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Past & Future

LAST CLASS
I Related to Classification Tress
I Latent Index and Identification
I Identification via Median Independence
I Parametric Models: Logit & Probit

TODAY
I Sparcity
I LASSO
I Properties
I Adaptive LASSO
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High Dimensionality

I Let (Y, X, U) be a random vector where Y and U take values in R and X takes values in Rk.

I Let β = (β1, . . . ,βk)
′ ∈ Rk be such that

Y = X ′β+ U .

I Data: a random sample {(Yi, Xi) : 1 6 i 6 n} from the distribution of (Y, X) and without loss of
generality, we further assume that

Ȳn ≡
1
n

n∑
i=1

Yi = 0 and σ̂2
n,j ≡

1
n

n∑
i=1

(Xi,j − X̄j)
2 = 1 ,

where Xi,j denotes the jth component of Xi.

I Goal: study estimation of β when k is large relative to n. That could mean that k < n, but not by
much, or simply that k > n. For simplicity, we assume X and U are independent.
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Sparcity

I k > n: the OLS estimator is not well-behaved - the X ′X matrix does not have full rank.

I The estimator is not unique and will overfit the data.

I If all explanatory variables are important in determining the outcome, it is not possible to tease out
their individual effects.

I However, if the model is sparse then it might be possible to discriminate between the relevant and
irrelevant components of X.

DEFINITION (SPARSITY)

Let S = {j : βj 6= 0} be the identity of the relevant regressors. A model is said to be sparse if s = |S| is fixed
as n→∞.

I Oracle: If we knew the identity of the relevant regressors S then we could do LS as usual.

DEFINITION (ORACLE ESTIMATOR)

The oracle estimator β̂o
n is the infeasible estimator that is estimated by least squares using only the

variables in S.
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Consistency

In practice: we do not know the set S and so our goal is to estimate β and perhaps S.
We do this by exploiting sparcity. Three properties are important.

DEFINITION (ESTIMATION CONSISTENCY)

An estimator β̂n is estimation consistent if

β̂n
P→ β .

DEFINITION (MODEL-SELECTION CONSISTENCY)
Let

Ŝn = {j : β̂n,j 6= 0}

be the set of relevant covariates selected by an estimator β̂n. Then, β̂n is model-selection consistent if

P{Ŝn = S}→ 1 as n→∞ .

DEFINITION (ORACLE EFFICIENCY)

An estimator β̂n is oracle efficient if it achieves the same asymptotic variance as the oracle estimator β̂o
n.
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LASSO

I LASSO is short for Least Absolute Shrinkage and Selection Operator and is one
of the well known estimators for sparse models.

I The LASSO estimator β̂n is defined as the solution to the following minimization problem

β̂n = arg min
b

( n∑
i=1

(Yi − X ′i b)2 + λn

k∑
j=1

|bj|

)
, (1)

where λn is a scalar tuning parameter. It can be alternatively described as the solution to

min
b

n∑
i=1

(Yi − X ′i b)2 subject to
k∑

j=1

|bj| 6 tn , (2)

where now tn is a scalar tuning parameter.

I LASSO corresponds to OLS with an additional term that imposes a penalty for non-zero coefficients.

I Penalty term: shrinks the estimated coefficients towards zero and this gives us model selection,
albeit at the cost of introducing bias in the estimated coefficients.
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Penalty Function

I LASSO: estimated coefficients can be exactly 0 for a given n.

I The form of the penalty function is important for selection, which does not occur under OLS or other
penalty functions (e.g., ridge regression).

I Intuition: consider penalty functions of the form
∑k

j=1 |bj|
γ .

I If γ > 1: the objective function is continuously differentiable at all points. The first order condition
with respect to βn,j would be

2
n∑

i=1

(Yi − X ′iβ)Xi,j = λnγ|βj|
γ−1sign(βj) .

Suppose βj = 0. Then, β̂n,j = 0 iff

0 =

n∑
i=1

(Yi − X ′i β̂n)Xi,j =

n∑
i=1

(Ui − X ′i (β̂n −β))Xi,j .

If U is continuously distributed, this holds with probability 0 and model selection does not occur.
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Sub-Gradient

If γ 6 1: the penalty function is not differentiable at 0. In this case, Karush-Kuhn-Tucker
conditions are expressed in terms of the subgradient.

DEFINITION (SUB-GRADIENT & SUB-DIFFERENTIAL)

The scalar g ∈ R is a sub-gradient of f (x) : R→ R at point x if f (z) > f (x) + g · (z − x) for all z ∈ R.
The set of sub-gradients of f (·) at x, denoted by ∂f (x), is the sub-differential of f (·) at x.

I LASSO: we need the sub-differential of the
absolute value f (x) = |x|.

I For x < 0 the sub-gradient is uniquely given by
∂f (x) = {−1} (for x > 0 it is ∂f (x) = {1}).

I At x = 0 the sub-differential is defined by the
inequality |z| > gz for all z, which holds for
g ∈ [−1, 1]. Thus ∂f (0) = [−1, 1].

y = |x|

1
2 x

− 1
2 x

y

x

FIGURE: Two sub-gradients of f(x) = |x| at x = 0



9

Exact Zeros

I For non-differentiable functions, the Karush-Kuhn-Tucker theorem states that a point minimizes
the objective function iff 0 is in the sub-differential.

I Applying this to our problem gives

2
n∑

i=1

(Yi − X ′i β̂n)Xi,j = λn sign(β̂n,j) if β̂n,j 6= 0

and

−λn 62
n∑

i=1

(Yi − X ′i β̂n)Xi,j6 λn if β̂n,j = 0 .

I This inequality is attained with positive probability even when U is continuously distributed.

I Model selection is therefore possible when the penalty function has a cusp at 0.
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Graphical Intuition

I The difference between using a penalty with γ = 1 (LASSO) and γ = 2 (Ridge) in the constraint
problem in (2) is illustrated in Figure 2 for the simple case where k = 2.

FIGURE: Constrained problem in (2) when k = 2: γ = 1 (left panel) and γ = 2 (right panel).
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QUESTIONS?
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Irrepresentable Condition

I For ease of exposition, we only discuss the case where k as fixed as n→∞.

I WLOG: S consists of the first s variables and partition X into X = (X ′1, X ′2)
′ where X1 are the first s

explanatory variables. Partition the variance-covariance matrix of X accordingly,

Σ = E[XX ′] =
(

E[X1X ′1] E[X1X ′2]
E[X2X ′1] E[X2X ′2]

)
.

ASSUMPTION (IRREPRESENTABLE CONDITION)

‖E[X2X ′1]E[X1X ′1]
−1 · sign(β1, . . . ,βs)‖∞ 6 1 − η for some η > 0 .

I Note: when the sign of β is unknown we require this to hold for all possible signs, i.e.,

‖E[X1X ′1]
−1E[X1X2

′]‖∞ 6 1 − η .

I Interpretation: the regression coefficients of the irrelevant variables on the relevant variables must
all be less than 1 , i.e., the former are “irrepresentable” by the latter.
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LASSO is Model Selection Consistent

THEOREM (ZHAO AND YU (2006))

Suppose k and s are fixed and that {Xi : 1 6 i 6 n} and {Ui : 1 6 i 6 n} are i.i.d. and mutually
independent. Let X have finite second moments, and U have mean 0 and variance σ2. Suppose also that
the irrepresentable condition holds and that

λn

n
→ 0 and

λn

n
1+c

2
→∞ for 0 6 c < 1 .

Then LASSO is model-selection consistent.
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Discussion

I The irrepresentable condition is a restrictive condition.

I When this condition fails and λn/
√

n→ λ∗ > 0, it can be shown that LASSO selects too many
variables (i.e., it selects a model of bounded size that contains all variables in S).

I Intuition: if the relevant and irrelevant variables are highly correlated, we can’t discriminate
between them.

I Knight and Fu (2000) showed that the LASSO estimator is asymptotically normal when

λn/
√

n→ λ∗ > 0

but that the nonzero parameters are estimated with asymptotic bias if λ∗ > 0.

I If λ∗ = 0, LASSO has the same limiting distribution as the LS estimator and so is not oracle efficient.

I Note: λn/
√

n→ λ∗ > 0 is at conflict with λn/n
1+c

2 →∞ and so LASSO cannot be both model
selection consistent and asymptotically normal (hence oracle efficient) at the same time.

I Goal: penalize small coefficients a lot and large coefficients very little or not at all. This could be
done by using weights or by changing the penalty function.
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Adaptive LASSO

DEFINITION (ADAPTIVE LASSO)

The adaptive LASSO is the estimator β̃n that arises from the following two steps.

1. Estimate β using ordinary LASSO,

β̂n = arg min
b

( n∑
i=1

(Yi − X ′i b)2 + λ1,n

k∑
j=1

|bj|

)
,

where λ1,n/
√

n→ λ∗ > 0.

2. Let Ŝ1 = {j : β̂n 6= 0} be the set of selected covariates from the first step. Estimate β by

β̃n = arg min
b

( n∑
i=1

(Yi −
∑
j∈Ŝ1

Xi,jbj)
2 + λ2,n

∑
j∈Ŝ1

|β̂n,j|
−1|bj|

)
,

where λ2,n/
√

n→ 0 and λ2,n →∞.

Note: Adaptive LASSO imposes a penalty in the second step that is inversely proportional to the
magnitude of the estimated coefficient in the first step.
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Properties

THEOREM (ZOU (2006))

Suppose {Xi : 1 6 i 6 n} and {Ui : 1 6 i 6 n} are i.i.d. and mutually independent. Let X have finite
second moments, and U have mean 0 and variance σ2. The adaptive LASSO is model selection
consistent and oracle efficient, i.e.,

√
n(β̃n −β)

d→ N(0,σ2E(X1X ′1)
−1) .

I Oracle efficiency: note that the asymptotic variance is the same we would have achieved had we
known the set S and performed OLS on it. The rates of λ1,n and λ2,n are important for this result.

I To see why the adaptive LASSO is model selection consistent and oracle efficient, consider the
following argument.

I Recall that β1, . . . ,βs 6= 0 and βs+1, . . . ,βk = 0.

I Suppose that β̂n has r non-zero components asymptotically (the first r components wlog).

I Without the irrepresentable condition, the LASSO includes too many variables, so that s 6 r 6 k.
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Informal Argument

Let u =
√

n(b −β) where b is any r× 1 vector. Let β̃n be the adaptive LASSO estimator.

√
n(β̃n −β) = arg min

u

n∑
i=1

(
Ui −

1√
n

r∑
j=1

Xi,juj

)2
+ λ2,n

r∑
j=1

|β̂n,j|
−1(|βj +

1√
n

uj|− |βj|) .

CASE 1: βj = 0
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Informal Argument

Let u =
√

n(b −β) where b is any r× 1 vector. Let β̃n be the adaptive LASSO estimator.

√
n(β̃n −β) = arg min

u

n∑
i=1

(
Ui −

1√
n

r∑
j=1

Xi,juj

)2
+ λ2,n

r∑
j=1

|β̂n,j|
−1(|βj +

1√
n

uj|− |βj|) .

CASE 2: βj 6= 0



19

QUESTIONS?



20

Penalties for Model Selection Consistency

I Another way to achieve a model-selection consistent estimator is to use a penalty function that is
strictly concave (as a function of |bj|) and has a cusp at the origin.

I LASSO is essentially OLS with an L1 penalty term. As such, it belongs to the larger class of
Penalized Least Squares estimators:

β̂PLS
n (λ) = arg min

b

( n∑
i=1

(Yi − X ′i b)2 +

k∑
j=1

pλ(|bj|)

)
.

I LASSO corresponds to the case where pλ(|ν|) = λ|ν|, but such a penalty is not strictly concave and
so model selection consistency generally does not occur.

I Some alternative penalty functions include that have the desire property are: Bridge, Smoothly
Clipped Absolute Deviation (SCAD), and Minimax Concave.
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Penalties

Alternative penalty functions that have the desire property:

1. Bridge: pλ(|ν|) = λ|ν|γ for
0 < γ < 1

2. SCAD: for a > 2,

p ′λ(|ν|) = λ
[

I
{
|ν| 6

λ

n

}
+

(aλ/n − |ν|)+
(a − 1)λ/n

I
{
|ν| >

λ

n

}]
.

3. Minimax Concave: for a > 0,

pλ(|ν|) = λ
∫ |ν|

0

(
1 −

nx
aλ

)
+

dx

where (x)+ = max{0, x}.

FIGURE: Bridge penalty (solid line), SCAD penalty (dashed line) and
minimax concave penalty (dotted line)
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Choosing lambda

I Model selection consistency imposes constraints on the growth rate of λn.

I λn for the ordinary LASSO is often chosen by Q-fold cross validation.

CROSS VALIDATION

Let Q be some integer and n = Qnq
1. Partition the sample into the sets I1, . . . , IQ each with nq members.

2. For each 1 6 q 6 Q, perform LASSO on all but the observations in Iq to obtain β̂n,−q(λ).

3. Calculate the squared prediction error of β̂n,−q(λ) on the set Iq:

Γq(λ) =
∑
i∈Iq

(Yi − X ′i β̂n,−q(λ))
2 .

4. Doing so for each q, find total error for each λ: Γ(λ) =
∑Q

q=1 Γq(λ).

I We define the cross validated λ as:

λ̂CV
n = arg min

λ
Γ(λ) .
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LASSO with CV

I There exist few results about the properties of the LASSO when λn is chosen via cross-validation.

I Recent paper: Chetverikov et al (2020, annals) show that in a model where k is allowed to depend
on n, and assuming Ui|Xi is Gaussian, it follows that

‖β̂n −β‖2,n 6 Q · ((|S| log k)/n)1/2 log7/8(kn)

holds with high probability, where ‖b −β‖2,n = ( 1
n
∑n

i=1(X
′
i b)2)1/2 is the prediction norm.

I ((|S| log k)/n)1/2 is the fastest convergence rate possible so that cross-validated LASSO is nearly
optimal.

I Not known if the log7/8(kn) term can be dropped.
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Remarks

I There are other ways to choose λn

I Example: Minimize the Bayesian Information Criterion where

σ̂2(λ) =
1
n

n∑
i=1

(Yi − X ′i β̂n(λ))
2 and BIC(λ) = log

(
σ̂2(λ)

)
+ |Ŝn(λ)|Cn

log(n)
n

where Cn is an arbitrary sequence that tends to∞.

I Under some conditions, choosing λn to minimize BIC(λ) leads to model selection consistency when
U is normally distributed.

I Today we focused on the framework that keeps k fixed even as n→∞. There exist many extensions
to the stated theorems that are valid in cases where kn = O(na) or even kn = O(en).

I Many packages exist for LASSO estimation: lassopack in Stata and glmnet or parcor in R.

I Joel will teach an entire quarter on the LASSO in 481-1 next year!
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THE END!
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