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Past & Future

LAST CLASS

I Generalized Method of Moments
I Empirical Likelihood
I Asymptotic Properties

TODAY
I Panel Data: intuition
I Fixed Effects: FD
I Fixed Effects: Demeaning
I Random Effects
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Panel Data

I Let (Y, X,η, U) be a random vector where Y, η, and U take values in R and X takes values in Rk.

I We are not assuming that the first component of X is a constant equal to one.

I Let β = (β1, . . . ,βk)
′ ∈ Rk be such that

Y = X ′β+ η+ U ,

where we assume both η and U are unobserved.

I We also allow for X and η to be correlated, so that E[Xη] 6= 0.

I Given this, combining η+ U into a single unobservable would require an IV to get an estimator of β,
even if we assume E[XU] = 0.

I Today: when we observe the same units (individuals, firms, families, etc) multiple times (across time,
regions, etc) we may identify and consistently estimate β without an IV, at least under certain
restrictions on η and U.
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Two Period Model

I Model: Suppose that we observe the same unit at two different points in time, and that the
unobservable η captures unobserved heterogeneity that is unit specific and constant over time,

Y1 = X ′1β+ η+ U1

Y2 = X ′2β+ η+ U2 .

We are also assuming that β is a constant parameter that does not change over time.

I Simple Approach: take first differences:
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Two Period Model

E[∆X∆U] = E[X2U2] + E[X1U1] − E[X2U1] − E[X1U2] .

I For the expression above to be equal to zero, we need
I 1 E[X2U2] = E[X1U1] = 0 - the standard orthogonality assumption.

I 2 E[X2U1] = E[X1U2] = 0 - covariates are uncorrelated with the unobservables in other time periods.

I 1 + 2 is called strict exogeneity.

I Under 1 + 2 : Least squares of ∆Y on ∆X delivers a consistent estimator of β since

β = E[∆X∆X ′]−1E[∆X∆Y] , (1)

provided that E[∆X∆X ′] is invertible.
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Remarks

I Constant Unobserved factors: observing the same units over multiple time periods (the so-called
panel data) allow us to control for unobserved factors that are constant over time (the η).

The trick we just used would not work if η was allowed to change over time.

I Time-varying covariates: the requirement “E[∆X∆X ′] is invertible” implies X changes over time.
The trick does not allow us to estimate coefficients of variables that are constant over time.

Indeed, such variables are removed by the transformation in the same way η is removed.

I Strict exogeneity: is arguably stronger than simply assuming E[XtUt] = 0 for all t. Cases where X2
is a decision variable of an agent in a context where U1 is known at t = 2 may seriously question the
validity of E[X2U1] = 0.

This type of dynamic argument is distinct from the one in omitted variables bias.
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QUESTIONS?
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Fixed Effects: FD

I Let (Y, X,η, U) be distributed as described above and denote by P the distribution of

(Yi,1, . . . , Yi,T, Xi,1, . . . , Xi,T) .

I We assume that we have a random sample of size n, so that the observed data is given by

{(Yi,t, Xi,t) : 1 6 i 6 n, 1 6 t 6 T} .

I Sampling process: i.i.d. across i, but agnostic about dependence over time.

I Consider
Yi,t = X ′i,tβ+ ηi + Ui,t, i = 1, . . . , n t = 1, . . . , T , (2)

and define
∆Xi,t = Xi,t − Xi,t−1 for t > 2 ,

and proceed analogously with the other random variables. Note again that ∆ηi = 0.

I Applying this transformation to (2), we get

∆Yi,t = ∆X ′i,tβ+∆Ui,t , i = 1, . . . , n t = 2, . . . , T .



9

FD: Assumptions

I A regression of ∆Yi,t on ∆Xi,t leads to a consistent estimator of β under the following assumptions:

FD1. E[Ui,t|Xi,1, . . . , Xi,T] = 0 for all t = 1, . . . , T,

FD2.
∑T

t=2 E[∆Xi,t∆X ′i,t] <∞ is invertible.

I FD1: sufficient for E[∆Ui,t∆Xi,t] = 0. FD2: fails if some component of Xi,t does not vary over time.

I First-difference estimator:

β̂fd
n =

( n∑
i=1

T∑
t=2

∆Xi,t∆X ′i,t

)−1( n∑
i=1

T∑
t=2

∆Xi,t∆Yi,t

)
.

I On Efficiency: under the assumption that Var[Ui,t|Xi,1, . . . , Xi,T] is constant (homoskedasticity),
together with the assumption of no serial correlation in Ui,t, it is possible to show that β̂fd

n is not
asymptotically efficient and that a different transformation of the data delivers an estimator with a
lower asymptotic variance under those assumptions.
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Deviations from Means: Assumptions

I De-meaning: an alternative transformation to remove the individual effects ηi

I Let

Ẋi,t = Xi,t − X̄i where X̄i =
1
T

T∑
t=1

Xi,t ,

and define Ẏi,t and U̇i,t analogously.

I Note that η̇i = 0 for all i = 1, . . . , n. We then obtain:

Ẏi,t = Ẋ ′i,tβ+ U̇i,t, i = 1, . . . , n t = 1, . . . , T . (3)

I A regression of Ẏi,t on Ẋi,t provides a consistent estimator of β under the following two assumptions,

FE1. E[Ui,t|Xi,1, . . . , Xi,T] = 0 for all t = 1, . . . , T,

FE2.
∑T

t=1 E[Ẋi,tẊ ′i,t] <∞ is invertible.
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De-meaning: Remarks

I FE1: same condition as FD1, which is sufficient for E[U̇i,tẊi,t] = 0.

I FE2: fails if some component of Xi,t does not vary over time.

I Fixed effect estimator: The de-meaning estimator (commonly known as the fixed effect estimator or
dummy variable estimator) takes the form

β̂fe
n =

( n∑
i=1

T∑
t=1

Ẋi,tẊ
′
i,t

)−1( n∑
i=1

T∑
t=1

Ẋi,tẎi,t

)
. (4)

I On Efficiency: under the assumption that Var[Ui,t|Xi,1, . . . , Xi,T] is constant (homoskedasticity),
together with the assumption of no serial correlation in Ui,t, it is possible to show that β̂fe

n is
asymptotically efficient.
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Asymptotic Properties

I Asymptotic approximation in panel data models: two elements that were not present with
cross-sectional data: 1 the data is i.i.d. across i but may be dependent across time; 2 the data
has two indices now: the number of units (n) and the number of time periods (T).

I Required: nT →∞, but we may achieve this by all sort of different assumptions about how n and/or
T grow.

I Short Panels: n→∞ and T fixed vs Long Panels: n→∞ and T →∞.

I Under asymptotics where n→∞ and fixed T, we can show that β̂fe
n and β̂fd

n are asymptotically
normal using similar arguments to those we use before, provided we assume

(Yi,1, . . . , Yi,T, Xi,1, . . . , Xi,T, Ui,1, . . . , Ui,T)

are i.i.d. across i = 1, . . . , n.
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Proof

√
n(β̂fe

n −β) =

(
1
n

n∑
i=1

T∑
t=1

Ẋi,tẊ
′
i,t

)−1(
1√
n

n∑
i=1

T∑
t=1

Ẋi,tU̇i,t

)
.
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Proof

√
n(β̂fe

n −β) =

(
1
n

n∑
i=1

Ẋ ′i Ẋi

)−1(
1√
n

n∑
i=1

Ẋ ′i Ui

)
.



15

Estimating V: CCE

√
n(β̂fe

n −β)
d→ N(0, Vfe) where Vfe = Σ−1

Ẋ
ΩΣ−1

Ẋ
.

I Historically, researchers often assumed that Ui,t was serially uncorrelated with variance independent
of Xi,t (i.e. homoskedastic). Default standard errors in Stata are still based on these assumptions!

I Most common strategy: use the fully robust consistent estimator of the asymptotic variance,

V̂fe =

(
1
n

n∑
i=1

Ẋ ′i Ẋi

)−1(
1
n

n∑
i=1

Ẋ ′i ÛiÛ
′
i Ẋi

)(
1
n

n∑
i=1

Ẋ ′i Ẋi

)−1

,

where Ûi = Ẏi − Ẋiβ̂
fe
n . This is what Stata computes when one uses the cluster(unit) option to

xtreg where unit is the variable that indexes i.

I This estimator generalizes the HC estimator and is known as a cluster covariance estimator (CCE)

and is consistent as n→∞, i.e., V̂fe P→ Vfe.



16

On Efficiency

I Traditional arguments in favor of the fixed effects (or within-group) estimator β̂fe
n over the

first-difference estimator β̂fd
n rely on the fact that under homoskedasticity and no-serial correlation of

Ui,t, β̂fe
n has a lower asymptotic variance than β̂fd

n .

I Intuition: taking first differences introduces correlation in ∆Ui,t as

E[∆Ui,t∆Ui,t−1] = E[Ui,tUi,t−1 − Ui,t−1Ui,t−1 − Ui,tUi,t−2 + Ui,t−1Ui,t−2]

= −Var(Ui,t−1) .

I Other extreme: Ui,t follows a random walk, i.e., Ui,t = Ui,t−1 + Vi,t for some i.i.d. sequence Vi,t,
then ∆Ui,t = Vi,t.

I These arguments still rely on homoskedasticity, so it is advised to simply use a robust standard error
as above and forget about efficiency considerations.

I T = 2: these two estimators are numerically the same. In addition, first differences are used in
dynamic panels and difference in differences, as we will discuss later.
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QUESTIONS?
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Random Effects

PANEL DATA

Yi,t = X ′i,tβ+ ηi + Ui,t, i = 1, . . . , n t = 1, . . . , T ,

I Random effect models add the following assumption: RE1. E[ηi|Xi,1, . . . , Xi,T] = 0 .

I Meaning: Unobservable time-invariant factors that were being controlled for in the fixed effects
approach are now assumed to be mean independent (ergo, uncorrelated) with the covariates at all
time periods.

I The strict exogeneity condition of the fixed effects approach (i.e. FE1) is still maintained, so that the
aggregate error term

Vit = ηi + Ui,t

now satisfies E[Vit|Xi1, . . . , XiT] = 0 for all t = 1, . . . , T.

I Immediate implication: We can just estimate β by OLS!
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Assumptions in Random Effects

I Idea behind random effects: exploit the serial correlation in Vit that is generated by the common
shock ηi under some fairly strong assumptions with the goal of improving efficiency.

RE2. (i) Var[Ui,t|Xi,1, . . . , Xi,T] = σ
2
U,

(ii) Var[ηi|Xi,1, . . . , Xi,T] = σ
2
η,

(iii) E[Ui,tUi,s|Xi,1, . . . , Xi,T] = 0 for all t 6= s,
(iv) E[Ui,tηi|Xi,1, . . . , Xi,T] = 0 for all t = 1, . . . , T.

Under these assumptions,

Var[Vi,t|Xi,1, . . . , Xi,T] = E[η2
i + U2

i,t + ηiUi,t | Xi,1, . . . , Xi,T] = σ
2
η + σ

2
U ,

and
E[Vi,tVi,s|Xi,1, . . . , Xi,T] = E[η2

i + Ui,tUi,s + ηiUi,t + ηiUi,s | Xi,1, . . . , Xi,T] = σ
2
η .

I Assumptions lead to:
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Random Effects

ASSUMPTIONS LEAD TO

Ω = E[ViV
′
i |Xi] = σ

2
UIT + σ2

ηιTι
′
T ,

where IT is the T× T identity matrix and ιT is a T-dimensional vector of ones.

I Random effect estimator: the estimator with the lowest asymptotic variance is

β̂re
n =

( n∑
i=1

X ′iΩ
−1Xi

)−1( n∑
i=1

X ′iΩ
−1Yi

)
, (5)

where Xi = (Xi,1, . . . , Xi,T)
′ is the T× k vector of stacked observations for unit i, and similarly for Yi.

I Note: this is just a generalized least squares (GLS) estimator of β. This GLS estimator is,
nevertheless, unfeasible, since Ω depends on the unknown parameters σ2

U and σ2
η. However, these

two can be easily estimated to form Ω̂ and deliver a feasible GLS estimator of β.
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Random Effects: Remarks

I First: the efficiency gains hold under the additional structure imposed by RE1.

I Second: the efficiency gains hold under the homoskedasticity and independence assumptions in
RE2 and do not hold more generally.

I Third: unlike the fixed effects estimator, the random effects approach allows to estimate regression
coefficients associated with time-invariant covariates.

I Fourth: under RE1 and RE2 β is identified in a single cross-section. The parameters that require
panel data for identification in this model are the variances of the components of the error σ2

η and
σ2

U, which are needed for the GLS approach.

I Finally: the terminology “fixed effects” and “random effects” is arguably confusing as ηi is random in
both approaches.
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Hausman Test

I Hausman specification test: compares β̂fe
n with β̂re

n to test the validity of RE1 (assuming RE2
holds).

I Under the null hypothesis that RE1 holds, both estimators are consistent but β̂re
n is efficient.

I Under the alternative hypothesis, β̂fe
n is consistent while β̂re

n is not.

I Suppose we were to define a new estimator β̂∗n as follows

β̂∗n = β̂fe
n I{Hausman test rejects}+ β̂re

n I{Hausman test accepts} .

I The problem with this new estimator is that its finite sample distribution looks very different from the
usual normal approximations (uniformity issue).

I The use of β̂∗n should be avoided.
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Dynamic Models

I One benefit of panel data: allows to analyze relationships that are inherently dynamic.

I Model: let {Yi,t : 1 6 i 6 n, 1 6 t 6 T} be a sequence of random variables and consider

Yi,t = ρYi,t−1 + ηi + Ui,t, i = 1, . . . , n t = 2, . . . , T ,

where Yi,t−1 has a direct effect on Yi,t, a feature sometimes referred to as state dependence.

I We assume that |ρ| < 1 and that the model is dynamically complete, i.e.,

E[Ui,t|Yi,t−1, Yi,t−2, . . . ] = 0 for all t = 1, . . . , T.

I First Differences:

∆Yi,t = ρ∆Yi,t−1 +∆Ui,t, i = 1, . . . , n t = 2, . . . , T ,

I Problem:
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Dynamic Models

∆Yi,t = ρ∆Yi,t−1 +∆Ui,t, i = 1, . . . , n t = 2, . . . , T ,

I Similar problem with de-meaning transformations. This inherent endogeneity is a generic feature of
models that have both state dependence and time-invariant heterogeneity.

I IV approach: use lagged outcomes (Yi,t−2) as instruments.
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THE END!
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