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Past & Future

PART III SO FAR

I HC Standard Errors
I HAC Standard Errors
I CCE Standard Errors

TODAY
I Confidence Sets and Pivots
I Bootstrap: Algorithm
I Bootstrap: Sample Mean
I Discussion
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Confidence Sets

I Data: let Xi, i = 1, . . . , n be an i.i.d. sample of observations with distribution P ∈ P.

I The family P may be a parametric, nonparametric, or semiparametric family of distributions.

I We are interested in making inferences about some parameter θ(P) ∈ Θ = {θ(P) : P ∈ P}.

I Examples of θ(P) are the mean of P, the median of P, of a regression coefficient, among others.

I Confidence set for θ(P): a random set Cn = Cn(X1, . . . , Xn) such that

P{θ(P) ∈ Cn} ≈ 1 −α ,

at least for n sufficiently large.

I The typical way of constructing such sets is based off of approximating the distribution of a root,

Rn = Rn(X1, . . . , Xn, θ(P)) .

I Root: any real-valued function depending on both the data and the parameter of interest, θ(P).
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Sampling distribution

I Idea: if the distribution of the root were known, then one could straightforwardly
construct a confidence set for θ(P).

I Let Jn(P) denote the sampling distribution of Rn and define the corresponding cdf as,

Jn(x, P) = P{Rn 6 x} .

I Note: the distribution of Rn depends on both the sample size, n, and the distribution of the data, P.

I Knowing Jn(x, P) we may choose a constant c such that

P{Rn 6 c} ≈ 1 −α .

I The set Cn = {θ ∈ Θ : Rn(X1, . . . , Xn, θ) 6 c} is a confidence set in the sense described above.

I We may also choose c1 and c2 so that

P{c1 6 Rn 6 c2} ≈ 1 −α ,

and construct the desired confidence set as

Cn = {θ ∈ Θ : c1 6 Rn(X1, . . . , Xn, θ) 6 c2} .



5

Pivots

I In some rare instances, Jn(x, P) does not depend on P.

I In these instances, the root is said to be pivotal or a pivot.

I Example: if θ(P) is the mean of P and P = {N(θ, 1) : θ ∈ R}, then the root

Rn =
√

n(X̄n − θ(P))

is a pivot because Rn ∼ N(0, 1).

I In this case, we may construct confidence sets Cn with finite-sample validity; that is,

P{θ(P) ∈ Cn} = 1 −α

for all n and P ∈ P.
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Asymptotic Pivots

I Sometimes, the root may not be pivotal in the sense described above, but it may be asymptotically
pivotal or an asymptotic pivot.

I Asymptotic pivot: Jn(x, P) converges in distribution to a limit distribution J(x, P) that does not
depend on P.

I Example: θ(P) is the mean of P and P is the set of all distributions on R with a finite, nonzero
variance, then

Rn =

√
n(X̄n − θ(P))

σ̂n

is asymptotically pivotal because it converges in distribution to J(x, P) = Φ(x).

I We may then construct confidence sets that are asymptotically valid in the sense that

lim
n→∞P{θ(P) ∈ Cn} = 1 −α

for all P ∈ P.



7

Asymptotic Approximations

I Typically, the root will be neither a pivot nor an asymptotic pivot.

I The distribution Jn(x, P) and the limiting distribution J(x, P) will typically depend on P.

I Example: θ(P) is the mean of P and P is the set of all distributions on R with a finite, nonzero
variance, then

Rn =
√

n(X̄n − θ(P))
converges in distribution to J(x, P) = Φ(x/σ(P)).

I We can approximate this limit distribution with Φ(x/σ̂n), which will lead to confidence sets that are
asymptotically valid in the sense described above.

I This approach depends very heavily on the limit distribution J(x, P) being both known and tractable.
Even if it is known, the limit distribution may be difficult to work with (e.g., it could be the supremum
of some complicated stochastic process with many nuisance parameters).

I Even if it is known and manageable, the method may be poor in finite-samples because it
essentially relies on a double approximation: 1 Jn(x, P) is approximated by J(x, P), then 2
J(x, P) is approximated in some way by estimating the unknown parameters of the limit distribution.
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The Bootstrap

I The bootstrap is a fourth, more general approach to approximating Jn(x, P).

I The idea is very simple: replace the unknown P with an estimate P̂n.

I Given P̂n it is possible to compute Jn(x, P̂n) (either analytically or using simulation to any desired
degree of accuracy).

I Estimate: 1 In the case of i.i.d. data, a typical choice is the empirical distribution.

Data X1 X2 X3 · · · Xn
P̂n

1
n

1
n

1
n · · · 1

n
.

2 If P = P(ψ) for some finite-dimensional parameter ψ, then one may also use P̂n = P(ψ̂n) for
some estimate ψ̂n of ψ.

I The hope is that whenever P̂n is close to P, Jn(x, P̂n) is close to Jn(x, P).

I Essentially, this requires that Jn(x, P), when viewed as a function of P, is continuous in an
appropriate neighborhood of P.

I Often, this turns out to be true, but, unfortunately, it is not true in general.
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QUESTIONS?
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The case of the mean

I We will now consider the case where P is a distribution on R and θ(P) is the mean of P.

I We will consider first the root Rn =
√

n(X̄n − θ(P)).

I Let P̂n denote the empirical distribution of the {Xi : i = 1, . . . , n}.
Data X1 X2 X3 · · · Xn
P̂n

1
n

1
n

1
n · · · 1

n
.

I Question: under what conditions is Jn(x, P̂n) “close” to Jn(x, P)?

I The sequence of distributions P̂n is a random sequence, so it is more convenient to answer the
question first for a nonrandom sequence Pn and then extend to random sequences.

I Before presenting formal results, we discuss how to implement the bootstrap in practice for this case.
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Implementation of The Bootstrap

I Most often, the bootstrap approximation Jn(x, P̂n) cannot be calculated exactly.

I We can approximate this distribution to an arbitrary degree of accuracy by taking samples from P̂n

I Let’s consider two cases for the case of the mean:

Pnp = {distributions with finite second moments} and Pp = {P : exp(1/θ)} .

I Implementation of the bootstrap requires 4 steps.

BOOTSTRAP ALGORITHM

1 Conditional on the data (X1, . . . , Xn), draw B samples of size n from P̂n. Denote the jth sample by

(X∗1,j, . . . , X∗n,j) for j = 1, . . . , B .

Non-parametric: When P = Pnp, P̂n is typically the empirical distribution and this involves
resampling the original observations with replacement (each observation has probability 1/n).

Parametric: When P = Pp, P̂n = exp(1/θ̂n) where θ̂n is, for example, the MLE of θ: θ̂n = X̄n.

NOTE!: Step 1, how you take your samples, determines the type of bootstrap (parametric,
non-parametric, Wild-bootstrap, clustered samples, and many others).
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Implementation of The Bootstrap

BOOTSTRAP ALGORITHM

2 For each bootstrap sample j, compute the root, i.e.,

R∗j,n = Rn(X∗1,j, . . . , X∗n,j, θ̂n) for j = 1, . . . , B .

Note: θ(P̂n) = θ̂n, so in the bootstrap distribution θ(P) becomes θ̂n. In the case of the mean,

R∗j,n =
√

n(X̄∗j,n − X̄n) .

3 Compute the empirical cdf of (R∗1,n, . . . , R∗B,n) as

Ln(x) =
1
B

B∑
j=1

I{R∗j,n 6 x} .

By the Glivenko-Cantelli Theorem, supx∈R |Ln(x) − J(x, P̂n)|→ 0 as B→∞. Thus, the

Glivenko-Cantelli Theorem implies we can achieve an arbitrary degree of accuracy by choosing B
sufficiently big. In practice, researcher use B = 1, 000 or above, given enough computational power.



13

Implementation of The Bootstrap

BOOTSTRAP ALGORITHM

4 Compute the desired function of Ln(x), for example, a quantile,

L−1
n (1 −α) = inf{x ∈ R : Ln(x) > 1 −α} ,

for a given significance level α.

Note! In practice you usually skip step 3 and compute step 4 directly using a quantile function:

L−1
n (1 −α) = quantile1−α

(
R∗1,n, R∗2,n, . . . , R∗B,n

)
.

I In Step 1, it matters the family of distributions (parameter vs nonparametric).

I In Step 2, it matters what the parameter of interest is and what the root is.

I Step 3 may be skipped if step 4 can be calculated directly as above.

I We are now ready to start with the formal results
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The Bootstrap: illustration with marbels
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QUESTIONS?
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Intermediate Step: nonrandom sequence

THEOREM

Let θ(P) be the mean of P and let P denote the set of all distributions on R with a finite, nonzero
variance. Consider the root

Rn =
√

n(X̄n − θ(P)) .

Let Pn, n > 1 be a nonrandom sequence of distributions such that:

1 Pn converges in distribution to P

2 θ(Pn)→ θ(P)

3 σ2(Pn)→ σ2(P).
Then,

(I) Jn(x, Pn) converges in distribution to J(x, P) = Φ(x/σ(P)).

(II) The 1 −α quantile J−1
n (1 −α, Pn) = inf{x ∈ R : Jn(x, Pn) > 1 −α} converges to

J−1(1 −α, P) = z1−ασ(P) .
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proof of (i)

For each n, let Xi,n, i = 1, . . . , n be i.i.d. with distribution Pn.

WTS:
√

n(X̄n,n − θ(Pn))
d→ N(0,σ2(P)).
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proof of (i)

1. Suppose that Yn and Y are real valued random variables and that Yn
d→ Y.

If the Yn are uniformly bounded, then E[Yn]→ E[Y].

2. Suppose that Yn
d→ Y. Let g be a measurable map from R to R. Let C be the set of points in R for

which g is continuous. If P{Y ∈ C} = 1, then g(Yn)
d→ g(Y).
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proof of (i)

Claim that limn→∞ E[Z2
n,iI{|Zn,i| > ε

√
n}] = 0 and apply the Lindeberg-Feller CLT.
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proof of part (ii)

Part (II) follows from part (i) and Lemma 2 below applied to Fn(x) = Jn(x, P) and F(x) = J(x, P).

LEMMA

Let Fn, n > 1 and F be nonrandom distribution functions on R such that Fn converges in distribution
to F. Suppose F is continuous and strictly increasing at

F−1(1 −α) = inf{x ∈ R : F(x) > 1 −α} .

Then,
F−1

n (1 −α) = inf{x ∈ R : Fn(x) > 1 −α}→ F−1(1 −α) .

Proof: see Lecture Notes.
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Main Theorem

We are now ready to pass from the nonrandom sequence Pn to the random sequence P̂n.

THEOREM

Let θ(P) be the mean of P and let P denote the set of all distributions on R with a finite, nonzero
variance. Consider the root

Rn =
√

n(X̄n − θ(P)) .

Then,

(I) Jn(x, P̂n) converges in distribution to J(x, P) = Φ(x/σ(P)) a.s.

(II) J−1
n (1 −α, P̂n) converges to J−1(1 −α, P) = z1−ασ(P) a.s.

Proof: it follows from the previous theorem if we show that P̂n satisfies the requirements imposed on Pn
a.s.:

1 P̂n converges in distribution to P a.s.

2 θ(P̂n)→ θ(P) a.s.

3 σ2(P̂n)→ σ2(P) a.s.
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Remarks

I Similar results hold for the studentized root where σ̂n is consistent for σ(P).

I Using this root leads to the so-called Bootstrap-t, as the root is just the t-statistic.

I A key step in the proof of this result is to show that σ̂n converges in probability to σ(P) under an
appropriate sequence of distributions. We do this in 481.

I The advantage of working with a studentized root is that the limit distribution of Rn is pivotal, which
affects the properties of the bootstrap approximation as discussed in the next section.

I By Slutsky’s Theorem confidence sets of the form

Cn =
{
θ ∈ R : Rn(X1, . . . , Xn, θ) 6 J−1

n (1 −α, P̂n)
}

,

which are known as symmetric confidence sets, or

Cn =
{
θ ∈ R : J−1

n

(α
2

, P̂n

)
6 Rn(X1, . . . , Xn, θ) 6 J−1

n

(
1 −

α

2
, P̂n

)}
,

which are known as equi-tailed confidence sets, satisfy

P{θ(P) ∈ Cn}→ 1 −α for all P ∈ P .
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Asymptotic Refinements

I Q: is the bootstrap better than an asymptotically normal approximation?

I Yes: under certain conditions (ensuring existence of so-called Edgeworth expansions of Jn(x, P)) it
follows that one-sided confidence sets Cn based off such an asymptotic approximation satisfy∣∣P{θ(P) ∈ Cn}− (1 −α)

∣∣ = O
(

1√
n

)
. (1)

I One-sided confidence sets based off of the bootstrap and the root Rn =
√

n(X̄n − θ(P)) also satisfy
(1), though there is some evidence to suggest that it does a bit better in the size of O(n−1/2) term.

I On the other hand, one-sided confidence sets based off the bootstrap-t, i.e., using the root

Rn =

√
n(X̄n − θ(P))

σ̂n

satisfy ∣∣P{θ(P) ∈ Cn}− (1 −α)
∣∣ = O

(
1
n

)
. (2)

I Refinement: the coverage error of the bootstrap-t interval is O(n−1) and is of smaller order than
that provided by the normal approximation or the bootstrap based on a nonstudentized root.
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Asymptotic Refinements

I A heuristic reason why the bootstrap based on the studentized root outperforms the bootstrap based
on the nonstudentized root is as follows.

I Nonstudentized case: the bootstrap is estimating a distribution that has mean 0 and unknown variance
σ2(P). The main contribution to the estimation error is the implicit estimation of σ2(P) by σ2(P̂n).

I Studentized case: the studentized root has a distribution that is nearly independent of P since it is an
asymptotic pivot.

I The bootstrap may also provide a refinement in two-sided tests. For example, symmetric intervals
based on the absolute value of the studentized root are O(n−2), versus the asymptotic
approximation that is of order O(n−1).

I Note that, by construction, such intervals are symmetric about θ̂n.

I Final comment: The bootstrap may fail and work poorly in finite samples when J(x, P) is not
continuous in P. This happens in some settings relevant to economics: Auction models, Entry Game
Models, Missing data settings, etc.
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THE END!
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