ECON 480-3 LECTURE 4: ENDOGENEITY

Ivan A. Canay Northwestern University

PAST & FUTURE

SO FAR

- Three Interpretations of β
- Solving and estimating sub-vectors of β
- Properties of LS
- ► Estimating V
- ▶ Classical Problems that lead to $E[XU] \neq 0$

TODAY

- Instrumental Variables
- The IV Estimator
- The 2SLS Estimator
- Properties of 2SLS
- Estimating W

INSTRUMENTAL VARIABLES

► Let (Y, X, U) be a random vector where Y and U take values in **R** and X takes values in \mathbf{R}^{k+1} . Assume further that the first component of X is constant and equal to one, i.e., $X = (X_0, X_1, \dots, X_k)'$ with $X_0 = 1$. Let $\beta = (\beta_0, \beta_1, \dots, \beta_k)' \in \mathbf{R}^{k+1}$ be such that

 $Y = X'\beta + U .$

- ▶ We do not assume E[XU] = 0. Any X_j such that $E[X_jU] = 0$ is said to be *exogenous*; any X_j such that $E[X_jU] \neq 0$ is said to be *endogenous*. Normalizing β_0 if necessary, we view X_0 as exogenous.
- ▶ Instrument: to overcome the difficulty associated with $E[XU] \neq 0$, we assume that there is an additional random vector *Z* taking values in $\mathbb{R}^{\ell+1}$ with $\ell + 1 \ge k + 1$ such that E[ZU] = 0.
- Any exogenous component of X is contained in Z (the so-called included instruments). In particular, we assume the first component of Z is constant equal to one, i.e., $Z = (Z_0, Z_1, ..., Z_{\ell})'$ with $Z_0 = 1$.
- We also assume that $E[ZX'] < \infty$, $E[ZZ'] < \infty$ and that there is no perfect collinearity in Z.

INSTRUMENTAL VARIABLES

- ▶ We assume 1 E[ZU] = 0, 2 $E[ZX'] < \infty$, 3 $E[ZZ'] < \infty$, and 4 there is no perfect collinearity in Z.
- ▶ The requirement that E[ZU] = 0 is termed *instrument exogeneity*.
- We further assume (5) the rank of E[ZX'] is k + 1. This is termed *instrument relevance* or *rank condition*.
- A necessary condition for (5) to be true is $\ell \ge k$. This is referred to as the *order condition*.
- Using that $U = Y X'\beta$ and E[ZU] = 0, we see that β solves the system of equations

 $E[ZY] = E[ZX']\beta .$

Since $l + 1 \ge k + 1$, this may be an over-determined system of equations.

A USEFUL LEMMA

Lемма

Suppose there is no perfect collinearity in Z and let Π be such that $BLP(X|Z) = \Pi'Z$. E[ZX'] has rank k + 1 if and only if Π has rank k + 1. Moreover, the matrix $\Pi'E[ZX']$ is invertible.

Solving for β

 β solves: $E[ZY] = E[ZX']\beta$ or $\Pi' E[ZY] = \Pi' E[ZX']\beta$

Using the previous lemma and $\Pi = E[ZZ']^{-1}E[ZX']$, we can derive three formulae for β

Interpretation: Consider the case where $k = \ell$ and only X_k is endogenous. Let $Z_j = X_j$ for all $0 \le j \le k-1$. In this case,

$$\Pi' = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ \pi_0 & \pi_1 & \cdots & \pi_{\ell-1} & \pi_\ell \end{pmatrix}$$

The rank condition therefore requires $\pi_{\ell} \neq 0$: the instrument Z_{ℓ} must be "correlated with X_k after controlling for $X_0, X_1, \ldots, X_{k-1}$."

PARTITION OF \beta: ENDOGENOUS COMPONENTS

- Partition X into X_1 and X_2 , where X_2 is exogenous. Partition Z into Z_1 and Z_2 and β into β_1 and β_2 analogously.
- ▶ Note that $Z_2 = X_2$ are *included* instruments and Z_1 are *excluded* instruments. Then,

 $Y = X_1'\beta_1 + X_2'\beta_2 + U .$

▶ We can conveniently re-write this by projecting (BLP) on $Z_2 = X_2$. Consider the case $k = \ell$

$$BLP(Y|Z_2) = BLP(X_1|Z_2)'\beta_1 + X_2'\beta_2$$
.

• Define $Y^* = Y - \mathsf{BLP}(Y|Z_2)$ and $X_1^* = X_1 - \mathsf{BLP}(X_1|Z_2)$ so that

 $E[Z_1Y^*] = E[Z_1X_1^{*'}]\beta_1 + E[Z_1U]$

It follows that

$$\beta_1 = E[Z_1 X_1^{*'}]^{-1} E[Z_1 Y^*] .$$

Estimating β : The IV Estimator

- **Just identified case**: $k = \ell$. Denote by *P* the marginal distribution of (Y, X, Z).
- Let $(Y_1, X_1, Z_1), \ldots, (Y_n, X_n, Z_n)$ be an i.i.d. sequence of random variables with distribution *P*.
- By analogy with $\beta = E[ZX']^{-1}E[ZY]$, the natural estimator of β is simply

$$\hat{\beta}_n = \left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} Z_i X_i'\right)^{-1} \left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} Z_i Y_i\right)$$

This estimator is called the *instrumental variables (IV)* estimator of β . Note that $\hat{\beta}_n$ satisfies

$$\frac{1}{n}\sum_{1\leqslant i\leqslant n}Z_i(Y_i-X_i'\hat{\beta}_n)=0.$$

In particular, $\hat{U}_i = Y_i - X'_i \hat{\beta}_n$ satisfies

$$\frac{1}{n}\sum_{1\leqslant i\leqslant n}Z_i\hat{U}_i=0.$$

THE IV ESTIMATOR

Insight on the IV estimator: assume $X_0 = 1$ and $X_1 \in \mathbf{R}$. An interesting interpretation of the IV estimator of β_1 is obtained by multiplying and dividing by $\frac{1}{n} \sum_{i=1}^{n} (Z_{1,i} - \overline{Z}_{1,n})^2$, i.e.,

$$\hat{\beta}_{1,n} = \frac{\frac{1}{n} \sum_{i=1}^{n} (Z_{1,i} - \bar{Z}_{1,n}) Y_i / \frac{1}{n} \sum_{i=1}^{n} (Z_{1,i} - \bar{Z}_{1,n})^2}{\frac{1}{n} \sum_{i=1}^{n} (Z_{1,i} - \bar{Z}_{1,n}) X_{1,i} / \frac{1}{n} \sum_{i=1}^{n} (Z_{1,i} - \bar{Z}_{1,n})^2}$$

This estimator may be expressed more compactly using matrix notation. Define

In this notation, we have

 $\hat{\beta}_n = (\mathbb{Z}'\mathbb{X})^{-1}(\mathbb{Z}'\mathbb{Y}) .$

• Over-identified case: $\ell > k$

• The expressions we derived for β in this case, like

 $\beta = E[\Pi' E[ZX']]^{-1} \Pi' E[ZY] ,$

all involved the matrix Π , where

 $\mathsf{BLP}(X|Z) = \Pi'Z .$

An estimate of Π can be obtained by OLS.

Since $\Pi = E[ZZ']^{-1}E[ZX']$, a natural estimator of Π is

$$\hat{\Pi}_n = \left(\frac{1}{n} \sum_{1 \leq i \leq n} Z_i Z_i'\right)^{-1} \left(\frac{1}{n} \sum_{1 \leq i \leq n} Z_i X_i'\right) \ .$$

THE TWO-STAGE LEAST SQUARES (TSLS) ESTIMATOR

Let
$$X_i = \hat{\Pi}'_n Z_i + \hat{V}_i$$
 where $\hat{\Pi}_n = \left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} Z_i Z_i'\right)^{-1} \left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} Z_i X_i'\right)$.

With this estimator of Π , a natural estimator of β is simply

THE TSLS ESTIMATOR

• Note that $\hat{\beta}_n$ satisfies

$$\frac{1}{n}\sum_{1\leqslant i\leqslant n}\hat{\Pi}'_nZ_i(Y_i-X'_i\hat{\beta}_n)=0.$$

► In particular, $\hat{U}_i = Y_i - X'_i \hat{\beta}_n$ satisfies

$$\frac{1}{n}\sum_{1\leqslant i\leqslant n}\hat{\Pi}'_n Z_i \hat{U}_i = 0 \; .$$

- This implies that Û_i is orthogonal to all of the instruments equal to an exogenous regressors, but may not be orthogonal to the other regressors.
- ► It is termed the TSLS estimator because it may be obtained in the following way: (1) regress (each component of) X_i on Z_i to obtain $\hat{X}_i = \hat{\Pi}'_i Z_i$;

(2) regress Y_i on \hat{X}_i to obtain $\hat{\beta}_n$. However, in order to obtain proper standard errors, it is recommended to compute the estimator in one step (see the following section).

THE TSLS ESTIMATOR: MATRIX NOTATION

This estimator may be expressed more compactly using matrix notation. Define

$$\mathbb{Z} = (Z_1, \dots, Z_n)'$$
$$\mathbb{X} = (X_1, \dots, X_n)'$$
$$\mathbb{Y} = (Y_1, \dots, Y_n)'$$
$$\hat{\mathbb{X}} = (\hat{X}_1, \dots, \hat{X}_n)'$$
$$= \mathbb{P}_Z \mathbb{X} ,$$

where

$$\mathbb{P}_Z = \mathbb{Z}(\mathbb{Z}'\mathbb{Z})^{-1}\mathbb{Z}'$$

is the projection matrix onto the column space of \mathbb{Z} . In this notation, we have

$$\begin{aligned} \hat{\beta}_n &= (\hat{X}'X)^{-1}(\hat{X}'Y) \\ &= (\hat{X}'\hat{X})^{-1}(\hat{X}'Y) \\ &= (X'\mathbb{P}_Z X)^{-1}(X'\mathbb{P}_Z Y) \end{aligned}$$

PROPERTIES OF TWO-STAGE LEAST SQUARES

► Let (Y, X, U) be a random vector where Y and U take values in \mathbf{R} and X takes values in \mathbf{R}^{k+1} . Assume further that the first component of X is constant and equal to one, i.e., $X = (X_0, X_1, \dots, X_k)'$ with $X_0 = 1$. Let $\beta = (\beta_0, \beta_1, \dots, \beta_k)' \in \mathbf{R}^{k+1}$ be such that

 $Y = X'\beta + U .$

- ▶ We assume 1 E[ZU] = 0, 2 $E[ZX'] < \infty$, 3 $E[ZZ'] < \infty$, and 4 there is no perfect collinearity in *Z*, and 5 the rank of E[ZX'] is k + 1
- Let $(Y_1, X_1, Z_1), \ldots, (Y_n, X_n, Z_n)$ be an i.i.d. sequence of random variables with distribution *P*.
- Under these assumptions the TSLS estimator is **consistent** for β , and under the additional requirement that $Var[ZU] < \infty$, it is **asymptotically normal** with limiting variance

 $\mathbb{V} = E[\Pi' Z Z' \Pi]^{-1} \Pi' \operatorname{Var}[Z U] \Pi E[\Pi' Z Z' \Pi]^{-1} .$

CONSISTENCY OF TSLS

$$\hat{\beta}_n = \left(\hat{\Pi}'_n \left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} Z_i X'_i\right)\right)^{-1} \hat{\Pi}'_n \left(\frac{1}{n} \sum_{1 \leqslant i \leqslant n} Z_i Y_i\right) \xrightarrow{P} \beta \text{ as } n \to \infty.$$

Asymptotic Normality of TSLS

Assume that $Var[ZU] = E[ZZ'U^2] < \infty$. Then, as $n \to \infty$,

 $\sqrt{n}(\hat{\beta}_n - \beta) \xrightarrow{d} N(0, \mathbb{V})$.

ESTIMATION OF V

A natural estimator of V is given by

$$\hat{\mathbb{V}}_n = \left(\hat{\Pi}'_n \left(\frac{1}{n} \sum_{1 \leq i \leq n} Z_i Z_i'\right) \hat{\Pi}_n\right)^{-1} \times \hat{\Pi}'_n \left(\frac{1}{n} \sum_{1 \leq i \leq n} Z_i Z_i' \hat{U}_i^2\right) \hat{\Pi}_n \times \left(\hat{\Pi}'_n \left(\frac{1}{n} \sum_{1 \leq i \leq n} Z_i Z_i'\right) \hat{\Pi}_n\right)^{-1},$$

where $\hat{U}_i = Y_i - X'_i \hat{\beta}_n$.

Primary difficulty in establishing the consistency of this estimator lies in showing that

$$\frac{1}{n} \sum_{1 \leqslant i \leqslant n} Z_i Z_i' \hat{U}_i^2 \xrightarrow{P} \mathsf{Var}[ZU]$$

as $n \to \infty$. The complication lies in the fact that we do not observe U_i and therefore have to use \hat{U}_i .

- However, the desired result can be shown by arguing exactly as in the second part of this class.
- Note: $\hat{U}_i = Y_i X'_i \hat{\beta}_n \neq Y_i \hat{X}'_i \hat{\beta}_n$, so the standard errors from two repeated applications of OLS will be incorrect.

