ECDN $4 B O-3$
 LIECTURE 14: HC VARIANCE ESTIMATION

Ivan A. Canay
Northwestern University

PART II: TOPICS

- Non-parametric Regression
- RDD and Matching
- CART and Random Forest
- Binary Choice
- LASSO

PART III: INFERENCE

- HC Standard Errors
- HAC Standard Errors
- CR Standard Errors
- Bootstrap \& Subsampling
- Randomization Tests

Linear Model Setup

- Let (Y, X, U) be st Y and U take values in \mathbf{R} and X takes values in \mathbf{R}^{k+1}.
- The first component of X is a constant equal to one.
- Let $\beta \in \mathbf{R}^{k+1}$ be such that

$$
\begin{equation*}
Y=X^{\prime} \beta+U . \tag{1}
\end{equation*}
$$

Suppose that (1) $E[X U]=0$, (2) that there is no perfect collinearity in X, that (3) $E\left[X X^{\prime}\right]<\infty$, and that (4) $\operatorname{Var}[X U]<\infty$.

- Let P be the distribution of (Y, X) and let $\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)$ be an i.i.d. sample from P.
- Under these assumptions, we established the asymptotic normality of the OLS estimator, $\hat{\beta}_{n}$:

$$
\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{n}-\beta\right) \xrightarrow{d} N(0, \mathbb{V})
$$

for

$$
\mathbb{V}=E\left[X X^{\prime}\right]^{-1} E\left[X X^{\prime} U^{2}\right] E\left[X X^{\prime}\right]^{-1} .
$$

- We wish to test

$$
H_{0}: \beta \in \mathbf{B}_{0} \quad \text { versus } \quad H_{1}: \beta \in \mathbf{B}_{1}
$$

where \mathbf{B}_{0} and \mathbf{B}_{1} form a partition of \mathbf{R}^{k+1}. Particular attention to hypotheses for one component of β.

- WLOG: assume we are interested in the first slope component of β so that,

$$
\begin{equation*}
H_{0}: \beta_{1}=c \text { versus } H_{1}: \beta_{1} \neq c . \tag{2}
\end{equation*}
$$

The CMT implies that

$$
\sqrt{n}\left(\hat{\beta}_{1, n}-\beta_{1}\right) \xrightarrow{d} N\left(0, V_{1}\right)
$$

as $n \rightarrow \infty$ where $V_{1}=\mathbb{V}_{[2,2]}$ is the element of \mathbb{V} corresponding to β_{1}.

- A natural choice of test statistic for this problem is the absolute value of the t-statistic,

$$
t_{\mathrm{stat}}=\frac{\sqrt{n}\left(\hat{\beta}_{1, n}-c\right)}{\sqrt{\hat{V}_{1, n}}}
$$

so that $T_{n}=\left|t_{\text {stat }}\right|$. Required: a consistent estimator $\hat{\mathbb{V}}_{n}$ of the limiting variance \mathbb{V}.

hC Variance Estimation

- Part III of this course covers consistent estimators of \mathbb{V} under different assumptions on the dependence and heterogeneity in the data.
- We will, however, start with the usual i.i.d. setting, where one of such estimators is

$$
\hat{\mathbb{V}}_{n}=\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime}\right)^{-1}\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime} \hat{U}_{i}^{2}\right)\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime}\right)^{-1}
$$

where

$$
\hat{U}_{i}=Y_{i}-X_{i}^{\prime} \hat{\beta}_{n} .
$$

- This is the most widely used form of the robust, heteroskedasticity-consistent standard errors and it is associated with the work of White (1980) (see also Eicker, 1967; Huber, 1967).
- We will refer to these as robust EHW (or HC) standard errors.

Consistency df HC standarid errors

- Wish to prove: $\hat{\mathbb{V}}_{n} \xrightarrow{P} \mathbb{V}$.
- Main difficulty: showing that

$$
\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime} \hat{U}_{i}^{2} \xrightarrow{P} \operatorname{Var}[X U] \quad \text { as } \quad n \rightarrow \infty
$$

- Note that

$$
\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime} \hat{U}_{i}^{2}=\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime} U_{i}^{2}+\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime}\left(\hat{U}_{i}^{2}-U_{i}^{2}\right)
$$

- First term: under the assumption that $\operatorname{Var}[X U]<\infty$, it converges in probability to $\operatorname{Var}[X U]$.
- Second term: we wish to show it converges in probability to zero.

Prodif

Step 1: We argue this separately for each of the $(k+1)^{2}$ terms in

$$
\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime}\left(\hat{U}_{i}^{2}-U_{i}^{2}\right) .
$$

Step 2: Intermediate lemma needed to show $\max _{1 \leqslant i \leqslant n}\left|\hat{U}_{i}^{2}-U_{i}^{2}\right|=o_{P}(1)$.

LEMMA

Let Z_{1}, \ldots, Z_{n} be an i.i.d. sequence of random vectors such that $E\left[\left|Z_{i}\right|^{r}\right]<\infty$. Then

$$
\max _{1 \leqslant i \leqslant n}\left|Z_{i}\right|=o_{P}\left(n^{\frac{1}{r}}\right) \quad \text { i.e. } \quad n^{-\frac{1}{r}} \max _{1 \leqslant i \leqslant n}\left|Z_{i}\right| \xrightarrow{P} 0
$$

Proof:

Prodif

Step 3: Show that $\max _{1 \leqslant i \leqslant n}\left|\hat{U}_{i}^{2}-U_{i}^{2}\right|=o_{P}(1)$ using $E\left[|X|^{2}\right]<\infty$ and $E\left[|U X|^{2}\right]<\infty$.

- We just proved that

$$
\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime} \hat{U}_{i}^{2} \xrightarrow{P} E\left[X_{i} X_{i}^{\prime} U_{i}^{2}\right]
$$

- We also know that

$$
\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime} \xrightarrow{P} E\left[X X^{\prime}\right] .
$$

- By the CMT it then follows that

$$
\hat{\mathbb{V}}_{n}=\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime}\right)^{-1}\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime} \hat{U}_{i}^{2}\right)\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime}\right)^{-1} \xrightarrow{P} \mathbb{V}
$$

BACK TD THE T-TEST

- Let $\hat{V}_{1, n}$ denote the (2,2)-diagonal element of $\hat{\mathbb{V}}_{n}$-i.e., the entry corresponding to β_{1}.
- The test that rejects $H_{0}: \beta_{1}=c$ when

$$
T_{n}=\left|t_{\text {stat }}\right|=\left|\frac{\sqrt{n}\left(\hat{\beta}_{1, n}-c\right)}{\sqrt{\hat{V}_{1, n}}}\right|
$$

exceeds $z_{1-\frac{\alpha}{2}}$, is consistent in levels.

- Duality: between hypothesis testing and the construction of confidence regions leads to

$$
C_{n}=\left\{c \in \mathbf{R}:\left|\frac{\sqrt{n}\left(\hat{\beta}_{1, n}-c\right)}{\sqrt{\hat{V}_{1, n}}}\right| \leqslant z_{1-\frac{\alpha}{2}}\right\}=\left\{\hat{\beta}_{1, n}-z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{V}_{1, n}}{n}}, \hat{\beta}_{1, n}+z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{V}_{1, n}}{n}}\right\} .
$$

This confidence region satisfies

$$
P\left\{\beta_{1} \in C_{n}\right\} \rightarrow 1-\alpha \quad n \rightarrow \infty .
$$

$\overline{3}$

- Stata: does not compute $\hat{\mathbb{V}}_{n}$ in the default "robust" option
- It includes a finite sample adjustment to inflate the estimated residuals (known to be too small in finite samples).
- HC1: This version of the HC estimator is commonly known as HC 1 and given by

$$
\hat{\mathbb{V}}_{\mathrm{hc} 1, \mathrm{n}}=\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime}\right)^{-1}\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime} \hat{U}_{i}^{* 2}\right)\left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} X_{i} X_{i}^{\prime}\right)^{-1}
$$

where

$$
\hat{U}_{i}^{* 2}=\frac{n}{n-k-1} \hat{U}_{i}^{2}
$$

- Obvious Result: this estimator is also consistent for \mathbb{V} and are the ones used to compute "robust" confidence intervals in Stata.
- An alternative to $\hat{\mathbb{V}}_{n}$ and $\hat{\mathbb{V}}_{\text {hc1,n }}$ is what MacKinnon and White (1985) call the HC2 variance estimator, here denoted by $\hat{\mathbb{V}}_{\text {hc2,n }}$.
- In order to define this estimator, we need additional notation. Let

$$
\mathbb{P}=\mathbb{X}\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1} \mathbb{X}^{\prime}
$$

be the $n \times n$ projection matrix, with i-th column denoted by

$$
P_{i}=\mathbb{X}\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1} X_{i}
$$

and (i, i)-th element denoted by

$$
P_{i i}=X_{i}^{\prime}\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1} X_{i}
$$

- Let Ω be the $n \times n$ diagonal matrix with i-th diagonal element equal to $\sigma^{2}\left(X_{i}\right)=\operatorname{Var}\left[U_{i} \mid X_{i}\right]$
- Let $e_{n, i}$ be the n-vector with i-th element equal to one and all other elements equal to zero.
- Let $\mathbb{I I}$ be the $n \times n$ identity matrix and $\mathbb{M}=\mathbb{I}-\mathbb{P}$ be the residual maker matrix.
- Residuals: $\hat{U}_{i}=Y_{i}-X_{i}^{\prime} \hat{\beta}_{n}$ can be written as

$$
\begin{equation*}
\hat{U}_{i}=e_{n, i}^{\prime} \mathbb{M} \mathbb{U}, \quad \text { or, in vector form, } \quad \hat{\mathbb{U}}=\mathbb{M} \mathbb{U} . \tag{3}
\end{equation*}
$$

- The (conditional) expected value of the square of the residual is

$$
\begin{aligned}
E\left[\hat{U}_{i}^{2} \mid X_{1}, \ldots, X_{n}\right] & =E\left[\left(e_{n, i}^{\prime} \mathbb{M} \mathbb{M}\right)^{2} \mid X_{1}, \ldots, X_{n}\right] \\
& =\left(e_{n, i}-P_{i}\right)^{\prime} \Omega\left(e_{n, i}-P_{i}\right)
\end{aligned}
$$

- If we further assume homoskedasticity (i.e., $\operatorname{Var}[U \mid X]=\sigma^{2}$), the last expression reduces to

$$
E\left[\hat{U}_{i}^{2} \mid X_{1}, \ldots, X_{n}\right]=\sigma^{2}\left(1-P_{i i}\right),
$$

by exploiting that \mathbb{P} is an idempotent matrix.

- Take away: even when the error term U is homoskedastic, the LS residual \hat{U} is heteroskedastic (due to the presence of $P_{i i}$.
- Downward Bias: Since it can be shown that $\frac{1}{n} \leqslant P_{i i} \leqslant 1$, it follows that $\operatorname{Var}\left[\hat{U}_{i}\right]$ underestimates σ^{2} under homoskedasticity.
- Natural Correction: it makes sense to consider

$$
\tilde{U}_{i}^{2} \equiv \frac{\hat{U}_{i}^{2}}{1-P_{i i}}
$$

as the squared residual to use in variance estimation.

- It follows that \tilde{U}_{i}^{2} is unbiased for $E\left[U_{i}^{2} \mid X_{1}, \ldots, X_{n}\right]$ under homoskedasticity.
- HC2: this is the motivation for the variance estimator known as HC 2 ,

$$
\hat{\mathbb{V}}_{\mathrm{hc} 2, \mathrm{n}}=\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\prime}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\prime} \tilde{U}_{i}^{2}\right)\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\prime}\right)^{-1}
$$

- Under heteroskedasticity this estimator is unbiased only in some simple examples (e.g., The Behrens-Fisher problem), but it is biased in general.
- However, it is expected to have lower bias relative to HC/HC1 - a statement supported by simulations.
- There are other finite sample adjustments that give place to HC3, HC4, and even HC5.....
- HC 3 is equivalent to HC 2 with

$$
\tilde{u}_{i}^{* 2} \equiv \frac{\hat{U}_{i}^{2}}{\left(1-P_{i i}\right)^{2}},
$$

replacing \tilde{U}_{i}^{2}, and its justification is related to the Jackknife estimator of the variance of $\hat{\beta}_{n}$.

- We will not consider these in class as these adjustments do not deliver noticeable additional benefits relative to HC 2 (at least for the purpose of this class).
- It is worth noting that HC2 and HC3 are available as an option in Stata
$\overline{3}$
- Behrens-Fisher: compare means of two normals when variances are unknown:

$$
\begin{equation*}
Y(0) \sim N\left(\mu_{0}, \sigma^{2}(0)\right) \quad \text { and } Y(1) \quad \sim N\left(\mu_{1}, \sigma^{2}(1)\right) . \tag{4}
\end{equation*}
$$

- Special case of linear regression with a binary regressor, i.e. $X=(1, D)$ and $D \in\{0,1\}$.
- The coefficient on D identifies the average treatment effect: $\mu_{1}-\mu_{0}$.
- To be specific, consider the linear model

$$
Y=\beta_{0}+\beta_{1} D+U \quad \text { and } \quad Y=Y(1) D+(1-D) Y(0)
$$

with $U \mid D$ assumed to be normally distributed with zero conditional mean and

$$
\operatorname{Var}[U \mid D=d]=\sigma^{2}(d) \text { for } d \in\{0,1\}
$$

- We are interested in

$$
\beta_{1}=\frac{\operatorname{Cov}(Y, D)}{\operatorname{Var}(D)}=E[Y \mid D=1]-E[Y \mid D=0]
$$

which can be estimated as

$$
\hat{\beta}_{1, n}=\bar{Y}_{1}-\bar{Y}_{0} \quad \text { where } \quad \bar{Y}_{d}=\frac{1}{n_{d}} \sum_{i=1}^{n} Y_{i} I\left\{D_{i}=d\right\} \quad \text { and } \quad n_{d}=\sum_{i=1}^{n} I\left\{D_{i}=d\right\}
$$

- Conditional on $D^{(n)}=\left(D_{1}, \ldots, D_{n}\right)$, the exact finite sample variance of $\hat{\beta}_{1, n}$ is

$$
V_{1}^{*}=\operatorname{Var}\left[\hat{\beta}_{1, n} \mid D^{(n)}\right]=\frac{\sigma^{2}(0)}{n_{0}}+\frac{\sigma^{2}(1)}{n_{1}},
$$

so that, under normality, it follows that

$$
\hat{\beta}_{1, n} \left\lvert\, D^{(n)} \sim N\left(\beta_{1}, \frac{\sigma^{2}(0)}{n_{0}}+\frac{\sigma^{2}(1)}{n_{1}}\right) .\right.
$$

- Question: is there a $\kappa \in \mathbf{R}$ such that for some estimator $\hat{V}_{1, n}^{*}$ we get

$$
\begin{equation*}
\frac{\hat{\beta}_{1, n}-\beta_{1}}{\sqrt{\hat{V}_{1, n}^{*}}} \sim t(\kappa) \tag{5}
\end{equation*}
$$

where $t(\mathrm{k})$ denotes a t-distribution with k degrees of freedom (dof)?

WORD ON Notation

Today we talk about the "actual" conditional variance of $\hat{\beta}_{1, n}$ as opposed to the asymptotic variance. Thus, the estimator $\hat{V}_{1, n}^{*}$ above is an estimator of such variance (also explains why there is no \sqrt{n} in (5)). Of course, if $\hat{V}_{1, n}$ is a consistent estimator of the asymptotic variance of $\hat{\beta}_{1, n}$, then $\hat{V}_{1, n}^{*}=\frac{1}{n} \hat{V}_{1, n}$ is an estimator of the variance of $\hat{\beta}_{1, n}$. We use $*$ to denote finite sample variances.

- Assumption: $\sigma^{2}=\sigma^{2}(0)=\sigma^{2}(1)$ so that the exact conditional variance of $\hat{\beta}_{1, n}$ is

$$
V_{1}^{*}=\sigma^{2}\left(\frac{1}{n_{0}}+\frac{1}{n_{1}}\right)
$$

- We can estimate σ^{2} by

$$
\hat{\sigma}^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(Y_{i}-X_{i}^{\prime} \hat{\beta}_{n}\right)^{2} \quad \text { and let } \quad \hat{V}_{1, \text { ho }}^{*}=\hat{\sigma}^{2}\left(\frac{1}{n_{0}}+\frac{1}{n_{1}}\right)
$$

be the estimator of V_{1}^{*}. This estimator has two important features.
(A) Unbiased. Since $\hat{\sigma}^{2}$ is unbiased for σ^{2}, it follows that $\hat{V}_{1, \text { ho }}^{*}$ is unbiased for the true variance V_{1}^{*}.
(B) Chi-square. Under normality of U given D, the scaled distribution of $\hat{V}_{1, \mathrm{ho}}^{*}$ is chi-square with $n-2$ dof,

$$
(n-2) \frac{\hat{V}_{1, \mathrm{ho}}^{*}}{V_{1}^{*}} \sim \chi^{2}(n-2)
$$

- Under normality, the t-stat has an exact t-distribution under the null

$$
\begin{equation*}
t_{\mathrm{ho}}=\frac{\hat{\beta}_{1, n}-c}{\sqrt{\hat{V}_{1, \mathrm{ho}}^{*}}} \sim t(n-2) \tag{6}
\end{equation*}
$$

- BF Example: the component of the EHW variance estimator $\frac{1}{n} \hat{\mathbb{V}}_{n}$ corresponding to β_{1} simplifies to

$$
\hat{V}_{1, \mathrm{hc}}^{*}=\frac{\hat{\sigma}^{2}(0)}{n_{0}}+\frac{\hat{\sigma}^{2}(1)}{n_{1}} \quad \text { where } \quad \hat{\sigma}^{2}(d)=\frac{1}{n_{d}} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{d}\right)^{2} I\left\{D_{i}=d\right\} \text { for } d \in\{0,1\}
$$

- No assumptions under which there exists a value of κ such that (5) holds, even when U is normally distributed conditional on D.
- In small samples: $\hat{V}_{1, \mathrm{hc}}^{*}$ is biased downward, i.e.,

$$
E\left[\hat{V}_{1, \mathrm{hc}}^{*}\right]=\frac{n_{0}-1}{n_{0}} \frac{\sigma^{2}(0)}{n_{0}}+\frac{n_{1}-1}{n_{1}} \frac{\sigma^{2}(1)}{n_{1}}<V_{1}^{*}
$$

and confidence intervals based off these have coverage substantially below $1-\alpha$.

- Ad-hoc correction: A common "correction" is to replace $z_{1-\frac{\alpha}{2}}$ with $t_{1-\frac{\alpha}{2}}^{n-2}$ - the quantile of a t -distribution with $n-2$ dof.
- Such a correction if often ineffective.

HC2: AN UNBIASED ESTIMATOR DF THE VARIANCE

- Alternative: the HC2 variance estimator, here denoted by $\frac{1}{n} \hat{\mathbb{V}}_{\mathrm{hc} 2, \mathrm{n}}$.
- This estimator is unbiased under homoskedasticity but, in general, it removes only part of the bias under heteroskedasticity.
- BF problem: in this case the HC2 correction removes the entire bias.
- Its form in this case is

$$
\hat{V}_{1, \mathrm{hc} 2}^{*}=\frac{\tilde{\sigma}^{2}(0)}{n_{0}}+\frac{\tilde{\sigma}^{2}(1)}{n_{1}} \quad \text { where } \quad \tilde{\sigma}^{2}(d)=\frac{1}{n_{d}-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{d}\right)^{2} I\left\{D_{i}=d\right\}
$$

- These conditional variance estimators differ from $\hat{\sigma}^{2}(d)$ by a factor $n_{d} /\left(n_{d}-1\right)$.
- The estimator $\hat{V}_{1, \mathrm{hc} 2}^{*}$ is unbiased for V_{1}^{*}, but it does not satisfy the chi-square property in (b) above. As a result, the associated confidence interval based off a normal critical value is still not exact.
- No assumptions under which there exists a value of κ such that (5) holds, even when U is normally distributed conditional on D. In fact, in small samples these standard errors do not work very well.
- Simple simulation. From Imbens and Kolesar (2016) and MHE:

$$
U_{i} \mid D_{i} \sim N\left(0, \sigma^{2}\left(D_{i}\right)\right)
$$

with $n_{1}=3, n_{0}=27, \sigma^{2}(1)=1, \sigma^{2}(0) \in\{0,1,2\}$, and $1-\alpha=0.95$.

	dof	$\sigma^{2}(0)=0$	$\sigma^{2}(0)=1$	$\sigma^{2}(0)=2$
$\hat{V}_{\text {ho }}^{*}$	∞	72.5	94.0	99.8
	$n-2$	74.5	95.0	99.8
$\hat{V}_{1, \text { hc }}^{*}$	∞	76.8	80.5	86.6
$\hat{V}_{1, \text { hc2 }}^{*}$	$n-2$	78.3	82.0	88.1
	$n-2$	82.5	85.2	89.8

TABLE: Angrist-Pischke design. $n_{1}=3, n_{0}=27$.

- DOF: $n-2$ may be a poor choice for dof. Suppose $n_{1}=3$ and $n_{0}=1,000,000$. Here $E\left[Y_{i} \mid D_{i}=0\right]$ is precisely estimated with variance $\sigma^{2}(0) / n_{0} \approx 0$. Heuristically then,

$$
t_{\text {stat }} \approx \frac{\bar{Y}_{1}-E\left[Y_{i} \mid D_{i}=1\right]}{\sqrt{\tilde{\sigma}^{2}(1) / n_{1}}} .
$$

Under normality this has an exact t-distribution with dof equal to $n_{1}-1=2 \ll n-2 \approx \infty$.
3

Extra: Degrees of freedom Adjustment

- One of the most attractive proposals for the Behrens-Fisher problem is due to Welch (1951).
- Welch suggests approximating the distribution of the t-statistic based on HC2 by a t-distribution.
- Suggests using moments of the variance estimator $\frac{1}{n} \hat{\mathbb{V}}_{\text {hc2 }}$ to determine the most appropriate value for the degrees of freedom.
- Idea: suppose (Assumption 1) there was a constant k such that

$$
\mathrm{k} \frac{\hat{V}_{1, \mathrm{hc} 2}^{*}}{V_{1}^{*}} \sim \chi^{2}(\mathrm{k}) .
$$

- Recall that the mean and variance of a $\chi^{2}(\kappa)$ are κ and 2κ.
- Welch: find k by matching the first two moments of a chi-square distribution. This is, find k such that

$$
\begin{equation*}
E\left[\kappa \frac{\hat{V}_{1, \mathrm{hc} 2}^{*}}{V_{1}^{*}}\right]=\kappa \quad \text { and } \quad \operatorname{Var}\left[\kappa \frac{\hat{V}_{1, \mathrm{hc} 2}^{*}}{V_{1}^{*}}\right]=2 \kappa . \tag{7}
\end{equation*}
$$

The first equality automatically holds if $E\left[\hat{V}_{1, \text { hc2 }}^{*}\right]=V_{1}^{*}$ so the value of κ is determined by the second equality if we assume (Assumption 2) $\hat{V}_{1, \mathrm{hc} 2}^{*}$ is unbiased.

Extra: Degrees df freedom adjustment

- To find the variance, Welch assumes (Assumption 3) normality.
- Under normality we obtain that

$$
\hat{V}_{1, \mathrm{hc} 2}^{*}=\frac{\sigma^{2}(0)}{n_{0}\left(n_{0}-1\right)} \frac{\left(n_{0}-1\right) \tilde{\sigma}^{2}(0)}{\sigma^{2}(0)}+\frac{\sigma^{2}(1)}{n_{1}\left(n_{1}-1\right)} \frac{\left(n_{1}-1\right) \tilde{\sigma}^{2}(1)}{\sigma^{2}(1)},
$$

is a linear combination of two chi-squared random variables,

$$
\frac{\left(n_{0}-1\right) \tilde{\sigma}^{2}(0)}{\sigma^{2}(0)} \sim \chi^{2}\left(n_{0}-1\right) \quad \text { and } \quad \frac{\left(n_{1}-1\right) \tilde{\sigma}^{2}(1)}{\sigma^{2}(1)} \sim \chi^{2}\left(n_{1}-1\right)
$$

where $\tilde{\sigma}^{2}(0)$ and $\tilde{\sigma}^{2}(1)$ are independent of each other and of $\left(\hat{\beta}_{1, n}-c\right)$. It follows that,

$$
\operatorname{Var}\left[\hat{V}_{1, \mathrm{hc} 2}^{*}\right]=\frac{2 \sigma^{4}(0)}{\left(n_{0}-1\right) n_{0}^{2}}+\frac{2 \sigma^{4}(1)}{\left(n_{1}-1\right) n_{1}^{2}}
$$

WELCH's DoF

$$
\mathrm{K}_{\mathrm{w}}=\frac{2 V_{1}^{* 2}}{\operatorname{Var}\left[\hat{V}_{1, \mathrm{hc} 2}^{*}\right]}=\frac{2\left(\frac{\sigma^{2}(0)}{n_{0}}+\frac{\sigma^{2}(1)}{n_{1}}\right)^{2}}{\frac{2 \sigma^{4}(0)}{\left(n_{0}-1\right) n_{0}^{2}}+\frac{2 \sigma^{4}(1)}{\left(n_{1}-1\right) n_{1}^{2}}} .
$$

Extra: Test with Dof adjustments

- Simplification: A slightly different degrees of freedom adjustment arises if we further assume (Assumption 4) homoskedasticity at the time of computing k .
- K_{W} then simplifies to

$$
\mathrm{K}_{\mathrm{bm}}=\frac{2\left(\frac{\sigma^{2}}{n_{0}}+\frac{\sigma^{2}}{n_{1}}\right)^{2}}{\frac{2 \sigma^{4}}{\left(n_{0}-1\right) n_{0}^{2}}+\frac{2 \sigma^{4}}{\left(n_{1}-1\right) n_{1}^{2}}}=\frac{\left(n_{0}+n_{1}\right)^{2}\left(n_{0}-1\right)\left(n_{1}-1\right)}{n_{1}^{2}\left(n_{1}-1\right)+n_{0}^{2}\left(n_{0}-1\right)} .
$$

- The associated $1-\alpha$ confidence interval is now

$$
C S_{\mathrm{bm}}^{1-\alpha}=\left\{\hat{\beta}_{1, n}-t_{1-\frac{\alpha}{2}}^{\mathrm{Kbm}} \sqrt{\hat{V}_{1, \mathrm{hc} 2}^{*}}, \hat{\beta}_{1, n}+t_{1-\frac{\alpha}{2}}^{\mathrm{Kbm}^{\alpha}} \sqrt{\hat{V}_{1, \mathrm{hc} 2}^{*}}\right\} .
$$

- Intuition: note that

$$
\mathrm{K}_{\mathrm{bm}} \rightarrow \begin{cases}n_{1}-1 & \text { if } n_{0} \rightarrow \infty, n_{1} \text { fixed } \\ n_{0}-1 & \text { if } n_{1} \rightarrow \infty, n_{0} \text { fixed } \\ n-2 & \text { if } n_{0}=n_{1}=\frac{n}{2}\end{cases}
$$

so the DoF adapt to the example in our previous table.

- For further details, see Imbens and Kolesar (2016).

