important observation due to Rosenbaum and Rubin (1983).

I To see this note that

P{D = 1|Y(0), Y(1), p(X)} = E [ E[D|Y(0), Y(1), P(X), X] | Y(0), Y(1), p(X) ]

= E [ E[D|Y(0), Y(1), X] | Y(0), Y(1), p(X) ]

= E [ E[D|X] | Y(0), Y(1), p(X) ]

= E [ p(X) | Y(0), Y(1), p(X) ]

= p(X) ,

which is the same as P{D = 1|p(X)}.

I Lesson: all biases due to observable covariates can be removed by conditioning solely on the
propensity score.
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Propensity Score Matching II

I The Rosenbaum-Rubin result implies that

θate = E[E[Y|D = 1, p(X)] − E[Y|D = 0, p(X)]] .

I So: can use the Matching estimator matching on the propensity score only.

I This can be reformulated by noting that

E
[

DY
p(X)

]
= E

[
1

p(X)
E [DY(1)|p(X)]

]
= E

[
1

p(X)
E[D|p(X)]E[Y(1)|p(X)]

]
= E[Y(1)]

and similarly

E
[
(1 − D)Y
1 − p(X)

]
= E[Y(0)] .

Which in turn allows us to write

θate = E
[

[Di − p(Xi)]Yi
p(Xi)(1 − p(Xi))

]
.

I Propensity score weighting:

θ̂n =
1
n

n∑
i=1

(
[Di − p(Xi)]Yi

p(Xi)(1 − p(Xi))

)
.
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Propensity Score Matching III

I Propensity score is a scalar: AI imply that the bias term is of lower order than the variance term and
matching leads to a

√
n-consistent, asymptotically normal estimator.

I Problem: the propensity score is an unknown function.

I Estimator based on the true propensity score has the same asymp. variance in AI.

I With estimated propensity scores, the asymptotic variance of matching estimators is more involved
due to the generated regressor

...worked out in Hahn and Ridder (2013, ECMA): “The Asymptotic Variance of Semi-parametric Estimators
with Generated Regressors”.
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