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Past & Future

LAST CLASS

I Efficiency of 2SLS
I Weak IV
I LATE

TODAY
I Generalized Method of Moments
I Empirical Likelihood
I Asymptotic Properties
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Generalized Method of Moments

I Let (Y, X, Z, U) be a random vector where Y and U take values in R, X takes values in Rk+1, and Z
takes values in R`+1.
Assume ` > k, 1 E[ZU] = 0, 2 E[ZX ′] <∞, and 3 rank(E[ZX ′]) = k + 1.

I Let β be such that
Y = X ′β+ U .

I Using the fact that U = Y − X ′β and E[ZU] = 0, we see that β solves the system of equations

E[Z(Y − X ′β)] = 0 .

I Since ` > k, this may be an over-determined system of equations and today we focus on the case
` > k. This is called over-identified: there are `− k = r more moment restrictions than parameters.

I We usually call r the number of over-identifying restrictions.
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Generalized Method of Moments

I The above is a special case of a more general class of moment condition models.

I Let m(Y, X, Z,β) be an `+ 1 dimensional function of a k + 1 dimensional parameter β such that

E[m(Y, X, Z,β)] = 0 .

I Linear model: m(Y, X, Z,β) = Z(Y − X ′β).

I In econometrics, this class of models are called moment condition models. In the statistics literature,
these are known as estimating equations.

I Today: two related ways to estimate β in moment condition models: GMM and EL.
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The GMM Estimator

I Let (Y, X, Z, U) be as described and let P be the marginal distribution of (Y, X, Z).

I Let (Y1, X1, Z1), . . . , (Yn, Xn, Zn) be an i.i.d. sequence of random variables with distribution P.

I Define the sample analog of E[m(Y, X, Z,β)] by

m̄n(β) =
1
n

n∑
i=1

mi(β) =
1
n

n∑
i=1

Zi(Yi − X ′iβ) =
1
n

Z ′(Y − Xβ) ,

where in what follows we will use the notation mi(β) = m(Yi, Xi, Zi,β).

I The method of moments estimator for β is defined as the parameter value which sets m̄n(β) = 0.

I This is generally not possible when ` > k as there are more equations than free parameters.

I Generalized method of moments (GMM): define an estimator that sets m̄n(β) “close” to zero,
given a notion of “distance”.
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The GMM Estimator

I Let Λn be an (`+ 1)× (`+ 1) matrix such that Λn
P→ Λ for a symmetric pd matrix Λ and define

Qn(β) = n m̄n(β)
′Λnm̄n(β) .

I Qn(β) is a non-negative measure of the distance between the vector m̄n(β) and the origin.

I If Λn = I, then Qn(β) = n |m̄n(β)|
2, the square of the Euclidean norm, scaled by the sample size n.

I GMM estimator: defined as the value that minimizes Qn(β),

β̂n = argmin
b∈Rk+1

Qn(b) . (1)

I If k = `: m̄n(β̂n) = 0 and the GMM estimator is the method of moments estimator.
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GMM: First Order Condition

Qn(β) = n m̄n(β)
′Λnm̄n(β) with m̄n(β) =

1
n

Z ′(Y − Xβ) ,
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QUESTIONS?
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GMM: consistency

β̂n =
((

Z ′X
) ′
Λn
(
Z ′X

))−1 (
Z ′X

) ′
Λn
(
Z ′Y

)
.
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GMM: Asymptotic Normality

√
n(β̂n −β) =

((
1
n

n∑
i=1

ZiX
′
i

) ′
Λn

(
1
n

n∑
i=1

ZiX
′
i

))−1(
1
n

n∑
i=1

ZiX
′
i

) ′
Λn

(
1√
n

n∑
i=1

ZiUi

)
.

Let Σ = E[ZX ′] and assume Ω = E[ZZ ′U2] is well defined and invertible.
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GMM: Efficient Weighting Matrix

V = (Σ ′ΛΣ)−1(Σ ′ΛΩΛΣ)(Σ ′ΛΣ)−1 .

I The optimal weigh matrix Λ∗ is the one which minimizes V.

I This turn out to be Λ∗ = Ω−1 and yields the efficient GMM estimator

β̂n =
((

Z ′X
) ′
Ω−1 (Z ′X))−1 (

Z ′X
) ′
Ω−1 (Z ′Y) ,

which satisfies √
n(β̂n −β)

d→ N
(

0, (Σ ′Ω−1Σ)−1
)

.

I Ω can be estimated consistently: for any Ω̂n
P→ Ω, we call β̂n the efficient GMM estimator

I By “efficient”, we mean that this estimator has the smallest asymptotic variance in the class of GMM
estimators with this set of moment conditions. This is a weak concept of optimality.

I Gary Chamberlain (1948-2020): showed that the GMM estimator is semiparametrically efficient.



12

GMM: Estimation of Weighting Matrix

I Given any weight matrix Λn with the properties previously discussed, the GMM estimator β̂n is
consistent yet inefficient.

I Example: set Λn = I. In the linear model, a better choice is Λn = (Z ′Z)−1, which leads to TSLS

β̂n =
((

Z ′X
) ′
Λn
(
Z ′X

))−1 (
Z ′X

) ′
Λn
(
Z ′Y

)
=
((

Z ′X
) ′

(Z ′Z)−1 (Z ′X))−1 (
Z ′X

) ′
(Z ′Z)−1 (Z ′Y)

=
(
X ′PZX

)−1 (
X ′PZY

)
,

where, as before, PZ = Z(Z ′Z)−1Z ′ is a projection matrix.

I To estimate the efficient weighting matrix, we conduct two steps.
1. Get a consistent (preliminary) estimator of β
2. Use that preliminary estimator to form residuals and estimateΛ∗
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GMM: Estimation of Weighting Matrix

I Let β̂n be a first-step estimator of β. Let Ûi = Yi − X ′i β̂n and m̂i = ZiÛi. Construct,

m̂∗i = m̂i −
1
n

n∑
i=1

m̂i .

Define

Λ∗n =

(
1
n

n∑
i=1

m̂∗i m̂∗′i

)−1

.

I It can be shown that Λ∗n
P→ Ω−1 and GMM using the weighting matrix above is asymptotically

efficient. This is typically referred to as the efficient two-step GMM estimator.

I A less preferred alternative choice is to use

Λn =

(
1
n

n∑
i=1

m̂im̂
′
i

)−1

,

which uses the uncentered moment conditions. Performs poorly for testing hypotheses.
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GMM: Overidentification Test

I Test Statistic:
Q∗n(β̂n) = n m̄n(β̂n)

′Λ∗nm̄n(β̂n) .

I Under correct model specification, it can be shown that

Q∗n(β̂n)
d→ χ2

`−k ,

as n→∞, where β̂n is the efficient two-step GMM estimator.

I In addition, Q∗n(β̂n)→∞ if E[m(Y, X, Z,β)] 6= 0 for all β ∈ Rk+1.

I The degrees of freedom of the asymptotic distribution are the number of overidentifying restrictions.

I Overidentification test: reject the null hypothesis “there exist β ∈ Rk+1 such that the model holds”
when Q∗n(β̂n) exceeds the 1 −α quantile of χ2

`−k.
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QUESTIONS?
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Empirical Likelihood

I Empirical Likelihood (EL): a data-driven nonparametric method of estimation and inference for
moment restriction models. It does not require weight matrix estimation like GMM and is invariant to
nonsingular linear transformations of the moment conditions. Developed by Art Owen.

I It is basically a non-parametric analog of Maximum Likelihood for the model

E[m(Y, X, Z,β)] = 0 .

I EL may be viewed as parametric inference in moment condition models, using a data-determined
parametric family of distributions. The parametric family is a multinomial distribution on the observed
values (Y1, X1, Z1), . . . , (Yn, Xn, Zn).

I The parametric family has n − 1 parameters. Having the number of parameters grow as quickly as
the sample size makes empirical likelihood very different than parametric likelihood.
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Empirical Likelihood

I The multinomial distribution with probability pi at each observation satisfies the moment condition iff

n∑
i=1

pimi(β) = 0 .

I EL estimator: value of β maximizing the multinomial log-likelihood subject to this restriction.

I Empirical likelihood function:

Rn(b) ≡ max
p1,...,pn

{ n∏
i=1

npi

∣∣∣∣∣pi > 0;
n∑

i=1

pi = 1;
n∑

i=1

pimi(b) = 0

}
.

I Lagrangian for the empirical log-likelihood:

L(b, p1, . . . , pn, λ, κ) =
n∑

i=1

log(npi) − κ

( n∑
i=1

pi − 1

)
− nλ ′

n∑
i=1

pimi(b)

where κ and λ are Lagrange multipliers.
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EL: First Order Conditions

L(b, p1, . . . , pn, λ, κ) =
n∑

i=1

log(npi) − κ

( n∑
i=1

pi − 1

)
− nλ ′

n∑
i=1

pimi(b) .
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EL: Dual Representation

log-likelihood
n∑

i=1

log(npi) with pi(b) =
1
n

1
1 + λ(b) ′mi(b)

.
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QUESTIONS?
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Asymptotic Properties of EL

I It turns out that the limit distribution of the EL estimator is the same as that of efficient GMM,

√
n(β̃n −β)

d→ N(0, (Σ ′Ω−1Σ)−1) .

I First order conditions: interesting to compare the FOCs of EL and two-step GMM.

I To do so, let’s re-write the first order condition of the EL estimator, paying specific attention to the
linear model where mi(β) = Zi(Yi − X ′iβ). Define

Mi(β) = −
∂

∂β ′
mi(β) = ZiX

′
i ,

and let

Σ(β) = E [Mi(β)] = E[ZiX
′
i ]

Ω(β) = E
[
mi(β)mi(β)

′] = E
[
ZiZ
′
i U2

i

]
.
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EL vs GMM: First order conditions

THE EL ESTIMATORS (β̃n, λ̃n) JOINTLY SOLVE

1
n

n∑
i=1

mi(β̃n)

1 + λ̃ ′nmi(β̃n)
= 0 and

1
n

n∑
i=1

Mi(β̃n)
′λ̃n

1 + λ̃ ′nmi(β̃n)
= 0
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EL vs GMM: First order conditions
EL FIRST ORDER CONDITION

Σ̃n(β̃n)
′Ω̃−1

n (β̃n)m̄n(β̃n) = 0
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EL vs GMM: First order conditions

Σ̃n(β̃n)
′Ω̃−1

n (β̃n)m̄n(β̃n) = 0 versus Σ̂n(β̂n)
′Ω̂−1

n m̄n(β̂n) = 0 .

I We can now see that EL and GMM have very similar first order conditions.

I GMM uses Ω̂n as a consistent estimator of Ω based on a preliminary estimator of β.

I It is not surprising then that these two estimators are first order equivalent.

I However, using a different estimator of the Jacobian matrix Σ and the absence of a preliminary
estimator for Ω gives EL some favorable second order properties relative to GMM.

I The cost of this is some additional computational complexity.

I This is a topic we cover in Econ 481.
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THE END!
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