ECDN 480 -3
 LECTURE 15: HAC COVARIANCE ESTIMATION

Ivan A. Canay

Northwestern University

LAST CLASS

- HC Standard Errors
- Finite Sample Adjustments
- The Behrens-Fisher Problem

TODAY

- Stationarity
- Summability and mixing
- Naive Approaches
- Weighting and Truncation

- Let (Y, X, U) be st Y and U take values in \mathbf{R} and X takes values in \mathbf{R}^{k+1}.
- The first component of X is a constant equal to one.
- Let $\beta \in \mathbf{R}^{k+1}$ be such that

$$
Y=X^{\prime} \beta+U
$$

Suppose that (1) $E[X U]=0$, 2 that there is no perfect collinearity in X, that 3) $E\left[X X^{\prime}\right]<\infty$, and that (4) $\operatorname{Var}[X U]<\infty$.

- Today: we consider the case where the sample $\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)$ is not necessarily i.i.d. due to the presence of dependence across observations.
- Autocorrelation: the case where X_{i} and $X_{i^{\prime}}$ may not be independent for $i \neq i^{\prime}$.
- Two tools: (a) appropriate LLNs and CLTs for dependent processes, and (b) and description of the object we intend to estimate. For simplicity: assume $X_{i}=X_{1, i}$ is a scalar random variable and let the observations be naturally ordered (time series).
- Let's think about law of large numbers and central limit theorems to dependent data.
- LLN: when $\left\{X_{i}: 1 \leqslant i \leqslant n\right\}$ is i.i.d. with mean μ and variance σ_{X}^{2}, it follows that

$$
\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]=\frac{\sigma_{X}^{2}}{n} \rightarrow 0
$$

and so convergence in probability follows by a simple application of Chebyshev's inequality.

- Without the independence, we need additional assumptions to control the variance of the average. We will start by assuming that the process we are dealing with are "stationary" as follows,

DEFINITION

A process $\left\{X_{i}: 1 \leqslant i \leqslant n\right\}$ is strictly stationarity if for each j, the dist. of $\left\{X_{i}, \ldots, X_{i+j}\right\}$ is the same $\forall i$.

DEFINITION

A process $\left\{X_{i}: 1 \leqslant i \leqslant n\right\}$ is weakly stationary if $E\left[X_{i}\right], E\left[X_{i}^{2}\right]$, and, for each $j, \gamma_{j} \equiv \operatorname{Cov}\left[X_{i}, X_{i+j}\right]$, do not depend on i.

- Stationarity: the unique mean μ is well defined
- The variance of the sample average is

$$
\begin{aligned}
\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right] & =\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{k=1}^{n} \operatorname{Cov}\left[X_{i}, X_{k}\right]=\frac{1}{n^{2}}\left(n \gamma_{0}+2(n-1) \gamma_{1}+2(n-2) \gamma_{2}+\cdots\right) \\
& =\frac{1}{n}\left(\gamma_{0}+2 \sum_{j=1}^{n} \gamma_{j}\left(1-\frac{j}{n}\right)\right)
\end{aligned}
$$

where we have used the notation $\gamma_{j}=\operatorname{Cov}\left[X_{i}, X_{i+j}\right]$, so that $\gamma_{0}=\sigma_{X}^{2}$.

- For this variance to vanish, the last summation must not explode.
- A sufficient condition for this is absolute summability:

$$
\sum_{j=-\infty}^{\infty}\left|\gamma_{j}\right|<\infty
$$

A law of large numbers follows one more time from an application of Chebyshev's inequality

LEMMA

If $\left\{X_{i}: 1 \leqslant i \leqslant n\right\}$ is a (1) weakly stationary time series (with mean μ) with (2) absolutely summable auto-covariances, then a law of large numbers holds (in probability and L2).

Stationarity is not enough!: if $\zeta \sim N(0,1)$ and $X_{i}=\zeta \forall i$, then $\operatorname{Cov}\left[X_{i}, X_{i^{\prime}}\right]=1 \forall i, i^{\prime}$.

MIXING

Absolutely summability follows from mixing assumptions, i.e., assuming the sequence $\left\{X_{i}: 1 \leqslant i \leqslant n\right\}$ is α-mixing. Let α_{n} be a number such that

$$
|P(A \cap B)-P(A) P(B)| \leqslant \alpha_{n},
$$

for any $A \in \sigma\left(X_{1}, \ldots, X_{j}\right), B \in \sigma\left(X_{j+n}, X_{j+n+1}, \ldots\right)$, where $\sigma(X)$ is the σ-field generated by X, and $j \geqslant 1, n \geqslant 1$.

If $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$, the sequence is then said to be α-mixing, the idea being that X_{j} and X_{j+n} are then approximately independent for large n.

- From the new proof of LLN one can guess that the variance in a central limit theorem should change.
- Remember that we wish to normalize the sum in such a way that the limit variance would be 1.
- To this end, note that

$$
\begin{aligned}
\operatorname{Var}\left[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}\right] & =\gamma_{0}+2 \sum_{j=1}^{n} \gamma_{j}\left(1-\frac{j}{n}\right) \\
& \rightarrow \gamma_{0}+2 \sum_{j=1}^{\infty} \gamma_{j}=\Omega
\end{aligned}
$$

where Ω is called the long-run variance.

- There are many central limit theorems for serially correlated observations. Below we provide a commonly used version, see Billingsley (1995, Theorem 27.4).

THEOREM

Suppose that $\left\{X_{i}: 1 \leqslant i \leqslant n\right\}$ is a (1) strictly stationary (2) α_{n}-mixing stochastic process with (3) $E\left[|X|^{2+\delta}\right]<\infty, E[X]=0$, and

$$
\text { (4) } \sum_{n=1}^{\infty} \alpha_{n}^{\delta /(2+\delta)}<\infty
$$

Then Ω in the previous slide is finite (i.e. summabilidy holds) and, provided $\Omega>0$,

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} \xrightarrow{d} N(0, \Omega)
$$

$\overline{3}$

ESTIMATING LONG-REUN VARIANCES

- Linear Model: with i.i.d. data, one of the exclusion restrictions is $E\left[U_{i} \mid X_{i}\right]=0$.
- When the data is potentially dependent (time series, panel data, clustered data), we have to describe the conditional mean relative to all variables that may be important.
- We say X_{i} is weakly exogenous if

$$
E\left(U_{i} \mid X_{i}, X_{i-1}, \ldots\right)=0
$$

where we assume the observations have a natural ordering (e.g., time series).

- LS estimator of β,

$$
\sqrt{n}\left(\hat{\beta}_{n}-\beta\right)=\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\prime}\right)^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} U_{i}
$$

Under appropriate assumption on $\left\{X_{i}: 1 \leqslant i \leqslant n\right\}$ and $\left\{\eta_{i} \equiv X_{i} U_{i}: 1 \leqslant i \leqslant n\right\}$ we get

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\prime} \xrightarrow{P} \Sigma_{X} \equiv E\left[X X^{\prime}\right] \quad \text { and } \quad \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \eta_{i} \xrightarrow{d} N(0, \Omega)
$$

$$
\sqrt{n}\left(\hat{\beta}_{n}-\beta\right) \xrightarrow{d} N\left(0, \Sigma_{X}^{-1} \Omega \Sigma_{X}^{-1}\right) .
$$

- The only thing that is different from the usual sandwich formula is the meat
- In this case $\Omega=\sum_{j=-\infty}^{\infty} \gamma_{j}$ where γ_{j} are now the autocovariances of η_{i}.
- This long-run variance is significantly harder to estimate than the usual variance-covariance matrices that arise under i.i.d. assumptions.
- Today: figure out how to estimate Ω by the so-called HAC approach
- Simplification: ignore the fact that in practice U_{i} will be replaced by a regression residual \hat{U}_{i} (since such modification is easy to incorporate and follows similar steps to those in previous lectures).
- Ω is the sum of all auto-covariances (an infinite number of them). However, we can only estimate $n-1$ of them with a sample of size n.
- Idea 1: What if we just use the ones we can estimate? This leads to:

$$
\tilde{\Omega} \equiv \sum_{j=-(n-1)}^{n-1} \hat{\gamma}_{j}, \quad \hat{\gamma}_{j}=\frac{1}{n} \sum_{i=1}^{n-j} \eta_{i} \eta_{i+j}
$$

- Idea 2: what if we do not use all the covariances?
- This gives us a truncated estimator,

$$
\bar{\Omega} \equiv \sum_{j=-m_{n}}^{m_{n}} \hat{\gamma}_{j}=\hat{\gamma}_{0}+2 \sum_{j=1}^{m_{n}} \hat{\gamma}_{j}
$$

where $m_{n}<n, m_{n} \rightarrow \infty$, and $m_{n} / n \rightarrow 0$ as $n \rightarrow \infty$.

- Finite sample bias: truncation introduces finite sample bias. As m_{n} increases, the bias due to truncation should be smaller and smaller. But we don't want to increase m_{n} too fast for the reason stated above (we don't want to sum up noises).
- Negative Estimator: in small samples this estimator may be negative, $\bar{\Omega}<0$ (or in vector case, $\bar{\Omega}$ not positive definite).
Example: take $m_{n}=1$, so that $\bar{\Omega}=\hat{\gamma}_{0}+2 \hat{\gamma}_{1}$. In small samples, we may find $\hat{\gamma}_{1}<-\frac{1}{2} \hat{\gamma}_{0}$, then $\bar{\Omega}$ will be negative.
- Newey and West (1987): create a weighted sum of sample auto-covariances with weights guaranteeing positive-definiteness:

$$
\hat{\Omega}_{n} \equiv \sum_{j=-(n-1)}^{n-1} k\left(\frac{j}{m_{n}}\right) \hat{\gamma}_{j} .
$$

We need conditions on m_{n} and $k(\cdot)$ to give us consistency and positive-definiteness.

- First: $m_{n} \rightarrow \infty$ as $n \rightarrow \infty$ but not too fast. Today we assume $m_{n}^{3} / n \rightarrow 0$, but the result can be proved under $m_{n}^{2} / n \rightarrow 0$.
- Second: $k(\cdot)$ needs to be such that it guarantees positive-definiteness by down-weighting high lag covariances, but we also need $k\left(j / m_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$ for consistency.
- As with non-parametric density estimation, there exist a variety of kernels that satisfy all the properties needed for consistency and positive-definiteness.

Popular Kernels

Barlett Kernel (Newey and West, 1987)

$$
k(x)=\left\{\begin{array}{ll}
1-|x| & \text { if }|x| \leqslant 1 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Parzen kernel (Gallant, 1987)

$$
k(x)= \begin{cases}1-6 x^{2}+6|x|^{3} & \text { if }|x| \leqslant 1 / 2 \\ 2(1-|x|)^{3} & \text { if } 1 / 2 \leqslant|x| \leqslant 1 \\ 0 & \text { otherwise }\end{cases}
$$

Quadratic spectral kernel (Andrews, 1991)

$$
k(x)=\frac{25}{12 \pi^{2} x^{2}}\left(\frac{\sin (6 \pi x / 5)}{6 \pi x / 5}-\cos (\sin (6 \pi x / 5))\right)
$$

Figure 1: Kernel functions for kernel-based HAC estimation

- All symmetric at 0 . The first two have bounded support $[-1,1]$ and the QS has unbounded support.
- First two: the weight assigned to $\hat{\gamma}_{j}$ decreases with $|j|$ and becomes zero for $|j| \geqslant m_{n}$. Hence, m_{n} in these functions is also known as a truncation lag parameter.
- QS: the weight decreases to zero at $|j|=1.2 m_{n}$ but then exhibits damped sine waves afterwards.

Consistency df Hac estimator

- For the first two kernels, we can write

$$
\hat{\Omega}_{n} \equiv \sum_{j=-m_{n}}^{m_{n}} k\left(\frac{j}{m_{n}}\right) \hat{\gamma}_{j} .
$$

Truncation at m_{n} is explicit. In the results we focus on this representation to simplify the arguments.

THEOREM

Assume that $\left\{\eta_{i}: 1 \leqslant i \leqslant n\right\}$ is a weakly stationary sequence with mean zero and autocovariances $\gamma_{j}=\operatorname{Cov}\left[\eta_{i}, \eta_{i+j}\right]$ that satisfy absolute summability. Assume that

1. $m_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $m_{n}^{3} / n \rightarrow 0$.
2. $k(x): \mathbf{R} \rightarrow[-1,1], k(0)=1, k(x)$ is continuous at 0 , and $k(-x)=k(x)$.
3. For all j the sequence $\xi_{i, j}=\eta_{i} \eta_{i+j}-\gamma_{j}$ is stationary and

$$
\sup _{j} \sum_{k=1}^{\infty}\left|\operatorname{Cov}\left(\xi_{i, j}, \xi_{i+k, j}\right)\right|<C
$$

for some constant C (limited dependence).
Then, $\hat{\Omega}_{n} \xrightarrow{P} \Omega$.
$\overline{3}$

Sketch of Prodf

$$
\hat{\Omega}_{n} \equiv \sum_{j=-m_{n}}^{m_{n}} k\left(\frac{j}{m_{n}}\right) \hat{\gamma}_{j} \quad \text { and } \quad \Omega \equiv \sum_{j=-\infty}^{\infty} \gamma_{j}
$$

Sketch df Prodf

$$
\hat{\Omega}_{n}-\Omega=-\sum_{|j|>m_{n}} \gamma_{j}+\sum_{j=-m_{n}}^{m_{n}}\left(k\left(\frac{j}{m_{n}}\right)-1\right) \gamma_{j}+\sum_{j=-m_{n}}^{m_{n}} k\left(\frac{j}{m_{n}}\right)\left(\hat{\gamma}_{j}-\gamma_{j}\right) .
$$

Let $f_{n}(j) \equiv\left|k\left(\frac{j}{m_{n}}\right)-1\right|\left|\gamma_{j}\right|$ and note $f_{n}(j) \leqslant g(j) \equiv 2\left|\gamma_{j}\right|$.

Extra Slide

\square

-

Sketch df Prodf

$$
\hat{\Omega}_{n}-\Omega=-\sum_{|j|>m_{n}} \gamma_{j}+\sum_{j=-m_{n}}^{m_{n}}\left(k\left(\frac{j}{m_{n}}\right)-1\right) \gamma_{j}+\sum_{j=-m_{n}}^{m_{n}} k\left(\frac{j}{m_{n}}\right)\left(\hat{\gamma}_{j}-\gamma_{j}\right) .
$$

Let $\gamma_{j}^{*} \equiv E\left[\hat{\gamma}_{j}\right]=\frac{n-j}{n} \gamma_{j}$ since $\hat{\gamma}_{j}=\frac{1}{n} \sum_{i=1}^{n-j} \eta_{i} \eta_{i+j}$

Sketch df Prodf

$$
\text { WTS : } \sum_{j=-m_{n}}^{m_{n}}\left|\hat{\gamma}_{j}-\gamma_{j}^{*}\right| \xrightarrow{P} 0 \quad \text { Recall } \quad \sup _{j} \sum_{k=1}^{\infty}\left|\operatorname{Cov}\left(\xi_{i, j}, \xi_{i+k, j}\right)\right| \leqslant C .
$$

Step 1: Let $\xi_{i, j} \equiv \eta_{i} \eta_{i+j}-\gamma_{j}$ and show that $E\left[\left(\hat{\gamma}_{j}-\gamma_{j}^{*}\right)^{2}\right] \leqslant C / n$.

Sketch df Prodf

$$
\text { WTS : } \sum_{j=-m_{n}}^{m_{n}}\left|\hat{\gamma}_{j}-\gamma_{j}^{*}\right| \xrightarrow{P} 0 \quad \text { that is } P\left\{\sum_{j=-m_{n}}^{m_{n}}\left|\hat{\gamma}_{j}-\gamma_{j}^{*}\right|>\epsilon\right\} \rightarrow 0 .
$$

Note: The event $A=\left\{\sum_{j=-m_{n}}^{m_{n}}\left|\hat{\gamma}_{j}-\gamma_{j}^{*}\right|>\epsilon\right\}$ implies $B=\left\{\left\{\hat{\gamma}_{j}-\gamma_{j}^{*} \left\lvert\,>\frac{\epsilon}{2 m_{n}+1}\right.\right.\right.$ for at last some $\left.j\right\}$

- We proved consistency but did not proved positive definiteness of our HAC estimator.
- Required: to characterize positive definiteness using the Fourier transformation of $\hat{\Omega}$.
- Bandwidth choice. After the original paper by Newey-West (1987), a series of papers addressed the issue of bandwidth choice (notably, Andrews (1991)).
- General idea: bias-variance trade-off in the choice of bandwidth m_{n}. A bigger m_{n} reduces the cut-off bias, however, it increases the number of estimated covariances used (and hence the variance of the estimate).
- Andrews (1991): choose m_{n} by minimizing the mean squared error (MSE) of the HAC estimator,

$$
\operatorname{MSE}\left(\hat{\Omega}_{n}\right)=\operatorname{bias}\left(\hat{\Omega}_{n}\right)^{2}+\operatorname{Var}\left(\hat{\Omega}_{n}\right)
$$

- He showed that the optimal bandwidth is $m_{n}=C^{*} n^{1 / r}$, where $r=3$ for the Barlett kernel and $r=5$ for other kernels. He also derived the optimal constant C^{*}, which depends on the kernel used among other things.
- In finite samples, inference on $\hat{\beta}_{n}$ based on HAC standard errors may perform quite poorly.
3

