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Past & Future

PART II: TOPICS

I Non-parametric Regression
I RDD and Matching
I CART and Random Forest
I Binary Choice
I LASSO

PART III: INFERENCE

I HC Standard Errors
I HAC Standard Errors
I CR Standard Errors
I Bootstrap & Subsampling
I Randomization Tests
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Linear Model Setup

I Let (Y, X, U) be st Y and U take values in R and X takes values in Rk+1.

I The first component of X is a constant equal to one.

I Let β ∈ Rk+1 be such that
Y = X ′β+ U . (1)

Suppose that 1 E[XU] = 0, 2 that there is no perfect collinearity in X, that 3 E[XX ′] <∞, and

that 4 Var[XU] <∞.

I Let P be the distribution of (Y, X) and let (Y1, X1), . . . , (Yn, Xn) be an i.i.d. sample from P.

I Under these assumptions, we established the asymptotic normality of the OLS estimator, β̂n:

√
n(β̂n −β)

d→ N(0, V)

for
V = E[XX ′]−1E[XX ′U2]E[XX ′]−1 .



4

Testing Problem

I We wish to test
H0 : β ∈ B0 versus H1 : β ∈ B1

where B0 and B1 form a partition of Rk+1. Particular attention to hypotheses for one component of
β.

I WLOG: assume we are interested in the first slope component of β so that,

H0 : β1 = c versus H1 : β1 6= c . (2)

The CMT implies that
√

n(β̂1,n −β1)
d→ N(0, V1)

as n→∞ where V1 = V[2,2] is the element of V corresponding to β1.

I A natural choice of test statistic for this problem is the absolute value of the t-statistic,

tstat =

√
n(β̂1,n − c)√

V̂1,n

,

so that Tn = |tstat|. Required: a consistent estimator V̂n of the limiting variance V.
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HC Variance Estimation

I Part III of this course covers consistent estimators of V under different assumptions on the
dependence and heterogeneity in the data.

I We will, however, start with the usual i.i.d. setting, where one of such estimators is

V̂n =

 1
n

∑
16i6n

XiX
′
i

−1 1
n

∑
16i6n

XiX
′
i Û2

i

 1
n

∑
16i6n

XiX
′
i

−1

,

where
Ûi = Yi − X ′i β̂n .

I This is the most widely used form of the robust, heteroskedasticity-consistent standard errors and
it is associated with the work of White (1980) (see also Eicker, 1967; Huber, 1967).

I We will refer to these as robust EHW (or HC) standard errors.
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Consistency of HC standard errors

I Wish to prove: V̂n
P→ V.

I Main difficulty: showing that

1
n

∑
16i6n

XiX
′
i Û2

i
P→ Var[XU] as n→∞ .

I Note that
1
n

∑
16i6n

XiX
′
i Û2

i =
1
n

∑
16i6n

XiX
′
i U2

i +
1
n

∑
16i6n

XiX
′
i (Û

2
i − U2

i ) .

I First term: under the assumption that Var[XU] <∞, it converges in probability to Var[XU].

I Second term: we wish to show it converges in probability to zero.
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Proof

Step 1: We argue this separately for each of the (k + 1)2 terms in

1
n

∑
16i6n

XiX
′
i (Û

2
i − U2

i ) .
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Proof

Step 2: Intermediate lemma needed to show max16i6n |Û2
i − U2

i | = oP(1).

LEMMA

Let Z1, . . . , Zn be an i.i.d. sequence of random vectors such that E[|Zi|
r] <∞. Then

max
16i6n

|Zi| = oP

(
n

1
r

)
i.e. n− 1

r max
16i6n

|Zi|
P→ 0 .

Proof:
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Proof: Extra page



10

Proof

Step 3: Show that max16i6n |Û2
i − U2

i | = oP(1) using E[|X|2] <∞ and E[|UX|2] <∞.
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Putting the pieces together

I We just proved that
1
n

∑
16i6n

XiX
′
i Û2

i
P→ E[XiX

′
i U2

i ]

I We also know that
1
n

∑
16i6n

XiX
′
i

P→ E[XX ′] .

I By the CMT it then follows that

V̂n =

 1
n

∑
16i6n

XiX
′
i

−1 1
n

∑
16i6n

XiX
′
i Û2

i

 1
n

∑
16i6n

XiX
′
i

−1
P→ V .
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Back to the t-test

I Let V̂1,n denote the (2, 2)-diagonal element of V̂n - i.e., the entry corresponding to β1.

I The test that rejects H0 : β1 = c when

Tn = |tstat| =

∣∣∣∣∣∣
√

n(β̂1,n − c)√
V̂1,n

∣∣∣∣∣∣
exceeds z1−α

2
, is consistent in levels.

I Duality: between hypothesis testing and the construction of confidence regions leads to

Cn =

c ∈ R :

∣∣∣∣∣∣
√

n(β̂1,n − c)√
V̂1,n

∣∣∣∣∣∣ 6 z1−α
2

 =

β̂1,n − z1−α
2

√
V̂1,n

n
, β̂1,n + z1−α

2

√
V̂1,n

n

 .

This confidence region satisfies

P{β1 ∈ Cn}→ 1 −α n→∞ .
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QUESTIONS?
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Finite Sample Performance

I Stata: does not compute V̂n in the default “robust” option

I It includes a finite sample adjustment to inflate the estimated residuals (known to be too small in
finite samples).

I HC1: This version of the HC estimator is commonly known as HC1 and given by

V̂hc1,n =

 1
n

∑
16i6n

XiX
′
i

−1 1
n

∑
16i6n

XiX
′
i Û∗2i

 1
n

∑
16i6n

XiX
′
i

−1

,

where
Û∗2i =

n
n − k − 1

Û2
i .

I Obvious Result: this estimator is also consistent for V and are the ones used to compute “robust”
confidence intervals in Stata.
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HC2 Version

I An alternative to V̂n and V̂hc1,n is what MacKinnon and White (1985) call the
HC2 variance estimator, here denoted by V̂hc2,n.

I In order to define this estimator, we need additional notation. Let

P = X(X ′X)−1X ′

be the n× n projection matrix, with i-th column denoted by

Pi = X(X ′X)−1Xi

and (i, i)-th element denoted by
Pii = X ′i (X

′X)−1Xi .

I Let Ω be the n× n diagonal matrix with i-th diagonal element equal to σ2(Xi) = Var[Ui|Xi]

I Let en,i be the n-vector with i-th element equal to one and all other elements equal to zero.

I Let I be the n× n identity matrix and M = I − P be the residual maker matrix.
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Intuition under Homoskedasticity

I Residuals: Ûi = Yi − X ′i β̂n can be written as

Ûi = e ′n,iMU, or, in vector form, Û = MU . (3)

I The (conditional) expected value of the square of the residual is

E[Û2
i |X1, . . . , Xn] = E[(e ′n,iMU)2|X1, . . . , Xn]

= (en,i − Pi)
′Ω(en,i − Pi) .

I If we further assume homoskedasticity (i.e., Var[U|X] = σ2), the last expression reduces to

E[Û2
i |X1, . . . , Xn] = σ

2(1 − Pii) ,

by exploiting that P is an idempotent matrix.

I Take away: even when the error term U is homoskedastic, the LS residual Û is heteroskedastic (due
to the presence of Pii).

I Downward Bias: Since it can be shown that 1
n 6 Pii 6 1, it follows that Var[Ûi] underestimates σ2

under homoskedasticity.
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HC2

I Natural Correction: it makes sense to consider

Ũ2
i ≡

Û2
i

1 − Pii
,

as the squared residual to use in variance estimation.

I It follows that Ũ2
i is unbiased for E[U2

i |X1, . . . , Xn] under homoskedasticity.

I HC2: this is the motivation for the variance estimator known as HC2,

V̂hc2,n =

(
1
n

n∑
i=1

XiX
′
i

)−1(
1
n

n∑
i=1

XiX
′
i Ũ2

i

)(
1
n

n∑
i=1

XiX
′
i

)−1

.

I Under heteroskedasticity this estimator is unbiased only in some simple examples (e.g., The
Behrens-Fisher problem), but it is biased in general.

I However, it is expected to have lower bias relative to HC/HC1 - a statement supported by simulations.
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HC3

I There are other finite sample adjustments that give place to HC3, HC4, and even HC5.....

I HC3 is equivalent to HC2 with

Ũ∗2i ≡
Û2

i
(1 − Pii)

2 ,

replacing Ũ2
i , and its justification is related to the Jackknife estimator of the variance of β̂n.

I We will not consider these in class as these adjustments do not deliver noticeable additional benefits
relative to HC2 (at least for the purpose of this class).

I It is worth noting that HC2 and HC3 are available as an option in Stata
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QUESTIONS?
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The Behrens-Fisher Problem

I Behrens-Fisher: compare means of two normals when variances are unknown:

Y(0) ∼ N(µ0,σ2(0)) and Y(1) ∼ N(µ1,σ2(1)) . (4)

I Special case of linear regression with a binary regressor, i.e. X = (1, D) and D ∈ {0, 1}.

I The coefficient on D identifies the average treatment effect: µ1 − µ0.

I To be specific, consider the linear model

Y = β0 +β1D + U and Y = Y(1)D + (1 − D)Y(0)

with U|D assumed to be normally distributed with zero conditional mean and

Var[U|D = d] = σ2(d) for d ∈ {0, 1} .

I We are interested in

β1 =
Cov(Y, D)

Var(D)
= E[Y|D = 1] − E[Y|D = 0] ,

which can be estimated as

β̂1,n = Ȳ1 − Ȳ0 where Ȳd =
1

nd

n∑
i=1

YiI{Di = d} and nd =

n∑
i=1

I{Di = d} .
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The Behrens-Fisher Problem

I Conditional on D(n) = (D1, . . . , Dn), the exact finite sample variance of β̂1,n is

V∗1 = Var
[
β̂1,n

∣∣∣D(n)
]
=
σ2(0)

n0
+
σ2(1)

n1
,

so that, under normality, it follows that

β̂1,n|D(n) ∼ N
(
β1,

σ2(0)
n0

+
σ2(1)

n1

)
.

I Question: is there a κ ∈ R such that for some estimator V̂∗1,n we get

β̂1,n −β1√
V̂∗1,n

∼ t(κ) , (5)

where t(κ) denotes a t-distribution with κ degrees of freedom (dof)?

WORD ON NOTATION

Today we talk about the “actual” conditional variance of β̂1,n as opposed to the asymptotic variance. Thus, the
estimator V̂∗1,n above is an estimator of such variance (also explains why there is no

√
n in (5)). Of course, if V̂1,n is a

consistent estimator of the asymptotic variance of β̂1,n, then V̂∗1,n = 1
n V̂1,n is an estimator of the variance of β̂1,n. We

use ∗ to denote finite sample variances.
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The homoskedastic case

I Assumption: σ2 = σ2(0) = σ2(1) so that the exact conditional variance of β̂1,n is

V∗1 = σ2
(

1
n0

+
1

n1

)
.

I We can estimate σ2 by

σ̂2 =
1

n − 2

n∑
i=1

(Yi − X ′i β̂n)
2 and let V̂∗1,ho = σ̂2

(
1

n0
+

1
n1

)
,

be the estimator of V∗1 . This estimator has two important features.
(A) Unbiased. Since σ̂2 is unbiased for σ2, it follows that V̂∗1,ho is unbiased for the true variance V∗1 .
(B) Chi-square. Under normality of U given D, the scaled distribution of V̂∗1,ho is chi-square with n − 2 dof,

(n − 2)
V̂∗1,ho

V∗1
∼ χ2(n − 2) .

I Under normality, the t-stat has an exact t-distribution under the null

tho =
β̂1,n − c√

V̂∗1,ho

∼ t(n − 2) . (6)
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The robust EHW variance estimator

I BF Example: the component of the EHW variance estimator 1
n V̂n corresponding to β1 simplifies to

V̂∗1,hc =
σ̂2(0)

n0
+
σ̂2(1)

n1
where σ̂2(d) =

1
nd

n∑
i=1

(Yi − Ȳd)
2I{Di = d} for d ∈ {0, 1} .

I No assumptions under which there exists a value of κ such that (5) holds, even when U is normally
distributed conditional on D.

I In small samples: V̂∗1,hc is biased downward, i.e.,

E
[
V̂∗1,hc

]
=

n0 − 1
n0

σ2(0)
n0

+
n1 − 1

n1

σ2(1)
n1

< V∗1 ,

and confidence intervals based off these have coverage substantially below 1 −α.

I Ad-hoc correction: A common “correction” is to replace z1−α
2

with tn−2
1−α

2
- the quantile of a

t-distribution with n − 2 dof.

I Such a correction if often ineffective.



24

HC2: An unbiased estimator of the variance

I Alternative: the HC2 variance estimator, here denoted by 1
n V̂hc2,n.

I This estimator is unbiased under homoskedasticity but, in general, it removes only part of the bias
under heteroskedasticity.

I BF problem: in this case the HC2 correction removes the entire bias.

I Its form in this case is

V̂∗1,hc2 =
σ̃2(0)

n0
+
σ̃2(1)

n1
where σ̃2(d) =

1
nd − 1

n∑
i=1

(Yi − Ȳd)
2I{Di = d} .

I These conditional variance estimators differ from σ̂2(d) by a factor nd/(nd − 1).

I The estimator V̂∗1,hc2 is unbiased for V∗1 , but it does not satisfy the chi-square property in (b) above.
As a result, the associated confidence interval based off a normal critical value is still not exact.

I No assumptions under which there exists a value of κ such that (5) holds, even when U is normally
distributed conditional on D. In fact, in small samples these standard errors do not work very well.



25

Simulations

I Simple simulation. From Imbens and Kolesar (2016) and MHE:

Ui|Di ∼ N(0,σ2(Di)) ,

with n1 = 3, n0 = 27, σ2(1) = 1, σ2(0) ∈ {0, 1, 2}, and 1 −α = 0.95.

dof σ2(0) = 0 σ2(0) = 1 σ2(0) = 2
V̂∗

ho ∞ 72.5 94.0 99.8
n − 2 74.5 95.0 99.8

V̂∗
1,hc ∞ 76.8 80.5 86.6

n − 2 78.3 82.0 88.1
V̂∗

1,hc2 ∞ 82.5 85.2 89.8
n − 2 83.8 86.5 91.0

TABLE: Angrist-Pischke design. n1 = 3, n0 = 27.

I DOF: n − 2 may be a poor choice for dof. Suppose n1 = 3 and n0 = 1, 000, 000. Here E[Yi|Di = 0] is
precisely estimated with variance σ2(0)/n0 ≈ 0. Heuristically then,

tstat ≈
Ȳ1 − E[Yi|Di = 1]√

σ̃2(1)/n1
.

Under normality this has an exact t-distribution with dof equal to n1 − 1 = 2 << n − 2 ≈∞.
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THE END!
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Extra: Degrees of freedom adjustment

I One of the most attractive proposals for the Behrens-Fisher problem is due to Welch (1951).

I Welch suggests approximating the distribution of the t-statistic based on HC2 by a t-distribution.

I Suggests using moments of the variance estimator 1
n V̂hc2 to determine the most appropriate value

for the degrees of freedom.

I Idea: suppose (Assumption 1) there was a constant κ such that

κ
V̂∗1,hc2

V∗1
∼ χ2(κ) .

I Recall that the mean and variance of a χ2(κ) are κ and 2κ.

I Welch: find κ by matching the first two moments of a chi-square distribution. This is, find κ such that

E

[
κ

V̂∗1,hc2

V∗1

]
= κ and Var

[
κ

V̂∗1,hc2

V∗1

]
= 2κ . (7)

The first equality automatically holds if E[V̂∗1,hc2] = V∗1 so the value of κ is determined by the second

equality if we assume (Assumption 2) V̂∗1,hc2 is unbiased.
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Extra: Degrees of freedom adjustment

I To find the variance, Welch assumes (Assumption 3) normality.

I Under normality we obtain that

V̂∗1,hc2 =
σ2(0)

n0(n0 − 1)
(n0 − 1)σ̃2(0)

σ2(0)
+

σ2(1)
n1(n1 − 1)

(n1 − 1)σ̃2(1)
σ2(1)

,

is a linear combination of two chi-squared random variables,

(n0 − 1)σ̃2(0)
σ2(0)

∼ χ2(n0 − 1) and
(n1 − 1)σ̃2(1)

σ2(1)
∼ χ2(n1 − 1) ,

where σ̃2(0) and σ̃2(1) are independent of each other and of (β̂1,n − c). It follows that,

Var[V̂∗1,hc2] =
2σ4(0)

(n0 − 1)n2
0
+

2σ4(1)
(n1 − 1)n2

1
.

WELCH’S DOF

κw =
2V∗21

Var[V̂∗1,hc2]
=

2
(
σ2(0)

n0
+

σ2(1)
n1

)2

2σ4(0)
(n0−1)n2

0
+

2σ4(1)
(n1−1)n2

1

.
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Extra: Test with DoF adjustments

I Simplification: A slightly different degrees of freedom adjustment arises if we further assume
(Assumption 4) homoskedasticity at the time of computing κ.

I κw then simplifies to

κbm =
2(σ

2

n0
+ σ2

n1
)2

2σ4

(n0−1)n2
0
+ 2σ4

(n1−1)n2
1

=
(n0 + n1)

2(n0 − 1)(n1 − 1)
n2

1(n1 − 1) + n2
0(n0 − 1)

.

I The associated 1 −α confidence interval is now

CS1−α
bm =

{
β̂1,n − tκbm

1−α
2

√
V̂∗1,hc2, β̂1,n + tκbm

1−α
2

√
V̂∗1,hc2

}
.

I Intuition: note that

κbm →


n1 − 1 if n0 →∞, n1 fixed
n0 − 1 if n1 →∞, n0 fixed
n − 2 if n0 = n1 = n

2

,

so the DoF adapt to the example in our previous table.

I For further details, see Imbens and Kolesar (2016).
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