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PAasTt & FUTURE

LAST CLASS TODAY

> Regression Tress > Related to Classification Tress
> Classification Tress > Latent Index and Identification
» Random Forests > |dentification via Median Independence

> Parametric Models: Logit & Probit

D FUTURE
ﬁ



SETUP

> Today we consider the problem of estimating
PR = 1p3)
where Y is binary, i.e., takes values in {0, 1}

»> Two problems

> Predicting Y given X (e.g., propensity score)

> Viewing P{Y = 1|X} as a model to identify partial effects.
» We consider parametric and semi-parametric models.
» Both based on the so-called Linear Index where (Y, X, U) is such that

» Y takes values in {0,1}

> U take values in R

> X takes values in RF1 with X = 1.

> P{Y =1|X} =P{Y =1|X'B} forsome B = (Bo, B1,..., Br)’ € REt1



LinEar INDEX

> LetB = (Bo, B1,--.,Bx)’ € RFL be such that

Y=KX'B-—U>0}. (1)
> This is known as a Threshold crossing model or Single index model or Linear index model

> Y often indicates a utility-maximizing decision maker’s observable choice between two alternatives.

> Latent index: X’ — U can be interpreted as the difference in the utility between the two choices.

> We first discuss conditions for identification of this model.



DEFinITION OF IDENTIFICATION

> Let P denote the distribution of the observed data.

> Denote by P ={Pg : 6 € ©} a model for P.

> 0 could have infinite dimensional components.

» Model is correctly specified: P € P.

> Interest might be in 6 or a function A(0).

IDENTIFICATION
Let ©((P) be the collection of 6 such that P = Pg, i.e.

By(P) ={6 €©®:Pg =P}.

We say that 0 is identified if ©((P) is a singleton for all P € P.

Note: A(6) may be identified even if 0 is not.



IDENTIFICATION: PARAMETRIC BINARY MODEL

> In the binary choice model the parameter is © = (3, Px, P x ).
> O is the set of all possible values of 6.

> |dentification almost follows from the following assumption:

ASSUMPTION (PARAMETRIC)
P1 Pyx = N(0, ?).

P2 There exists no A C R¥1 such that A has probability one under Px and A is a proper linear subspace of Rk

> Given assumption P1 we may replace Py;x with o: 0 = (3, Px, o).

» Proof approach: suppose that there are two values of 6,
8 = (B, Px,0) and 6" = (B*,Px,0"),

such that 6 # 0* and P = Pg = Pg+. Then reach a contradiction.



IDENTIFICATION: PROOF

v

v

The marginal dist. of X is identified from the joint dist. of (Y, X) = it must be that Px = P%.

P1 implies:

Pty =1x)=0 (XB) ana po-v 13- 0 (KB

o—*
Since Pg = Pg+ by assumption, it must be
BeTs

o ot =

We cannot conclude that 3 = 3* and o = o*.

Indeed: our analysis shows that any 6 and 0* for which (2) holds and Px = P satisfies Pg = Pg-.

We cannot identify 6 = (3, Px, o) BUT we can identify A(0) = (Px, /o).



IpEnTIFICATION: COMMENTS

>

“Normalization”: researchers typically assume further that || =1, g =1, or o = 1.
The model with o = 1 is called Probit and it identifies 6 = (3, Px, 1).

To see this, note that from P1 and o0 =1
Po{lY =1|X} = @ (X'B) = @ (X'B*) = Po-{Y = 11X}

holds a.s. for 3 # 3* iff
Px{X'p=X'p*}=1, @)

which violates P2 with A = {x € R¥1 . x/(8 — B*) = 0}.

Other parametric assumptions possible: Logit.

Question: is 0 identified without parametric assumptions on Py; x?



OUESTIONS?




MEAN INDEPENDENCE

> First idea: mimic the linear model.
> Linear model: all we needed from P;x was E[U|X] = 0.
» Replacing P1 with E[U|X] = 0 does not work

— Manski (1988) shows nothing is learned about (3, Pyjx)-
> Note even useful to identify A(0) = 3 in this case.

> In general: mean independence assumptions are rather useless in non-linear models.



MEDIAN INDEPENDENCE

» Median independence: A(0) = f3 is identified under reasonable conditions if Med (U|X) = 0.

ASSUMPTION (SEMI-PARAMETRIC)
S1 Med(U|X) = 0 with probability 1 under Px

S2 There exists no A C R such that A has probability one under Px and A is a proper linear subspace of RF+1
S3 Bl =1.

S4 Py is such that at least one component of X has support equal to R conditional on the other components with
probability 1 under Px. Moreover, the corresponding component of {3 is non-zero.

> S1is weaker than P1
> S2is the same as P2
> S3is a normalization similar to o = 1 in the Probit case.

> S4 is new: stronger assumption on Py and also on 3.



IDENTIFICATION: MEDIAN INDEPENDENCE

The following lemma will help us prove the result.

LEMMA

Let 8 = (B, Px, Py x) satisfying S1 be given. Consider any *. If

Po{X'B* <0< X'BUX'B<0<X'B*} >0 (4)
then there exists no 0* = (B*,P;},P’&‘X) satisfying S1 and also having Pg = Pg=.
PROOF: Suppose by contradiction that (4) holds yet there exists such 0*.

Because Pg = Pg- then Px = P%. Now note that Y = I[{X' — U > 0} so

Po{Y =1X} > % — Po{X'B>U}> %
< X'B>0 by Assumption S1 .
Likewise il il
Po{Y =1X} > e Po«{X'B* > U} > 5

<= X'B* >0 by Assumption S1 .



IDENTIFICATION: MEDIAN INDEPENDENCE

Pe{x'ﬁ* <0< X'BUX'B <0< X/(s*} >0
Our condition implies that with positive probability, either
KB <0< X
or
o e
which implies that either

T A= g = e e — b

L
2
or

Bt =ilbae = B =

N[ —

This contradicts the fact that Pg = Pg+ and completes the proof.



IDENTIFICATION: MEDIAN INDEPENDENCE

THEOREM
Under assumptions S1 — 5S4, A(8) = { is identified.

PROOF: Assume wlog that the component of X specified in S4 is the kth component and that (3, > 0.
Let 0 satisfying S1-54 be given. Consider any 3* # f3.
Wish to show there is no 0* = (P%, B*, P"L‘”X) satisfying S1-54 s.t Pg = Pg~.
From the previous Lemma it suffices to show that:
Po{X'B* <0< X'BUX'B<O<X'B"}>0.

We now divide the proof in three cases according to sign(f3;)



IDENTIFICATION: MEDIAN INDEPENDENCE

CASE 1 Suppose (37 < 0. Then,

XU B XL B
PolX'B* <0< X'B} =Po{X; > — =Pk > —ﬁ} .
Bk Br
This probability is positive by S4
CASE 2 Suppose (37 = 0. Then,
1 * / / * Xl_kf’—k
PolX'B* <0< X'B}=Po{X/ B2, <0, X >~} )
/ 1 * / * X/_kﬁ—k
PolX'B <0< X'B"}=Po{X/ B, >0, X< ==} ©)

If Po{X’ ,B*, < 0} > 0 then (&) is positive by 54

If Po{X" ,p*, > 0} > 0 then (6) is positive by S4.



IDENTIFICATION: MEDIAN INDEPENDENCE

CASE 8 Suppose 37 > 0. Then,

X/ o X/ *
Po{X'* < 0 < X'B} = Po § —-—kbk < x, < Xk (7)
ﬁk Bk
X P XU LB
Po{X'B < 0 < X'B*}=Po { P o 2P "} (8)
Bk Br
» Problem if
X/ Bf X/ {5*
Pk —kP—k
Pg = > =1 (%)
{ Br ﬁk
> Assumption S3: implies that 3* is not a scalar multiple of 3, Therefore,
B2y # Bk
Br P

> |t follows from S2 and S3 that & cannot happen.

> Adding 54 then implies that at at least one of (7) and (8) must be positive. This concludes the proof.



OUESTIONS?




ESTIMATION: PARAMETRIC CASES

> Previous Theorem identifies 3 only: not enough for marginal effects (later)

» Go back to parametric case where
P{Y = 11X} = F(X'B)

with F(-) being

1. PROBIT: F(x) = @ (x)

2. LOGIT: F(x) = 22Ul
» Data: a random sample of size n from the distribution of (Y, X), i.e., (Y1,X1),..., (Yn, X»)
» The model is parametric, so we can do Maximum Likelihood Estimation.
> First write the probability mass function (pmf) of Y;

fp(YilX;) = F(X!B)Yi(1— F(X{B)):—Yi

» Now we can write the log-likelihood.



MLE

» Log-likelihood function:

- gln (Axixy)
o % i {Yi In (P(X{b)) +(1-Y))In (1 7p(x;b))}

» Can be shown (3 is the unique maximizer of Q(b) = E[{,(Db)].
> Let B, be the MLE.

> By usual MLE results,
A d
Vi(Bn—B) = N(0,V)

where V = 11[51 and

2
HB: —E aﬁaﬁlln(fﬁ Y|X)



AsvymmPrTOoTIC VARIANCE

> By the information equality

0
15 = ~E | 35557 " 6o %) ﬂ & {@'n (s (Yi%)) 3510 (o YiX,)
> Since s
7In s {P(x!é)u_ﬁ(x/m)}F’(X{ﬁJX,
We get that
Tp =E i {5 21—"’ XBRRR!
- {F(X{ﬁ)(l—F(Xi’[ﬁ))} (X; B)"XiX;
!/ !/ 2
=E F (Xl[‘)’) Xle,

F(X/B)(1—F(X{B))

The second equality comes from the law of iterated expectations and law of total variance (480-2).



INTERPRETING 3

> For the moment, consider X; continuously distributed.
» In linear regression with E[U|X] we had
OE[YIX]
B D
]
> |n Binary models we rather have

RE[YIX] _ dP(Y =1]X} _ 3F(X'B)

B -

oX; 3x; F)e
» PROBIT: F/ = ¢ so that
T = o8B
» LOGIT: F/ = F(1 —F) so that
QPR = 1PX); i

ox; F(X'B)(1—F(X'B))B; -



INTERPRETING 3 - conm.

> We can still extract information by simply inspecting 3

> Fact 1: ratio of 3 has meaning in terms of partial effects

dP{Y=1|X}

DX g
oP{Y=1X} = B, °
B Br

» Fact 2: Since F/ > 0, sign(ﬁj) identifies the sign of the marginal effect.
> Fact 3: easy to get upper bound on marginal effects from 3

PROBIT S 1
S eled) <04p; since dp(x) < $(0) = — ~04.
0X; I 7

N

LOGIT

Py =1|1X} 1 ;
B e Y =S <
5 < 4[5] since F(1 —F) <

7

| =



ESTIMATION OF MARGINAL EFFECTS

> Marginal effects for X; depends on the entire vector X.
» We can compute the average/mean marginal effect,

oP{Y =1|X}

oX;

EIF'(X'B)IB;

> And estimate this by

*ZP Bu)Bu -

» Distinction between that and marginal effects “at the average”, i.e
F'(E[X)'B)B; ,

which can be estimated by AT
R

> Stata offers both options with the option margins.



ESTIMATION OF MARGINAL EFFECTS 11

> Partition X = (X;, D) where X € RF and D € {0, 1}. Partition p = (1, B2) accordingly.
In this case using

oP{Y =1|X}
e[

| —erecpie,
does not make a lot of sense.
> The marginal effect in this case is
P{Y =1X1,D = 1}— P{Y = 1|Xy, D = 0} = F(X{B1 + B2) — F(X1B1) -

> Averaging X7 out,
E [F(X1B1 + B2) — F(X1B1)] -

> And we can estimate this by
o e . -
=~ D F(X{Bu1+Bn2) —F(X{ ;Bna) -
i=1

> Alternative: marginal effect on the treated by conditioning on D = 1.



EsTiMATION OF MARGINAL EFFECTS 111

> Note: It often makes sense to report marginal effects in a table

v

This requires standard errors for those marginal affects.

v

In the continuous case
oP[Y =1|X} %

0X;

for a known function k(). Similarly for the discrete case.

(X"B)Bj =h(B)

v

Can compute standard errors via the Delta Method.

v

Stata has options for this: see margins.



LoGIT AND THE ODDS RATIO

> |n statistic and Biostatistic the Logit model has particular appeal.
> Letp; = P{Y; = 11X;}. Since

_ exp(X/B) P ;
plil—l—exip(Xi’[S) = 1_pi*eXP(X,-f3)

In (flp,) — 4

> p/(1—p) is the odds ratio or relative risk. Say Y =1 if you live and Y = 0 if you die in a clinical trial.
An odds ratio of 2 means that the odds of survival are twice those of death.

and so taking logs

> f; is the marginal effect of X; on the log odds ratio.
> Interpretation: 3; = 0.1 means the relative probability of survival increases by 10% (roughly)

> Such easy rounding works for small values of (3;.



OUESTIONS?




LINEAR PROBABILITY MODEL

» Some people still advocate the use of the linear probability model where
Ve=X'Bl 9)
and E[U|X] = 0.

> Reason: {3 directly delivers “marginal effects”, easy to accommodate instrumental variables, panels
with fixed effects, etc.

> If Yis binary, 2SLS still admits LATE interpretation, etc.

> These extensions are hard in Probit/Logit: e.g., bivariate Probit and other more recent methods.

» However: hard to interpret the linear model causally as E[Y|X] cannot be linear in most cases

The true E[Y|X] may arise from a causal model, but the regression is only providing a linear approximation
to the true E[Y|X].

» Still, may use the linear model as a descriptive tool to approximate E[Y|X] - will still be the best linear
approximation and predictor.

» But E[Y|X = «] is fundamentally non linear.



LINEAR PROBABILITY MODEL

» Consequence: LPM often delivers predicted probabilities outside [0, 1].

» Angrist and Pischke (p.103): “...[linear regression] may generate fitted values outside the LDV
boundaries. This fact bothers some researchers and has generated a lot of bad press for the linear
probability model.”

> Well said...however, later on they add...

> Angrist and Pischke (p.197): “Yet we saw that the added complexity and extra work required to
interpret the results from latent index models may not be worth the trouble”.

> This statement is controversial, at the very least. You should read MHE with care...



COMMENTS

> Logit, Probit, and LPM yield quite different estimates f,,.

> Expected: if we use the upper bounds for marginal effects, we get

f’logit ~ 4P ols
Bprobit & 2-5Bols

Blogit & 1-6fj)’probit a
» However, average marginal effects from Logit, Probit, and even LPM are often “close”.

> Partly due because there is averaging going on.



EXTENSIONS

v

Similar ideas to those discuss here apply to other settings.

» Ordered choice: individual decides how many units to buy from the same item.

v

Unordered choice: individual decides to buy 1 of many different alternatives.

v

Conditional Logit and multinomial Logit arise.

v

Most popular example: “BLP” in 10.

v

These topics are covered in second year 1O classes.



THE END




	Thanks for Coming!

