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Past & Future

LAST CLASS

I Instrumental Variables
I The IV Estimator
I The 2SLS Estimator
I Properties of 2SLS
I Estimating V

TODAY
I Efficiency of 2SLS
I Weak IV
I LATE
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Efficiency of Two-Stage Least Squares

I Let (Y, X, U) be a random vector where Y and U take values in R and X takes values in Rk+1.
Assume further that the first component of X is constant and equal to one, i.e.,
X = (X0, X1, . . . , Xk)

′ with X0 = 1. Let β = (β0,β1, . . . ,βk)
′ ∈ Rk+1 be such that

Y = X ′β+ U .

I We assume 1 E[ZU] = 0, 2 E[ZX ′] <∞, 3 E[ZZ ′] <∞, and 4 there is no perfect

collinearity in Z, and 5 the rank of E[ZX ′] is k + 1

I Let (Y1, X1, Z1), . . . , (Yn, Xn, Zn) be an i.i.d. sequence of random variables with distribution P.

I The TSLS estimator identifies β by means of the projection matrix Π = E[ZZ ′]−1E[ZX ′]. Is this a
good choice?
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Efficiency of Two-Stage Least Squares

I We could solve for β using any (`+ 1)× (k + 1) dimensional matrix Γ such that E[Γ ′ZX ′] has rank
k + 1.

I Interpretation: we could use some other linear combination of instruments, Γ ′Z instead of Π ′Z.

I For any such matrix,
β = E[Γ ′ZX ′]−1E[Γ ′ZY] ,

and we could have estimated β using

β̃n =

 1
n

∑
16i6n

Γ ′ZiX
′
i

−1 1
n

∑
16i6n

Γ ′ZiYi

 .

I Could use a consistent estimate Γ̂n of Γ instead.

I By arguing as before, it is possible to show under our assumptions that β̃n
P→ β as n→∞.
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Efficiency of Two-Stage Least Squares

I Suppose Var[ZU] = E[ZZ ′U2] <∞. Then

√
n(β̃n −β)

d→ N(0, Ṽ) as n→∞ with Ṽ = E[Γ ′ZX ′]−1Γ ′Var[ZU]ΓE[Γ ′ZX ′]−1′ .

I Under some assumptions: the “best” choice of Γ is given by Π, i.e., Ṽ > V.

I Show this: assume that E[U|Z] = 0 and Var[U|Z] = σ2. In addition, define W∗ = Π ′Z and
W = Γ ′Z. To see that Ṽ > V, first re-write Ṽ:
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Efficiency of Two-Stage Least Squares

Ṽ = σ2E[WW∗′]−1E[WW ′]E[WW∗′]−1′ and similarly V = σ2E[W∗W∗′]−1 .

WTS: V 6 Ṽ or V−1 > Ṽ−1 or V−1 − Ṽ−1 > 0
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QUESTIONS?
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Weak IV

I Normal approximation: can be poor in finite samples when the rank of E[ZX ′] is “close” to being
< k + 1.

I Consequence: hypothesis tests and confidence regions based off of this approximation can behave
poorly in finite samples as well.

I Example: To gain some insight into this phenomenon in a more elementary way, suppose

Yi = Xiβ+ Ui

Xi = Ziπ+ Vi ,

where Z1, . . . , Zn are non-random, (U1, V1), . . . , (Un, Vn) is a sequence of i.i.d. N(0,Σ) rvs.

I Suppose π 6= 0. Consider the estimator given by

β̂n =
1
n
∑n

i=1 ZiYi
1
n
∑n

i=1 ZiXi
.
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Weak IV

√
n(β̂n −β) =

1√
n

∑n
i=1 ZiUi(

1
n
∑n

i=1 Z2
i

)
π+ 1

n
∑n

i=1 ZiVi

≡ W1
W2

.

THE FINITE-SAMPLE, JOINT DISTRIBUTION OF THE NUMERATOR AND DENOMINATOR IS(
W1
W2

)
∼ N

(
0

Z̄2
nπ

,

(
Z̄2

nσ
2
U

1√
n Z̄2

nσU,V
1√
n Z̄2

nσU,V
1
n Z̄2

nσ
2
V

))
,

where

Z̄2
n =

1
n

n∑
i=1

Z2
i .

This joint distribution completely determines the finite-sample distribution of
√

n(β̂n −β).

In particular, it is the ratio of two (correlated) normal random variables.
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Weak IV: the problem

I If Z̄2
n → Z̄2 > 0 as n→∞, then

√
n(β̂n −β) =

1√
n

∑n
i=1 ZiUi

Z̄2
nπ+

1
n
∑n

i=1 ZiVi

d→ N

(
0,
σ2

U

π2Z̄2

)
.

I This approximation effectively treats the denominator like a constant equal to its mean

I Good Approx.: when the mean is “large” relative to the sd, i.e.,

Z̄2
nπ�

1√
n

√
Z̄2

nσV ⇐⇒ π� 1√
n
σV√

Z̄2
n

.

I Poor Approx.: when π is “small”, the approximation may be quite poor in finite-samples. Note in
particular that π 6= 0 is not sufficient for the approximation to be good in finite-samples.



11

Weak IV: finite sample distribution
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Weak IV: a way around it

I Consider H0 : β = c versus H1 : β 6= c at level α.

I Under H0: one can compute Ui = Yi − X ′iβ and ZiUi = Zi(Yi − X ′iβ).

I Since E[ZU] = 0, we can simply test whether this is true using Z1U1, . . . , ZnUn.

I Formaly: Assume Var[ZU] is invertible and define Wi(c) = Zi(Yi − X ′i c). When β = c, we have that

√
nW̄n(c) =

1√
n

∑
16i6n

Wi(c)
d→ N(0,Σ(c)) ,

where Σ(c) = Var[W(c)]. If we define

Σ̂n(c) =
1
n

∑
16i6n

(Wi(c) − W̄n(c))(Wi(c) − W̄n(c)) ′

and use arguments given earlier, we see that under H0

Tn = nW̄ ′n(c)Σ̂
−1
n (c)W̄n(c)

d→ χ2
`+1 .

We can test H0 by comparing Tn with c`+1,1−α, the 1 −α quantile of the χ2
`+1 distribution.
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Weak IV: Discussion

I Anderson-Rubin: a closely related variant of this idea leads to the Anderson-Rubin test, in which
one tests whether all of the coefficients in a regression of Yi − X ′i c on Zi are zero.

I Anderson-Rubin: has good power properties when the model is exactly identified, but may be less
desirable when the model is over-identified.

I Other methods for the case in which the model is over-identified and/or one is only interested in
some feature of β (e.g., one of the slope parameters) have been proposed and are the subject of
current research as well.

I The literature on weak IV is large and it is mostly based on test inversion.

I Two Step Approach Alternative: Step 1: investigate whether the rank of E[ZX ′] is “close” to being
< k + 1 or not. Step 2: use these “more complicated” methods if they failed to reject this null
hypothesis. This two-step method will also behave poorly finite-samples and should not be used.
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QUESTIONS?
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Interpretation under Heterogeneity

I Despite possible inefficiencies, TSLS remains popular.

I Possible reason: interpretation in the presence of heterogeneous effects of X on Y.

I Recall that in the model
Y = X ′β+ U ,

the effect of a change in X (say, from X = x to X = x ′) is the same for everybody.

I What if the effect of a change in X on Y is different for different people.

I To capture this: allow for β to be random. When β is random, we may absorb U into the intercept
and simply write

Y = X ′β .

I Notation: with a random sample where variables are indexed by i, we would write Yi = X ′iβi, which
makes it explicit that every individual has a unique effect βi.
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Notation

I Assume k = 1 and write D in place of X1, which is assumed to take values in {0, 1}. Then,

Y = β0 +β1D .

I We interpret β0 as Y(0) and β1 as Y(1) − Y(0), where Y(1) and Y(0) are potential or counterfactual
outcomes. Using this notation, we may rewrite the equation as

Y = DY(1) + (1 − D)Y(0) .

I Y(0) value of the outcome that would have been observed if (possibly counter-to-fact) D were 0;
Y(1) value of the outcome that would have been observed if (possibly counter-to-fact) D were 1.

I The variable D is typically called the treatment and Y(1) − Y(0) is called the treatment effect. The
quantity E[Y(1) − Y(0)] is usually referred to as the average treatment effect.



17

Random Assignment

If D were randomly assigned (e.g., by the flip of a coin), then

(Y(0), Y(1))⊥⊥D .

In this case, under mild assumptions, the slope coefficient from OLS regression of Y on a constant and D
yields a consistent estimate of the average treatment effect.
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Selection

I Selection: In general, we expect D to depend on (Y(1), Y(0))

I OLS does not yield a consistent estimate of the average treatment effect.

I To proceed further, we therefore assume, as usual, that there is an instrument Z. Let Z ∈ {0, 1}.

I Consider the slope coefficient from TSLS/IV regression of Y on D with Z as an instrument,

Cov[Y, Z]
Cov[D, Z]

=
E[Y|Z = 1] − E[Y|Z = 0]
E[D|Z = 1] − E[D|Z = 0]

,

where the equality follows by multiplying and dividing by Var[Z] and using earlier results.

I Goal: to express this quantity in terms of the treatment effect Y(1) − Y(0) somehow.



19

Potential Treatments

I Towards our goal, it is useful to also introduce the following equation for D:

D = ZD(1) + (1 − Z)D(0)

= D(0) + (D(1) − D(0))Z
= π0 + π1Z ,

where π0 = D(0), π1 = D(1) − D(0), and D(1) and D(0) are potential or counterfactual treatments

I We impose the following versions of instrument exogeneity and instrument relevance, respectively:

(Y(1), Y(0), D(1), D(0))⊥⊥Z

and
P{D(1) 6= D(0)} = P{π1 6= 0} > 0 .

I We further assume the following monotonicity condition:

P{D(1) > D(0)} = P{π1 > 0} = 1 .
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The TSLS Estimand
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LATE

DEFINITION (LOCAL AVERAGE TREATMENT EFFECT)

The TSLS/IV estimand equals

Cov[Y, Z]
Cov[D, Z]

= E[Y(1) − Y(0)︸ ︷︷ ︸
TE

|D(1) > D(0)︸ ︷︷ ︸
local

] ≡ LATE

This is called the local average treatment effects.

Average treatment effect among the subpopulation of people for whom a change in the value of the
instrument switched them from being non-treated to treated: the so-called compliers.
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Role of Monotonicity

I Monotonicity: while the instrument may have no effect on some people, all those who are affected
are affected in the same way. Without monotonicity, we would have

E[Y|Z = 1] − E[Y|Z = 0] = E[Y(1) − Y(0)|D(1) > D(0)]P{D(1) > D(0)}

− E[Y(1) − Y(0)|D(1) < D(0)]P{D(1) < D(0)} .

I Treatment effects may be positive for everyone (i.e., Y(1) − Y(0) > 0) yet the reduced form is zero
because effects on compliers are canceled out by effects on defiers, i.e., those individuals for which
the instrument pushes them out of treatment (D(1) = 0 and D(0) = 1).

I This doesn’t come up in a constant effect model where β = Y(1) − Y(0) is constant, as in such case

E[Y|Z = 1] − E[Y|Z = 0] = β{P{D(1) > D(0)}− P{D(1) < D(0)}}

= βE[D(1) − D(0)] ,

and so a zero reduced-form effect means either the first stage is zero or β = 0.
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Monotonicity in Latent Index (Roy) Models

ROY MODEL

D = I{ν(Z) − V > 0} = I{ Utility of choosing 1 > Utility of choosing 0 }

I Monotonicity: Equivalent to a Roy model with separable utility (easy to interpret)

I Roy Model: individual choices are determined by a threshold crossing rule involving observed and
unobserved components of the utility. Take ν(Z) = γ0 + γ1Z so that

D =

{
1 if γ0 + γ1Z − V > 0
0 otherwise

where γ1 > 0 (wlog) and V is an unobserved heterogeneity assumed to be independent of Z.

I This latent index model characterizes potential treatment assignments as

D(0) = I{γ0 > V} and D(1) = I{γ0 + γ1 > V} .

I Monotonicity assumption is automatically satisfied since γ1 > 0 (symmetric argument for γ1 < 0).
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Monotonicity with one-sided compliance

I Randomized trial with non-compliance: the treatment assignment as an “offer of treatment” Z (the
instrument) and the actual treatment D determines whether the subject actually had the treatment.

I Assume no one in the control group has access to the treatment: D(0) = 0 while D(1) ∈ {0, 1}

I Monotonicity automatically holds: D(1) > D(0)

I Since D(1) is a choice, a comparison between those actually treated (D = 1) and the control (D = 0)
group is misleading. Two alternatives are frequently used.

I Intention to Treat Effect: a comparison between those who where offered treatment (Z = 1) and
the control (Z = 0) group.

I LATE=ATT: IV using Z as an instrumental variable for D, which leads to LATE. Since D(0) = 0,
LATE returns the effect of treatment on the treated, i.e., E[Y(1) − Y(0)|D = 1].
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THE END!
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