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ECON 480-3
LECTURE 16: CLUSTER COVARIANCE ESTIMATION

Ivan A. Canay
Northwestern University

Note: this class has gone through massive updates relative to the material in the lecture notes. Please use the information in these

slides and ignore the material in the lecture notes (seriously, the notation is not even the same). I’ll update notes later.
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Linear Model Setup

I Let (Y, X, U) be a random vector where Y and U take values in R and X takes values in Rk+1.

I Let β ∈ Rk+1 be such that
Y = X ′β+ U . (1)

I Today: we observe a sample of size n of (Y, X) in a context where they are grouped into q mutually
independent known clusters, indexed by j = 1, . . . , q.

I Clustering: can be due to sampling scheme or by the researcher knowing the correlation structure.

I Cannot exploit ordering of observations within a cluster (there may not be one).

I Two tools: (a) develop appropriate LLNs and CLTs for dependent processes, and (b) study the rate
of convergence of the LS estimator under different dependence structures.
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Notation

I Use two indices as we did when we covered panel data.

I First index: j = 1, . . . , q denotes the clusters (observations that may be related to each other).

Example: a cluster could be a family, a school, an industry, or a city.

I Second index: i = 1, . . . , nj denotes units within a cluster.

Example: family members, students, firms, or individuals.

I Notation: let
Xj = (X1,j, . . . , Xnj,j)

′

be a nj× (k+ 1) matrix of stacked observations for cluster j, and define Yj and Uj analogously. Then,

Yj = Xjβ+ Uj , j = 1, . . . , q , where E[X ′
j Uj] = 0 .

I We assume that (Yj, Xj) are independent across clusters but remain agnostic about the
dependence within clusters.
Goal: derive standard errors that account for the fact that (Xi,j, Ui,j) and (Xi′,j, Ui′,j) may be
arbitrarily correlated within a cluster.



4

Law of Large Numbers

I To introduce LLNs and CLTs we focus on the sample mean of Xi,j:

X̄n =
1
n

q∑
j=1

X ′
j 1j =

1
n

q∑
j=1

nj∑
i=1

Xi,j ,

where 1j is an nj-dimensional vector of ones. Hansen and Lee (2019) prove the following result.

THEOREM (WLLN FOR CLUSTERED MEANS)

Suppose that as n→∞
max
j6q

nj

n
→ 0 (♣)

and that
lim

M→∞ sup
i,j

E
[
||Xi,j||I{||Xi,j|| > M}

]
= 0 . (2)

Then, as n→∞
||X̄n − E[X̄n]||

P→ 0 .

I The condition in (2) states that Xi,j is uniformly integrable (similar to other standard conditions).
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Comments

I Assumption (♣) states that each cluster size nj is asymptotically negligible.

I Automatically holds when nj is fixed as q→∞ (original framework)

I Implies q→∞, so we do not explicitly list this.

I It allows for considerable heterogeneity in cluster sizes and it allows the cluster sizes to grow with
sample size, so long as the growth is not proportional.

I Example: nj = na for 0 6 a < 1, which leads to

n =

q∑
j=1

nj =

q∑
j=1

na = qna ⇒ q = n1−a .

I Assumption (♣) is necessary for parameter estimation consistency while allowing arbitrary
within-cluster dependence. Otherwise a single cluster could dominate the sample average.
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QUESTIONS?
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Rates of Convergence

I Under i.i.d. sampling the rate of convergence of the sample mean is n−1/2

I Clustering may or may not affect this rate of convergence (often it does).

I Hansen(2007): if dependence within clusters is weak, the rate of convergence is n−1/2 but if the
dependence is strong, the rate of convergence is determined by the number of clusters: q−1/2.

I Donut-hole problem: What if the dependence is in between weak and strong?

I Hansen and Lee (2019): the rate of convergence can be in between or even slower than these rates.

I Analysis: the convergence rate can be calculated as the standard deviation of the sample mean:

Var[X̄n] =
1

n2

q∑
j=1

Var[X ′
j 1j] ⇒ sd(X̄n) =

1
n

 q∑
j=1

Var[X ′
j 1j]

1/2

.
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Rates of Convergence: Examples

sd(X̄n) =
1
n

( q∑
j=1

Var[X ′
j 1j]
)1/2

.

EXAMPLE (NO DEPENDENCE GIVES
√

n RATE)

Suppose nj = na (so q = n1−a) and let Xi,j ∈ R, Var[Xi,j] = 1, and Cov[Xi,j, Xi′,j] = 0. Then:

Var[X ′
j 1j] =

nj∑
i=1

Var[Xi,j] = nj ⇒ sd(X̄n) =
1
n
(qna)1/2 = n−1/2 .

EXAMPLE (HIGH DEPENDENCE GIVES
√q RATE)

Suppose nj = na (so q = n1−a) and let Xi,j ∈ R, Var[Xi,j] = 1, and Cov[Xi,j, Xi′,j] = 1. Then:

Var[X ′
j 1j] =

nj∑
i=1

nj∑
i′=1

Cov[Xi,j, Xi′,j] ∝ n2
j = n2a ⇒ sd(X̄n) = n−(1−a)/2 =

1
n
(qn2a)1/2 = q−1/2 .
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Rates of Convergence: Examples

sd(X̄n) =
1
n

( q∑
j=1

Var[X ′
j 1j]
)1/2

.

EXAMPLE (IN-BETWEEN RATE WITH STRONG DEPENDENCE)

Suppose nj = na (so q = n1−a) and let Xi,j ∈ R, Var[Xi,j] = 1, and Cov[Xi,j, Xi′,j] = 1/|i − i ′|. Then:

Var[X ′
j 1j] =

nj∑
i=1

nj∑
i′=1

Cov[Xi,j, Xi′,j] =

nj∑
i=1

nj∑
i′=1

1
|i − i ′|

=
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Rates of Convergence: Examples

sd(X̄n) =
1
n

( q∑
j=1

Var[X ′
j 1j]
)1/2

.

EXAMPLE (SLOWER THAN
√

n AND
√q RATE WITH HETEROGENEITY)

Two types of clusters: q1 = n/2 with nj = 1 (many small) and q2 = n1−a/2 with nj = na (few large).
Note: q = q1 + q2 = O(n). Within each cluster the observations are identical and have unit variance.
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Comments

I The final example illustrates the importance of considering heterogeneous cluster sizes.

I The reason why the convergence rate is slower than both n−1/2 and q−1/2 is because the number of
clusters is determined by the large number of small clusters (q1), but the convergence rate is
determined by the (relatively) small number of large clusters (q2n2a).

I Lessons from the Examples: the convergence rate sd(X̄n) can be:
1. Equal the square root of the sample size

√
n

2. Equal to the square root of the number of clusters
√q

3. In-between these two
4. Slower than both.

I When X̄n is a vector: its elements may converge at different rates.

LESSON

Under cluster dependence the convergence rate is context-dependent and variable-dependent, and it is
therefore important to allow for general rates of convergence without imposing arbitrary rate ex-ante.
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QUESTIONS?
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Central Limit Theorem

I Under i.i.d. sampling the standard deviation of the sample mean is of order O(n−1/2), so
√

n seems
to be the natural scaling to obtain the central limit theorem (CLT).

I However: clustering can alter the rate of convergence, so it is essential to standardize the sample
mean by the actual variance rather than an assumed rate.

I The variance-covariance matrix of
√

nX̄n is

Ωn = E
[
n(X̄n − E[X̄n])(X̄n − E[X̄n])

′
]
=

1
n

q∑
j=1

E
[
(X ′

j 1j − E[X ′
j 1j])(X

′
j 1j − E[X ′

j 1j])
′
]

.

I Right scaling is then Ω−1/2
n

√
n⇒ look at limit distribution of Ω−1/2

n
√

n(X̄n − E[X̄n])

I We denote by λn = λmin(Ωn) the minimum eigenvalue of Ωn in the statement of the next theorem.
We also use Ik+1 to denote the identity matrix of dimension k + 1.
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Central Limit Theorem

THEOREM (CENTRAL LIMIT THEOREM)

Suppose that for some 2 6 r <∞
lim

M→∞ sup
i,j

E
[
||Xi,j||

rI{||Xi,j|| > M}
]
= 0 , (3)

and (∑q
j=1 nr

j

)2/r

n
6 C <∞ (4)

Assume further that as n→∞
max
j6q

n2
j

n
→ 0 (5)

and
λn > λ > 0 . (6)

Then, as n→∞
Ω

−1/2
n

√
n(X̄n − E[X̄n])

d→ N
(

0, Ik+1

)
. (7)
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Comments

I Assumption (3) states that ||Xi,j||
r is uniformly integrable. When r = 2 this is similar

to the Lindeberg condition for the CLT under independent heterogeneous sampling.

I Assumption (4) involves a trade-off between the cluster sizes and the number of moments r. It is
least restrictive for large r, and more restrictive for small r.

As r→∞ it approaches maxj6q
n2

j
n = O(1) which is implied by (5).

I Assumption (5) allows for growing and heterogeneous cluster sizes.

I It allows clusters to grow uniformly at the rate nj = na for any 0 6 a 6 (r − 2)/2(r − 1).

I Note: this requires the cluster sizes to be bounded if r = 2.

I It also allows for only a small number of clusters to grow.

I Example: nj = n̄ (bounded) for q − k clusters and nj = qa/2 for k clusters, with k fixed. In this case the
assumption holds for any a < 1 and r = 2.

I Assumption (6) specifies that Var[
√

nc ′X̄n] does not vanish for any conformable vector c 6= 0.
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Cluster Covariance Estimation

I We now consider estimation of Ωn

I Under the assumption E[X ′
j 1j] = 0 for all j = 1, . . . , q (which will hold later) we obtain

Ωn =
1
n

q∑
j=1

E
[
(X ′

j 1j − E[X ′
j 1j])(X

′
j 1j − E[X ′

j 1j])
′
]
=

1
n

q∑
j=1

E
[
X ′

j 1j1
′
j Xj

]
.

I The natural estimator is:

Ω̂n =
1
n

q∑
j=1

X ′
j 1j1

′
j Xj =

1
n

q∑
j=1

 nj∑
i=1

Xi,j

 nj∑
i=1

Xi,j

 ′

.

I This estimator is robust to dependence within clusters. It allows for arbitrary within-cluster
correlation patterns and it also allows for E

[
X ′

j 1j1 ′
j Xj

]
to vary across j (heterogeneity).
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Consistency of the CCE

THEOREM (CONSISTENCY OF CCE)

Under the same assumptions Theorem CLT and assuming E[X ′
j 1j] = 0, we obtain as n→∞ that

||Ω̂n −Ωn||
P→ 0

and
Ω̂

−1/2
n

√
nX̄n

d→ N
(

0, Ik+1

)
.

I This shows that the CCE estimator is consistent and that replacing the covariance matrix in the CLT
with the estimated covariance matrix does not affect the asymptotic distribution.

I Implication: Cluster-robust t-statistics are asymptotically standard normal.

I Rate adaptive: we do not need to know the actual rate of convergence of X̄n as the CCE estimator
captures this rate of convergence.

I For a proof of all theorems, see Hansen and Lee (2019, JoE).
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QUESTIONS?
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Applying Results to Linear Regression

Yj = Xjβ+ Uj , j = 1, . . . , q , where E[X ′
j Uj] = 0 .

I The LS estimator of β is given by

√
n(β̂n −β) =

 1
n

q∑
j=1

X ′
j Xj

−1
1√
n

q∑
j=1

X ′
j Uj .

I Notation: Let

Σn =
1
n

q∑
j=1

E[X ′
j Xj] and Ωn =

1
n

q∑
j=1

E[X ′
j UjU

′
j Xj] .

CONSISTENCY

If the rate conditions in Theorem WLLN hold, Σn has full rank, λmin(Σn) > C > 0, and the uniform
integrability condition in (2) holds for Xi,jX ′

i,j and X ′
i,jUi,j, then β̂n is consistent for β.
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Applying Results to Linear Regression

ASYMPTOTIC NORMALITY

To properly normalize
√

n(β̂n −β) we define

Vn = Σ−1
n ΩnΣ

−1
n

as the rate of convergence may not be
√

n.

Next, we assume the rate conditions in Theorem CLT hold for some r, Σn has full rank,
λmin(Σn) > C > 0, λmin(Ωn) > C > 0, and the uniform integrability condition in (3) holds for Xi,jX ′

i,j and

X ′
i,jUi,j. It follows that as n→∞:

V
−1/2
n

√
n(β̂n −β)

d→ N(0, Ik+1) .

I All we now need is an estimator V̂n with the property that

V̂
−1/2
n

√
n(β̂n −β)

d→ N(0, Ik+1) .
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The CCE

DEFINITION (CLUSTER COVARIANCE ESTIMATOR: CCE)

V̂n =

 1
n

q∑
j=1

X ′
j Xj

−1
1
n

q∑
j=1

X ′
j ÛjÛ

′
j Xj

 1
n

q∑
j=1

X ′
j Xj

−1

,

where Ûj = Yj − Xjβ̂n are the LS residuals.

I Under the same conditions listed before,

1 ||V̂n − Vn||
P→ 0 and 2 V̂

−1/2
n

√
n(β̂n −β)

d→ N(0, Ik+1) .

I In the special case with nj = 1 for all j = 1, . . . , q, this estimator becomes the HC estimator.

I Stata uses a multiplicative adjustment to reduce the bias,

V̂stata =
n − 1

n − k − 1
q

q − 1
V̂n .

I This estimator allows for arbitrary within-cluster correlation patterns and heteroskedasticity across
clusters. Unlike HAC estimators, it does not require the selection of a kernel or bandwidth parameter.
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Inference

I For s ∈ {0, 1, . . . , k} let βs be the sth element of β and let V̂n,s be the (s + 1)th
diagonal element of V̂n.

I Consider testing
H0 : βs = c versus H1 : βs 6= c

at level α. Using the results we just derived, it follows that under the null hypothesis

tstat =

√
n(β̂n,s − c)√

V̂n,s

=
β̂n,s − c√

1
n V̂n,s

d→ N(0, 1) as n→∞ .

The test that rejects H0 when |tstat| > z1−α
2

is consistent in levels.

I Important!: this result holds regardless of the rate of convergence of the LS estimator!
I q → ∞ and nj fixed (traditional panel data asymptotics).

I q → ∞ and nj → ∞.

I Either case with strong within-cluster dependence.
I Either case with weak within-cluster dependence.
I Heterogeneous clusters with different sizes and degrees of dependence.
I Covariates with different degrees of dependence.



23

QUESTIONS?



24

Small q ad-hoc adjustments

I Cluster-robust inference asymptotics are based on many clusters: q→∞.

I Often, however, there are only a few clusters (few regions, few schools, few states, etc).

I Finite-sample adjustments extend some of the ideas we discussed with HC standard errors.

I Bell and McCaffrey (2002): propose a bias-reduction modification analogous to that of HC2

V̂bm =

 1
n

q∑
j=1

X ′
j Xj

−1
1
n

q∑
j=1

X ′
j ŨjŨ

′
j Xj

 1
n

q∑
j=1

X ′
j Xj

−1

,

where
Ũj = (Inj − Pjj)

−1/2Ûj ,

Inj is the nj × nj identity matrix, Pjj is the nj × nj matrix defined as

Pjj = Xj(X
′X)−1X ′

j ,

and X is the n× (k + 1) matrix constructed by stacking X1 through Xq.

I The also propose a t critical value with dof adjustment (same intuition as in Behrens-Fisher)
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Simulations

Table 1 reports simulations results for five designs in Imbens and Kolesar. The model is

Yi = β0 +β1Xi + Ui, with Xi = VCi + Wi and Ui = νCi + ηi .

Ci denotes the cluster of i, all variables are N(0, 1), and q = 10. Report CS coverage.

dof I II III IV V
V̂n ∞ 84.7 73.9 79.6 85.7 81.7

q − 1 89.5 86.9 85.2 90.2 86.4

V̂stata ∞ 86.7 78.8 81.9 87.6 83.6
q − 1 91.1 90.3 87.2 91.8 88.1

V̂bm ∞ 89.2 84.7 87.2 89.1 87.7
q − 1 93.0 93.3 91.3 92.8 91.4
κbm 94.4 95.3 94.4 94.2 96.6

TABLE: Design in Imbens and Kolesar/CGM: 1 −α = 95%.
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Final Comments

I When q is small, V̂bm (more so V̂n) typically leads to CSs that under-cover.

I BM (2002): more traction from the dof adjustment to the t-distribution that is used to compute the
critical value of the test.

I Adjustment performs well sometimes, but is ad-hoc (no formal results).

I The literature on inference with few clusters (i.e, q fixed) has made significant progress recently and
the main alternatives to using CCE are:

I The Wild Bootstrap: see Cameron, Gelbach, and Miller (2008) and Canay, Santos, and Shaikh (2021).

I Exact t-approach: see Ibragimov and Mueller (2010)

I Approximate Randomization Tests: see Canay, Romano, and Shaikh (2017).

I CCE is still a very good option when q is large, but remember that its performance does not improve
if nj gets large while q remains small.
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THE END!


	Thanks for Coming!

