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Past & Future

LAST CLASS
I HC Standard Errors
I Finite Sample Adjustments
I The Behrens-Fisher Problem

TODAY
I Stationarity
I Summability and mixing
I Naive Approaches
I Weighting and Truncation
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Setup

I Let (Y, X, U) be st Y and U take values in R and X takes values in Rk+1.

I The first component of X is a constant equal to one.

I Let β ∈ Rk+1 be such that
Y = X ′β+ U .

Suppose that 1 E[XU] = 0, 2 that there is no perfect collinearity in X, that 3 E[XX ′] <∞, and

that 4 Var[XU] <∞.

I Today: we consider the case where the sample (Y1, X1), . . . , (Yn, Xn) is not necessarily i.i.d. due to
the presence of dependence across observations.

I Autocorrelation: the case where Xi and Xi′ may not be independent for i 6= i ′.

I Two tools: (a) appropriate LLNs and CLTs for dependent processes, and (b) and description of the
object we intend to estimate. For simplicity: assume Xi = X1,i is a scalar random variable and let the
observations be naturally ordered (time series).
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Limit theorems for dependent data

I Let’s think about law of large numbers and central limit theorems to dependent data.

I LLN: when {Xi : 1 6 i 6 n} is i.i.d. with mean µ and variance σ2
X, it follows that

Var

[
1
n

n∑
i=1

Xi

]
=

1
n2

n∑
i=1

Var[Xi] =
σ2

X
n
→ 0 ,

and so convergence in probability follows by a simple application of Chebyshev’s inequality.

I Without the independence, we need additional assumptions to control the variance of the average.
We will start by assuming that the process we are dealing with are “stationary” as follows,

DEFINITION

A process {Xi : 1 6 i 6 n} is strictly stationarity if for each j, the dist. of {Xi, . . . , Xi+j} is the same ∀i.

DEFINITION

A process {Xi : 1 6 i 6 n} is weakly stationary if E[Xi], E[X2
i ], and, for each j, γj ≡ Cov[Xi, Xi+j], do not

depend on i.
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Stationarity: well defined mean

I Stationarity: the unique mean µ is well defined

I The variance of the sample average is

Var

[
1
n

n∑
i=1

Xi

]
=

1
n2

n∑
i=1

n∑
k=1

Cov[Xi, Xk] =
1

n2

(
nγ0 + 2(n − 1)γ1 + 2(n − 2)γ2 + · · ·

)

=
1
n

γ0 + 2
n∑

j=1

γj

(
1 −

j
n

) ,

where we have used the notation γj = Cov[Xi, Xi+j], so that γ0 = σ2
X.

I For this variance to vanish, the last summation must not explode.

I A sufficient condition for this is absolute summability:∞∑
j=−∞ |γj| <∞ .

A law of large numbers follows one more time from an application of Chebyshev’s inequality
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Law of Large Numbers

LEMMA

If {Xi : 1 6 i 6 n} is a 1 weakly stationary time series (with mean µ) with 2 absolutely summable
auto-covariances, then a law of large numbers holds (in probability and L2).

Stationarity is not enough!: if ζ ∼ N(0, 1) and Xi = ζ ∀i, then Cov[Xi, Xi′ ] = 1 ∀i, i ′.

MIXING

Absolutely summability follows from mixing assumptions, i.e., assuming the sequence {Xi : 1 6 i 6 n} is
α-mixing. Let αn be a number such that

|P(A∩ B) − P(A)P(B)| 6 αn ,

for any A ∈ σ(X1, . . . , Xj), B ∈ σ(Xj+n, Xj+n+1, . . . ), where σ(X) is the σ-field generated by X, and
j > 1, n > 1.

If αn → 0 as n→∞, the sequence is then said to be α-mixing, the idea being that Xj and Xj+n are then
approximately independent for large n.
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Limiting Variance

I From the new proof of LLN one can guess that the variance in a central limit theorem should
change.

I Remember that we wish to normalize the sum in such a way that the limit variance would be 1.

I To this end, note that

Var

[
1√
n

n∑
i=1

Xi

]
= γ0 + 2

n∑
j=1

γj

(
1 −

j
n

)

→ γ0 + 2
∞∑

j=1

γj = Ω ,

where Ω is called the long-run variance.

I There are many central limit theorems for serially correlated observations. Below we provide a
commonly used version, see Billingsley (1995, Theorem 27.4).



8

Central Limit Theorem

THEOREM

Suppose that {Xi : 1 6 i 6 n} is a 1 strictly stationary 2 αn-mixing stochastic process with

3 E[|X|2+δ] <∞, E[X] = 0, and

4
∞∑

n=1

α
δ/(2+δ)
n <∞ .

Then Ω in the previous slide is finite (i.e. summabilidy holds) and, provided Ω > 0,

1√
n

n∑
i=1

Xi
d→ N(0,Ω) .
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QUESTIONS?
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Estimating long-run variances

I Linear Model: with i.i.d. data, one of the exclusion restrictions is E[Ui|Xi] = 0.

I When the data is potentially dependent (time series, panel data, clustered data), we have to
describe the conditional mean relative to all variables that may be important.

I We say Xi is weakly exogenous if

E(Ui|Xi, Xi−1, . . . ) = 0

where we assume the observations have a natural ordering (e.g., time series).

I LS estimator of β,

√
n(β̂n −β) =

(
1
n

n∑
i=1

XiX
′
i

)−1
1√
n

n∑
i=1

XiUi .

Under appropriate assumption on {Xi : 1 6 i 6 n} and {ηi ≡ XiUi : 1 6 i 6 n} we get

1
n

n∑
i=1

XiX
′
i

P→ ΣX ≡ E[XX ′] and
1√
n

n∑
i=1

ηi
d→ N(0,Ω) .
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Long-Run Variance of LS

√
n(β̂n −β)

d→ N
(

0,Σ−1
X ΩΣ−1

X

)
.

I The only thing that is different from the usual sandwich formula is the meat

I In this case Ω =
∑∞

j=−∞ γj where γj are now the autocovariances of ηi.

I This long-run variance is significantly harder to estimate than the usual variance-covariance matrices
that arise under i.i.d. assumptions.

I Today: figure out how to estimate Ω by the so-called HAC approach

I Simplification: ignore the fact that in practice Ui will be replaced by a regression residual Ûi (since
such modification is easy to incorporate and follows similar steps to those in previous lectures).
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Naive Approach

I Ω is the sum of all auto-covariances (an infinite number of them). However, we can only estimate
n − 1 of them with a sample of size n.

I Idea 1: What if we just use the ones we can estimate? This leads to:

Ω̃ ≡
n−1∑

j=−(n−1)

γ̂j , γ̂j =
1
n

n−j∑
i=1

ηiηi+j .
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Simple Truncation

I Idea 2: what if we do not use all the covariances?

I This gives us a truncated estimator,

Ω̄ ≡
mn∑

j=−mn

γ̂j = γ̂0 + 2
mn∑
j=1

γ̂j .

where mn < n, mn →∞, and mn/n→ 0 as n→∞.

I Finite sample bias: truncation introduces finite sample bias. As mn increases, the bias due to
truncation should be smaller and smaller. But we don’t want to increase mn too fast for the reason
stated above (we don’t want to sum up noises).

I Negative Estimator: in small samples this estimator may be negative, Ω̄ < 0 (or in vector case, Ω̄
not positive definite).

Example: take mn = 1, so that Ω̄ = γ̂0 + 2γ̂1. In small samples, we may find γ̂1 < − 1
2 γ̂0, then Ω̄

will be negative.
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Weighting and truncation: the HAC estimator

I Newey and West (1987): create a weighted sum of sample auto-covariances with weights
guaranteeing positive-definiteness:

Ω̂n ≡
n−1∑

j=−(n−1)

k
(

j
mn

)
γ̂j .

We need conditions on mn and k(·) to give us consistency and positive-definiteness.

I First: mn →∞ as n→∞ but not too fast. Today we assume m3
n/n→ 0, but the result can be

proved under m2
n/n→ 0.

I Second: k(·) needs to be such that it guarantees positive-definiteness by down-weighting high lag
covariances, but we also need k(j/mn)→ 1 as n→∞ for consistency.

I As with non-parametric density estimation, there exist a variety of kernels that satisfy all the
properties needed for consistency and positive-definiteness.
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Popular Kernels

Barlett Kernel (Newey and West, 1987)

k(x) =

{
1 − |x| if |x| 6 1
0 otherwise

.

Parzen kernel (Gallant, 1987)

k(x) =


1 − 6x2 + 6|x|3 if |x| 6 1/2
2(1 − |x|)3 if 1/2 6 |x| 6 1
0 otherwise

.

Quadratic spectral kernel (Andrews, 1991)

k(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(sin(6πx/5))

)
.

I All symmetric at 0. The first two have bounded support [−1, 1] and the QS has unbounded support.

I First two: the weight assigned to γ̂j decreases with |j| and becomes zero for |j| > mn. Hence, mn in these
functions is also known as a truncation lag parameter.

I QS: the weight decreases to zero at |j| = 1.2mn but then exhibits damped sine waves afterwards.
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Consistency of HAC estimator

I For the first two kernels, we can write

Ω̂n ≡
mn∑

j=−mn

k
(

j
mn

)
γ̂j .

Truncation at mn is explicit. In the results we focus on this representation to simplify the arguments.

THEOREM

Assume that {ηi : 1 6 i 6 n} is a weakly stationary sequence with mean zero and autocovariances
γj = Cov[ηi,ηi+j] that satisfy absolute summability. Assume that

1. mn →∞ as n→∞ and m3
n/n→ 0.

2. k(x) : R→ [−1, 1], k(0) = 1, k(x) is continuous at 0, and k(−x) = k(x).

3. For all j the sequence ξi,j = ηiηi+j − γj is stationary and

sup
j

∞∑
k=1

|Cov(ξi,j, ξi+k,j)| < C

for some constant C (limited dependence).

Then, Ω̂n
P→ Ω.
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QUESTIONS?
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Sketch of Proof

Ω̂n ≡
mn∑

j=−mn

k
(

j
mn

)
γ̂j and Ω ≡

∞∑
j=−∞γj .
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Sketch of Proof

Ω̂n −Ω = −
∑

|j|>mn

γj +

mn∑
j=−mn

(
k
(

j
mn

)
− 1
)
γj +

mn∑
j=−mn

k
(

j
mn

)
(γ̂j −γj) .

Let fn(j) ≡
∣∣∣k( j

mn

)
− 1
∣∣∣ |γj| and note fn(j) 6 g(j) ≡ 2|γj|.
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Extra Slide
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Sketch of Proof

Ω̂n −Ω = −
∑

|j|>mn

γj +

mn∑
j=−mn

(
k
(

j
mn

)
− 1
)
γj +

mn∑
j=−mn

k
(

j
mn

)
(γ̂j −γj) .

Let γ∗j ≡ E[γ̂j] =
n−j

n γj since γ̂j =
1
n
∑n−j

i=1 ηiηi+j
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Sketch of Proof

WTS :

mn∑
j=−mn

|γ̂j − γ
∗
j |

P→ 0 Recall sup
j

∞∑
k=1

|Cov(ξi,j, ξi+k,j)| 6 C.

Step 1: Let ξi,j ≡ ηiηi+j − γj and show that E[(γ̂j − γ
∗
j )

2] 6 C/n.
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Sketch of Proof

WTS :

mn∑
j=−mn

|γ̂j − γ
∗
j |

P→ 0 that is P


mn∑

j=−mn

|γ̂j − γ
∗
j | > ε

→ 0 .

Note: The event A = {
∑mn

j=−mn
|γ̂j − γ

∗
j | > ε} implies B = {|γ̂j − γ

∗
j | >

ε
2mn+1 for at last some j}
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Concluding Remarks

I We proved consistency but did not proved positive definiteness of our HAC estimator.

I Required: to characterize positive definiteness using the Fourier transformation of Ω̂.

I Bandwidth choice. After the original paper by Newey-West (1987), a series of papers addressed
the issue of bandwidth choice (notably, Andrews (1991)).

I General idea: bias-variance trade-off in the choice of bandwidth mn. A bigger mn reduces the cut-off
bias, however, it increases the number of estimated covariances used (and hence the variance of the
estimate).

I Andrews (1991): choose mn by minimizing the mean squared error (MSE) of the HAC estimator,

MSE(Ω̂n) = bias(Ω̂n)
2 + Var(Ω̂n) .

I He showed that the optimal bandwidth is mn = C∗n1/r, where r = 3 for the Barlett kernel and r = 5
for other kernels. He also derived the optimal constant C∗, which depends on the kernel used among
other things.

I In finite samples, inference on β̂n based on HAC standard errors may perform quite poorly.
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THE END!
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