
1

ECON 480-3
LECTURE 11: A PRIMER ON RANDOM FORESTS

Ivan A. Canay
Northwestern University

2

Past & Future

LAST CLASS
I The Regression Discontinuity Design
I Sharp and Fuzzy RDD
I Bandwidth Choice
I Matching Estimators

TODAY
I Regression Tress
I Classification Tress
I Random Forests

3

Leo Breiman, 1928-2005

I 1954: PhD Berkeley (mathematics)

I 1960-1967: UCLA (mathematics)

I 1969-1982: Consultant

I 1982-1993: Berkeley (statistics)

I 1984: Classification & Regression Trees (with
Friedman, Olshen, Stone)

I 1996: Bagging

I 2001: Random Forests

4

Setup

I Let (Y, X) be a random vector where Y ∈ R and X ∈ Rk.

I Start focusing on k = 2 for simplicity and X ∈ [0, 1]2.

I Let P be the distribution of (Y, X).

I We are interested in the conditional mean of Y given X.

g(x) = E[Y|X = x] .

I Let {(Y1, X1), . . . , (Yn, Xn)} be an i.i.d. sample from P.

I Today:

I Regression Trees

I Bagging

I Random Forests

I When Y is discrete: classification trees are more appropriate (CART)

5

Trees

I Tree-based methods partition the X space into a set of rectangles.

I Let’s denote these rectangles by
{Rm : 1 6 m 6 M} .

I They then fit a very simple model: usually, a constant,

ĝ(x) =
M∑

m=1

cmI{x ∈ Rm} . (1)

I With continuous Y, cm is usually the average of Y conditional on X ∈ Rm,

cm =

∑n
i=1 YiI{Xi ∈ Rm}∑n

i=1 I{Xi ∈ Rm}
.

I Main issue: How to find “good” rectangles Rm.

6

Two Partitions of X

FIGURE: X = (X1, X2) ∈ [0, 1]2. Left: generic partition. Right: Tree partition

I Left Panel
I Each partition line has a simple description, X1 = c
I However, resulting regions are hard to describe

I Right Panel
I Arise from recursive binary partitions
I First split X1 = t1. Then, for the region X1 6 t1, we split at X2 = t2 and the region X1 > t1 is split at

X1 = t3. Etc...

7

Recursive Binary Partitions: Trees

I Trees: split the space of X into recursive binary partitions.

I Terminal nodes, or “leaves”, correspond to the regions R1, . . . , Rm.

I Key advantage⇒ interpretability

I Partition of X fully described by a single tree.

I In higher dimensions regions are hard to describe, but “trees” are alway easy.

FIGURE: Tree in the previous example

8

Example: California Housing

I Data: each of 20,460 neighborhoods (1990 census block groups) in California.

I Response variable: Y is the median house value in each neighborhood.

I The are a total of eight predictor variables (or covariates)

I Median income of neighborhood

I Median house age

I Housing features: average number of rooms and bedrooms.

I Housing density: number of houses

I Average occupancy in each house

I Location of each neighborhood (longitude and latitude)

9

Example: House Prices

FIGURE: California housing prices (relative to median)

10

Example: California Housing

I Dataset: median house prices by location in California (Longitude and latitude).

MedianHouseValue MedianIncome MedianHouseAge Latitude Longitude
1 452600 8.3252 41 37.88 -122.23
2 358500 8.3014 21 37.86 -122.22
3 352100 7.2574 52 37.85 -122.24
4 341300 5.6431 52 37.85 -122.25

I Goal: grow a regression tree as a function of geographic coordinates.

I R has several packages for trees: Tree being a simple one.

require(tree)
calif = read.table("cadata.dat",header=TRUE)
treefit = tree(log(MedianHouseValue) ~ Longitude+Latitude)
plot(treefit)
text(treefit,cex=0.75)

11

Example: House Prices

FIGURE: Regression tree for predicting California housing prices from geographic coordinates.

12

Example: House Prices

FIGURE: Map of actual median house prices (color-coded by decile, darker being more expensive), and the partition of
the treefit tree (12 leaves)

13

QUESTIONS?

14

How to grow a tree

I The algorithm needs to automatically decide on the splitting variables and split points, and also
what topology (shape) the tree should have.

I To judge whether a given tree is good or bad we need a criterion function.

I Suppose we have a partition with M regions: R1, . . . , RM

I Consider the estimator we discussed before

ĝ(x) =
M∑

m=1

ĉmI{x ∈ Rm} .

I We may choose ĉm in order to minimize some criteria: e.g., sum of squares,

n∑
i=1

(Yi − ĝ(x))2 .

15

How to grow a tree

I Criterion: minimize the sum of squares. Easy to see that ĉm is just the average of Yi in region Rm,

ĉm =

∑n
i=1 YiI{Xi ∈ Rm}∑n

i=1 I{Xi ∈ Rm}
=

1
Nm

∑
Xi∈Rm

Yi ,

where Nm =
∑n

i=1 I{Xi ∈ Rm}.

I Next: choose the number M and partition R1, . . . , RM that deliver the minimum value of

n∑
i=1

(Yi − ĝ(x))2 .

I Result: Best binary partition in terms of minimum sum of squares.

I Problem: This is an NP-Hard problem.

I The common get around is to use a greedy algorithm

16

Greedy Algorithm

DEFINITION (GREEDY ALGORITHM)
I Consider splitting variable j and split point s. Define

R1(j, s) = {X|Xj 6 s} and R2(j, s) = {X|Xj > s}

I Seek j and s that solve

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

 .

I For any choice of j and s, the inner minimization is solved by

ĉa =

∑n
i=1 YiI{Xi ∈ Ra(j, s)}∑n

i=1 I{Xi ∈ Ra(j, s)}
for a ∈ {0, 1} .

I For each variable j, determination of split point s can be done quickly.
I Scanning all covariates can be done quickly too⇒ best (j, s).
I Given the best split, repeat the splitting process on each of the two regions.
I The process is repeated again on the resulting regions, etc.

17

How large should we grow a tree?

I Tree size is a tuning parameter governing the model’s complexity

I Optimal tree size should be adaptively chosen from the data.

I Naive approach: split tree nodes only if the decrease in sum-of-squares due to the split exceeds
some threshold.

I Short-sighted: a seemingly worthless split might lead to a very good split below it.

I Preferred strategy: grow a large tree T0, stopping the splitting process only when some minimum
node size (say 5) is reached. Then prune this tree using cost-complexity pruning.

I Pruning???

DEFINITION (PRUNING)

To prune a tree T in a (non-terminal) node t means that t becomes a leaf node and all descendants of t
are removed.
The resulting tree is called a subtree.

18

Pruning

FIGURE: Pruning a Tree - original (left), branch (center), subtree (right)

I Problem: If T is large, there are many subtrees.

I Also, the larger the tree the better the fit (i.e., sum-of-squares)

I Cost-Complexity: penalize the size/complexity of the tree:

I It avoids getting trees that are unnecessarily large.

I It reduces the number of subtrees to consider.

19

Cost-Complexity pruning
I Let |T| denote the number of terminal nodes (indexed by m) in T and define

Nm =

n∑
i=1

I{Xi ∈ Rm}

ĉm =
1

Nm

∑
Xi∈Rm

Yi

Qm(T) =
1

Nm

∑
Xi∈Rm

(Yi − ĉm)
2 .

DEFINITION (COST COMPLEXITY CRITERION)

Cα(T) =
|T|∑

m=1

NmQm(T) +α|T| . (2)

I Idea: For given α, find the subtree Tα ⊆ T to minimize Cα(T)

I Note: α = 0 leads to T0, as expected.

20

Weakest Link Pruning

I For each α: there is a unique smallest subtree Tα that minimizes Cα(T).

I To find Tα we use weakest link pruning:
I Successively collapse the internal node that produces the smallest per-node increase

∑|T|
m=1 NmQm(T)

I Continue until producing the single-node (root) tree.
I The approach delivers a sequence of subtrees

T0, T1, T2, . . . , Tp

I Gives a (finite) sequence of subtrees that must contain Tα.

I Importantly! this holds for every value of α!

I In addition, for α > α ′ it can be shown that Tα ⊆ Tα′ .

I The last facts deliver an efficient algorithm to find the smallest minimizing subtrees at different
values of α.

I The parameter α can then be chosen by Cross Validation⇒ α̂

I The resulting tree is Tα̂.

21

QUESTIONS?

22

Classification Trees

I Suppose the outcome is a classification outcome taking values 1, 2, ..., K.

I Tree algorithm: the criteria for splitting nodes and pruning the tree changes.

I In a node m, representing a region Rm with Nm observations, let

p̂mk =
1

Nm

∑
Xi∈Rm

I{Yi = k}

be the proportion of class k observations in node m.

I We classify the observations in node m to the majority class in node m,

k(m) = arg max
k

p̂mk

I Different measures Qm(T): of node impurity include Misclassification Error,

Qm(T) =
1

Nm

∑
Xi∈Rm

I{Yi 6= k(m)} = 1 − p̂mk(m) ,

Gini Index, and Cross-Entropy. The last two are differentiable; hence amenable to optimization.

23

Tree Instability

I Problem trees have high variance.

I Often a small change in the data can result in a very different series of splits, making interpretation
somewhat precarious.

I The major reason for this instability is the hierarchical nature of the process: the effect of an error in
the top split is propagated down to all of the splits below it.

I One can alleviate this to some degree by trying to use a more stable split criterion, but the inherent
instability is not removed.

I It is the price to be paid for estimating a simple, tree-based structure from the data.

I Bagging averages many trees to reduce this variance.

24

Bagging (Bootstrap Aggregating)

I Bagging stands for Bootstrap Aggregating

I Idea: In situations where we have an estimator ĝ(x) that has possibly high variance, we could reduce
the variability by averaging the same estimator over bootstrap samples.

I Let {(Y∗,b1 , X∗,b1), . . . , (Y∗,bn , X∗,bn)} be a bootstrap sample from P̂n, the empirical distribution of the
original sample {(Y1, X1), . . . , (Yn, Xn)}

I Index the bootstrap samples by b = 1, . . . , B and let ĝ∗,b(x) denote the estimate of g(x) using the bth
bootstrap sample.

I The bagging estimate is defined by

ĝbag(x) =
1
B

B∑
b=1

ĝ∗,b(x) . (3)

I Note: the idea of bagging can be applied to any estimator (not necessarily tress)

I Note: the bagged estimate will differ from the original estimate only when the latter is a nonlinear or
adaptive function of the data.

25

Bagging with Trees

I Each bootstrap tree will typically involve different features than the original, and might have a
different number of terminal nodes.

I The bagged estimate is the average prediction at x from these B trees.

I For classification problems, the bagged classifier selects the class with the most “votes” among the B
trees.

I Bagging can dramatically reduce the variance of unstable procedures like trees, leading to improved
prediction.

I Under square-loss: averaging reduces variance and leaves bias unchanged.

I Several packages in R for bagging CART (classification and regression trees).

26

Bagging: Housing data

FIGURE: Trees for 6 bootstrap samples: CA housing data

27

Bagging: Housing data

FIGURE: Map of actual median house prices (color-coded by decile, darker being more expensive). Left (original).
Right (6th bootstrap sample in previous slide)

28

QUESTIONS?

29

Random Forests

I Random forests (Breiman, 2001) is a substantial modification of bagging that builds a large
collection of de-correlated trees, and then averages them.

I On many problems the performance of random forests is very similar to boosting, which in turn is an
improved version of bagging (not covered here)

I Random forest are simpler to train and tune and, as a consequence, are very popular.

I They can be implemented in a variety of packages, including randomForests in R.

30

Correlated vs Uncorrelated Trees

I The essential idea in bagging is to average many noisy but approximately unbiased
models to reduce the variance.

I Since trees are notoriously noisy, they benefit greatly from the averaging.

I An average of B i.i.d. random variables, each with variance σ2, has variance

1
B
σ2 .

I With n.i.i.d. (identically distributed, but not independent) with positive pairwise correlation ρ, the
variance of the average is

ρσ2 +
1 − ρ

B
σ2 .

I As B increases, the second term disappears, but the first remains, and hence the size of the
correlation of pairs of bagged trees limits the benefits of averaging.

I Random forests: improve the variance reduction of bagging by reducing the correlation between the
trees, without increasing the variance too much.

31

Random Forests: Algorithm

RANDOM FORESTS ALGORITHM

1. For b = 1, . . . , B
1.1 Draw a bootstrap sample of size n from the training data.

1.2 Grow a random-forest tree Tb to the bootstrapped data, by recursively repeating the following steps for each
terminal node of the tree, until the minimum node size nmin is reached.

1.2.1 Select s variables at random from the k variables.

1.2.2 Pick the best variable/split-point among the s.

1.2.3 Split the node into two daughter nodes

1.3 Output the ensemble of trees {Tb : 1 6 b 6 B}.

To make a prediction at a new point x:

Regression ĝrf(x) =
1
B

B∑
b=1

ĝb(x)

Classification Ĉrf(x) = majority vote{Cb(x) : 1 6 b 6 B} .

where ĝb(x) is the regression tree associated with Tb and Ĉb(x) is the class prediction associated with Tb.

32

Comments

I The main feature of a random forest is that, when growing a tree on a bootstrapped dataset:

Before each split, select s < k of the input variables at random as candidates for splitting.

I Intuitively, reducing s will reduce the correlation between any pair of trees in the ensemble, and
hence reduce the variance of the average.

I “Suggested” values of s are
√

k for classification and k/3 for regression.

I Not all estimators can be improved by shaking up the data like this.

I Highly nonlinear estimators, such as trees, benefit the most.

33

QUESTIONS?

34

Random Forests vs Boosting: Housing data

FIGURE: Random forests compared to gradient boosting on the California housing data. The curves represent mean
absolute error on the test data as a function of the number of trees in the models.

I Random forests stabilize at about 200 trees, while at 1000 trees boosting continues to improve.
Boosting has several tuning parameters.

I Boosting outperforms random forests here. More similar in other cases.
I Note: s = 6 performs better than the default value bs/3c = 2.
I Unlike Boosting (which is sequential), RF grows trees in parallel.

35

Application: Microsoft Kinect

FIGURE: Body part classification in the kinect. 1 million test images

I Algorithm trained on synthetic data (computer graphics)
I Depth image capture: for each pixel computes relative depth (relative to two random directions)
I Goal: quickly classify joints (head, elbows, etc)
I Relatively easy to update algorithm with new images
I Note: no training in real time (training takes a long time) - only classification
I 1 million images: 1 day in 1,000 core cluster.

36

Application: segmentation of brain tumors

FIGURE: Examples of results on eight (previously unseen) test patients. Results are obtained by a forest trained on 30
patients. The automatic segmentation results (bottom row) look very similar to the manual, ground truth segmentations
(middle row)

I Delineation of tissue components is crucial for radiotherapy and surgery planning and is currently
performed manually in a labor intensive fashion.

I Here we compare MRI segmentation done by a radiotherapist with that of a random forests algorithm
(with some modifications not discussed here).

37

Conclusions

I The methods we discussed are a type of non-parametric regression

I They are about predicting Y given X and involve tuning parameters.

I Most of the “buzz” about these machine learning techniques come from accuracy in practical
prediction problems (Kinect, Netflix contests, online searches, image recognition, etc)

I The theoretical properties of ĝrf(x) still being developed.

1 Recent papers by Athey, Tibshirani, Wager, and others are making progress.

2 Methods suffer from the curse of dimensionally, but may work better in some families of DGPS.

g(x1, x2, x3, x4) = h4(h1(x2, x4), h2(x1), h3(x3)) = h4 ◦ h3 ◦ h2 ◦ h4 ⇒ d∗ = 2 < d = 4

Schmidt-Hieber. “Nonparametric regression using deep neural networks with ReLU activation function.” Ann. Statist. 2020.

I Economics is less about prediction than other sciences⇒ but causal parameters usually involve
conditional expectations so...

38

THE END

39

Midterm Exam

Min 24
25th Q 52
Median 61
Mean 64
75th Q 75
Max 100

TABLE: Distribution of grades
Midterm Exam 2021

	Thanks for Coming!

