ECDN $4 B 0-3$
 LECTURE 11: A PRRIMER ON RANDOM FORESTS

Ivan A. Canay
Northwestern University

LAST CLASS

- The Regression Discontinuity Design
- Sharp and Fuzzy RDD
- Bandwidth Choice
- Matching Estimators

TODAY

- Regression Tress
- Classification Tress
- Random Forests

- 1954: PhD Berkeley (mathematics)
- 1960-1967: UCLA (mathematics)
- 1969-1982: Consultant
- 1982-1993: Berkeley (statistics)
- 1984: Classification \& Regression Trees (with Friedman, Olshen, Stone)
- 1996: Bagging
- 2001: Random Forests
- Let (Y, X) be a random vector where $Y \in \mathbf{R}$ and $X \in \mathbf{R}^{k}$.
- Start focusing on $k=2$ for simplicity and $X \in[0,1]^{2}$.
- Let P be the distribution of (Y, X).
- We are interested in the conditional mean of Y given X.

$$
g(x)=E[Y \mid X=x] .
$$

- Let $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$ be an i.i.d. sample from P.
- Today:
- Regression Trees
- Bagging
- Random Forests

When Y is discrete: classification trees are more appropriate (CART)

- Tree-based methods partition the X space into a set of rectangles.
- Let's denote these rectangles by

$$
\left\{R_{m}: 1 \leqslant m \leqslant M\right\}
$$

- They then fit a very simple model: usually, a constant,

$$
\begin{equation*}
\hat{g}(x)=\sum_{m=1}^{M} c_{m} I\left\{x \in R_{m}\right\} \tag{1}
\end{equation*}
$$

- With continuous Y, c_{m} is usually the average of Y conditional on $X \in R_{m}$,

$$
c_{m}=\frac{\sum_{i=1}^{n} Y_{i} I\left\{X_{i} \in R_{m}\right\}}{\sum_{i=1}^{n} I\left\{X_{i} \in R_{m}\right\}}
$$

- Main issue: How to find "good" rectangles R_{m}.

FIGURE: $X=\left(X_{1}, X_{2}\right) \in[0,1]^{2}$. Left: generic partition. Right: Tree partition

- Left Panel
- Each partition line has a simple description, $X_{1}=c$
- However, resulting regions are hard to describe

- Right Panel

- Arise from recursive binary partitions
- First split $X_{1}=t_{1}$. Then, for the region $X_{1} \leqslant t_{1}$, we split at $X_{2}=t_{2}$ and the region $X_{1}>t_{1}$ is split at $X_{1}=t_{3}$. Etc \ldots

Recursive Binary Partitions: Trees

- Trees: split the space of X into recursive binary partitions.
- Terminal nodes, or "leaves", correspond to the regions R_{1}, \ldots, R_{m}.
- Key advantage \Rightarrow interpretability
- Partition of X fully described by a single tree.
- In higher dimensions regions are hard to describe, but "trees" are alway easy.

FIGURE: Tree in the previous example

Example: Califidrina Mousing

- Data: each of 20,460 neighborhoods (1990 census block groups) in California.
- Response variable: Y is the median house value in each neighborhood.
- The are a total of eight predictor variables (or covariates)
- Median income of neighborhood
- Median house age
- Housing features: average number of rooms and bedrooms.
- Housing density: number of houses
- Average occupancy in each house
- Location of each neighborhood (longitude and latitude)

Example: House Prices

FIGURE: California housing prices (relative to median)

Example: California Housing

- Dataset: median house prices by location in California (Longitude and latitude).

	MedianHouseValue				MedianIncome
1	452600	8.3252	41	37.88	-122.23
2	358500	8.3014	21	37.86	-122.22
3	352100	7.2574	52	37.85	-122.24
4	341300	5.6431	52	37.85	-122.25

- Goal: grow a regression tree as a function of geographic coordinates.
- R has several packages for trees: Tree being a simple one.

```
require(tree)
calif = read.table("cadata.dat",header=TRUE)
treefit = tree(log(MedianHouseValue) ~ Longitude+Latitude)
plot(treefit)
text(treefit,cex=0.75)
```


Example: House Prices

FIGURE: Regression tree for predicting California housing prices from geographic coordinates.

Example: House Prices

FIGURE: Map of actual median house prices (color-coded by decile, darker being more expensive), and the partition of the treefit tree (12 leaves)
$\overline{3}$

- The algorithm needs to automatically decide on the splitting variables and split points, and also what topology (shape) the tree should have.
- To judge whether a given tree is good or bad we need a criterion function.
- Suppose we have a partition with M regions: R_{1}, \ldots, R_{M}
- Consider the estimator we discussed before

$$
\hat{g}(x)=\sum_{m=1}^{M} \hat{c}_{m} I\left\{x \in R_{m}\right\}
$$

- We may choose \hat{c}_{m} in order to minimize some criteria: e.g., sum of squares,

$$
\sum_{i=1}^{n}\left(Y_{i}-\hat{g}(x)\right)^{2}
$$

- Criterion: minimize the sum of squares. Easy to see that \hat{c}_{m} is just the average of Y_{i} in region R_{m},

$$
\hat{c}_{m}=\frac{\sum_{i=1}^{n} Y_{i} I\left\{X_{i} \in R_{m}\right\}}{\sum_{i=1}^{n} I\left\{X_{i} \in R_{m}\right\}}=\frac{1}{N_{m}} \sum_{X_{i} \in R_{m}} Y_{i},
$$

where $N_{m}=\sum_{i=1}^{n} I\left\{X_{i} \in R_{m}\right\}$.

- Next: choose the number M and partition R_{1}, \ldots, R_{M} that deliver the minimum value of

$$
\sum_{i=1}^{n}\left(Y_{i}-\hat{g}(x)\right)^{2}
$$

- Result: Best binary partition in terms of minimum sum of squares.
- Problem: This is an NP-Hard problem.
- The common get around is to use a greedy algorithm

Definition (Greedy Algorithm)

- Consider splitting variable j and split point s. Define

$$
R_{1}(j, s)=\left\{X \mid X_{j} \leqslant s\right\} \quad \text { and } \quad R_{2}(j, s)=\left\{X \mid X_{j}>s\right\}
$$

- Seek j and s that solve

$$
\min _{j, s}\left[\min _{c_{1}} \sum_{x_{i} \in R_{1}(j, s)}\left(y_{i}-c_{1}\right)^{2}+\min _{c_{2}} \sum_{x_{i} \in R_{2}(j, s)}\left(y_{i}-c_{2}\right)^{2}\right] .
$$

- For any choice of j and s, the inner minimization is solved by

$$
\hat{c}_{a}=\frac{\sum_{i=1}^{n} Y_{i} I\left\{X_{i} \in R_{a}(j, s)\right\}}{\sum_{i=1}^{n} I\left\{X_{i} \in R_{a}(j, s)\right\}} \text { for } a \in\{0,1\} .
$$

- For each variable j, determination of split point s can be done quickly.
- Scanning all covariates can be done quickly too \Rightarrow best (j, s).
- Given the best split, repeat the splitting process on each of the two regions.
- The process is repeated again on the resulting regions, etc.
- Tree size is a tuning parameter governing the model's complexity
- Optimal tree size should be adaptively chosen from the data.
- Naive approach: split tree nodes only if the decrease in sum-of-squares due to the split exceeds some threshold.
- Short-sighted: a seemingly worthless split might lead to a very good split below it.
- Preferred strategy: grow a large tree T_{0}, stopping the splitting process only when some minimum node size (say 5) is reached. Then prune this tree using cost-complexity pruning.
- Pruning??? Dod

DEFINITION (PRUNING)

To prune a tree T in a (non-terminal) node t means that t becomes a leaf node and all descendants of t are removed.
The resulting tree is called a subtree.

FIGURE: Pruning a Tree - original (left), branch (center), subtree (right)

- Problem: If T is large, there are many subtrees.
- Also, the larger the tree the better the fit (i.e., sum-of-squares)
- Cost-Complexity: penalize the size/complexity of the tree:
- It avoids getting trees that are unnecessarily large.
- It reduces the number of subtrees to consider.

Cost-Complexity preuning

- Let $|T|$ denote the number of terminal nodes (indexed by m) in T and define

$$
\begin{aligned}
N_{m} & =\sum_{i=1}^{n} I\left\{X_{i} \in R_{m}\right\} \\
\hat{c}_{m} & =\frac{1}{N_{m}} \sum_{X_{i} \in R_{m}} Y_{i} \\
Q_{m}(T) & =\frac{1}{N_{m}} \sum_{X_{i} \in R_{m}}\left(Y_{i}-\hat{c}_{m}\right)^{2} .
\end{aligned}
$$

Definition (Cost Complexity Criterion)

$$
\begin{equation*}
C_{\alpha}(T)=\sum_{m=1}^{|T|} N_{m} Q_{m}(T)+\alpha|T| \tag{2}
\end{equation*}
$$

- Idea: For given α, find the subtree $T_{\alpha} \subseteq T$ to minimize $C_{\alpha}(T)$
- Note: $\alpha=0$ leads to T_{0}, as expected.
- For each α : there is a unique smallest subtree T_{α} that minimizes $C_{\alpha}(T)$.
- To find T_{α} we use weakest link pruning:
- Successively collapse the internal node that produces the smallest per-node increase $\sum_{m=1}^{|T|} N_{m} Q_{m}(T)$
- Continue until producing the single-node (root) tree.
- The approach delivers a sequence of subtrees

$$
T_{0}, T_{1}, T_{2}, \ldots, T_{p}
$$

- Gives a (finite) sequence of subtrees that must contain T_{α}.
- Importantly! this holds for every value of α !
- In addition, for $\alpha>\alpha^{\prime}$ it can be shown that $T_{\alpha} \subseteq T_{\alpha^{\prime}}$.
- The last facts deliver an efficient algorithm to find the smallest minimizing subtrees at different values of α.
- The parameter α can then be chosen by Cross Validation $\Rightarrow \hat{\alpha}$
- The resulting tree is $T_{\hat{\alpha}}$.
$\overline{3}$
- Suppose the outcome is a classification outcome taking values $1,2, \ldots, K$.
- Tree algorithm: the criteria for splitting nodes and pruning the tree changes.
- In a node m, representing a region R_{m} with N_{m} observations, let

$$
\hat{p}_{m k}=\frac{1}{N_{m}} \sum_{X_{i} \in R_{m}} I\left\{Y_{i}=k\right\}
$$

be the proportion of class k observations in node m.

- We classify the observations in node m to the majority class in node m,

$$
k(m)=\arg \max _{k} \hat{p}_{m k}
$$

- Different measures $Q_{m}(T)$: of node impurity include Misclassification Error,

$$
Q_{m}(T)=\frac{1}{N_{m}} \sum_{X_{i} \in R_{m}} I\left\{Y_{i} \neq k(m)\right\}=1-\hat{p}_{m k(m)}
$$

Gini Index, and Cross-Entropy. The last two are differentiable; hence amenable to optimization.

- Problem trees have high variance.
- Often a small change in the data can result in a very different series of splits, making interpretation somewhat precarious.
- The major reason for this instability is the hierarchical nature of the process: the effect of an error in the top split is propagated down to all of the splits below it.
- One can alleviate this to some degree by trying to use a more stable split criterion, but the inherent instability is not removed.
- It is the price to be paid for estimating a simple, tree-based structure from the data.
- Bagging averages many trees to reduce this variance.

Bagging (Bidtstrap Aggregating)

- Bagging stands for Bootstrap Aggregating
- Idea: In situations where we have an estimator $\hat{g}(x)$ that has possibly high variance, we could reduce the variability by averaging the same estimator over bootstrap samples.
- Let $\left\{\left(Y_{1}^{*, b}, X_{1}^{*, b}\right), \ldots,\left(Y_{n}^{*, b}, X_{n}^{*, b}\right)\right\}$ be a bootstrap sample from \hat{P}_{n}, the empirical distribution of the original sample $\left\{\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)\right\}$
- Index the bootstrap samples by $b=1, \ldots, B$ and let $\hat{g}^{*, b}(x)$ denote the estimate of $g(x)$ using the b th bootstrap sample.
- The bagging estimate is defined by

$$
\begin{equation*}
\hat{g}_{\mathrm{bag}}(x)=\frac{1}{B} \sum_{b=1}^{B} \hat{g}^{*, b}(x) . \tag{3}
\end{equation*}
$$

- Note: the idea of bagging can be applied to any estimator (not necessarily tress)

Bagging with Trees

- Each bootstrap tree will typically involve different features than the original, and might have a different number of terminal nodes.
- The bagged estimate is the average prediction at x from these B trees.
- For classification problems, the bagged classifier selects the class with the most "votes" among the B trees.
- Bagging can dramatically reduce the variance of unstable procedures like trees, leading to improved prediction.
- Under square-loss: averaging reduces variance and leaves bias unchanged.
- Several packages in R for bagging CART (classification and regression trees).

BAGGING: HOUSING DATA

FIGURE: Trees for 6 bootstrap samples: CA housing data

bagging: Housing data

Figure: Map of actual median house prices (color-coded by decile, darker being more expensive). Left (original). Right (6th bootstrap sample in previous slide)
$\overline{3}$

Random Forests

- Random forests (Breiman, 2001) is a substantial modification of bagging that builds a large collection of de-correlated trees, and then averages them.
- On many problems the performance of random forests is very similar to boosting, which in turn is an improved version of bagging (not covered here)
- Random forest are simpler to train and tune and, as a consequence, are very popular.
- They can be implemented in a variety of packages, including randomForests in R.
- The essential idea in bagging is to average many noisy but approximately unbiased models to reduce the variance.
- Since trees are notoriously noisy, they benefit greatly from the averaging.
- An average of B i.i.d. random variables, each with variance σ^{2}, has variance

$$
\frac{1}{B} \sigma^{2}
$$

- With n.i.i.d. (identically distributed, but not independent) with positive pairwise correlation ρ, the variance of the average is

$$
\rho \sigma^{2}+\frac{1-\rho}{B} \sigma^{2} .
$$

- As B increases, the second term disappears, but the first remains, and hence the size of the correlation of pairs of bagged trees limits the benefits of averaging.
- Random forests: improve the variance reduction of bagging by reducing the correlation between the trees, without increasing the variance too much.

RANDDM FDRESTS: ALGORETHM

Random Forests algorithm

1. For $b=1, \ldots, B$
1.1 Draw a bootstrap sample of size n from the training data.
1.2 Grow a random-forest tree T_{b} to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size $n_{\text {min }}$ is reached.
1.2.1 Select s variables at random from the k variables.
1.2.2 Pick the best variable/split-point among the s.
1.2.3 Split the node into two daughter nodes
1.3 Output the ensemble of trees $\left\{T_{b}: 1 \leqslant b \leqslant B\right\}$.

To make a prediction at a new point x :

$$
\begin{aligned}
\text { Regression } & \hat{g}_{\mathrm{rf}}(x)=\frac{1}{B} \sum_{b=1}^{B} \hat{g}_{b}(x) \\
\text { Classification } & \hat{C}_{\mathrm{rf}}(x)=\text { majority } \operatorname{vote}\left\{C_{b}(x): 1 \leqslant b \leqslant B\right\}
\end{aligned}
$$

- The main feature of a random forest is that, when growing a tree on a bootstrapped dataset:

Before each split, select $s<k$ of the input variables at random as candidates for splitting.

- Intuitively, reducing s will reduce the correlation between any pair of trees in the ensemble, and hence reduce the variance of the average.
- "Suggested" values of s are \sqrt{k} for classification and $k / 3$ for regression.
- Not all estimators can be improved by shaking up the data like this.
- Highly nonlinear estimators, such as trees, benefit the most.
$\overline{3}$

Random Forests ws Bodsting: Housing data

FIGURE: Random forests compared to gradient boosting on the California housing data. The curves represent mean absolute error on the test data as a function of the number of trees in the models.

- Random forests stabilize at about 200 trees, while at 1000 trees boosting continues to improve. Boosting has several tuning parameters.
Boosting outperforms random forests here. More similar in other cases.
- Note: $s=6$ performs better than the default value $\lfloor s / 3\rfloor=2$.
- Unlike Boosting (which is sequential), RF grows trees in parallel.

Application: Microsoft Kinect

FIgure: Body part classification in the kinect. 1 million test images

- Algorithm trained on synthetic data (computer graphics)
- Depth image capture: for each pixel computes relative depth (relative to two random directions)
- Goal: quickly classify joints (head, elbows, etc)
- Relatively easy to update algorithm with new images
- Note: no training in real time (training takes a long time) - only classification
- 1 million images: 1 day in 1,000 core cluster.

FIGURE: Examples of results on eight (previously unseen) test patients. Results are obtained by a forest trained on 30 patients. The automatic segmentation results (bottom row) look very similar to the manual, ground truth segmentations (middle row)

- Delineation of tissue components is crucial for radiotherapy and surgery planning and is currently performed manually in a labor intensive fashion.
- Here we compare MRI segmentation done by a radiotherapist with that of a random forests algorithm (with some modifications not discussed here).
- The methods we discussed are a type of non-parametric regression
- They are about predicting Y given X and involve tuning parameters.
- Most of the "buzz" about these machine learning techniques come from accuracy in practical prediction problems (Kinect, Netflix contests, online searches, image recognition, etc)
- The theoretical properties of $\hat{g}_{\text {rf }}(x)$ still being developed.
(1) Recent papers by Athey, Tibshirani, Wager, and others are making progress.
(2) Methods suffer from the curse of dimensionally, but may work better in some families of DGPS.

$$
g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=h_{4}\left(h_{1}\left(x_{2}, x_{4}\right), h_{2}\left(x_{1}\right), h_{3}\left(x_{3}\right)\right)=h_{4} \circ h_{3} \circ h_{2} \circ h_{4} \Rightarrow d^{*}=2<d=4
$$

Schmidt-Hieber. "Nonparametric regression using deep neural networks with ReLU activation function." Ann. Statist. 2020.

- Economics is less about prediction than other sciences \Rightarrow but causal parameters usually involve conditional expectations so...

THE END

Midterm Exam

Min	24
25th Q	52
Median	61
Mean	64
75th Q	75
Max	100

TABLE: Distribution of grades Midterm Exam 2021

