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Past & Future

LAST CLASS
I Regression Tress
I Classification Tress
I Random Forests

TODAY
I Related to Classification Tress
I Latent Index and Identification
I Identification via Median Independence
I Parametric Models: Logit & Probit
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Setup

I Today we consider the problem of estimating

P{Y = 1|X}

where Y is binary, i.e., takes values in {0, 1}

I Two problems

I Predicting Y given X (e.g., propensity score)

I Viewing P{Y = 1|X} as a model to identify partial effects.

I We consider parametric and semi-parametric models.

I Both based on the so-called Linear Index where (Y, X, U) is such that

I Y takes values in {0, 1}

I U take values in R

I X takes values in Rk+1 with X0 = 1.

I P{Y = 1|X} = P{Y = 1|X ′β} for some β = (β0,β1, . . . ,βk)
′ ∈ Rk+1
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Linear Index

I Let β = (β0,β1, . . . ,βk)
′ ∈ Rk+1 be such that

Y = I{X ′β− U > 0} . (1)

I This is known as a Threshold crossing model or Single index model or Linear index model

I Y often indicates a utility-maximizing decision maker’s observable choice between two alternatives.

I Latent index: X ′β− U can be interpreted as the difference in the utility between the two choices.

I We first discuss conditions for identification of this model.
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Definition of Identification

I Let P denote the distribution of the observed data.

I Denote by P = {Pθ : θ ∈ Θ} a model for P.

I θ could have infinite dimensional components.

I Model is correctly specified: P ∈ P.

I Interest might be in θ or a function λ(θ).

IDENTIFICATION

Let Θ0(P) be the collection of θ such that P = Pθ, i.e.

Θ0(P) = {θ ∈ Θ : Pθ = P} .

We say that θ is identified if Θ0(P) is a singleton for all P ∈ P.

Note: λ(θ) may be identified even if θ is not.
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Identification: parametric binary model

I In the binary choice model the parameter is θ = (β, PX, PU|X).

I Θ is the set of all possible values of θ.

I Identification almost follows from the following assumption:

ASSUMPTION (PARAMETRIC)

P1 PU|X = N(0,σ2).

P2 There exists no A ⊆ Rk+1 such that A has probability one under PX and A is a proper linear subspace of Rk+1

I Given assumption P1 we may replace PU|X with σ: θ = (β, PX,σ).

I Proof approach: suppose that there are two values of θ,

θ = (β, PX,σ) and θ∗ = (β∗, P∗X,σ∗) ,

such that θ 6= θ∗ and P = Pθ = Pθ∗ . Then reach a contradiction.
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Identification: proof

I The marginal dist. of X is identified from the joint dist. of (Y, X)⇒ it must be that PX = P∗X.

I P1 implies:

Pθ{Y = 1|X} = Φ

(
X ′β
σ

)
and Pθ∗ {Y = 1|X} = Φ

(
X ′β∗

σ∗

)
.

I Since Pθ = Pθ∗ by assumption, it must be

β

σ
=
β∗

σ∗
. (2)

I We cannot conclude that β = β∗ and σ = σ∗.

I Indeed: our analysis shows that any θ and θ∗ for which (2) holds and PX = P∗X satisfies Pθ = Pθ∗ .

I We cannot identify θ = (β, PX,σ) BUT we can identify λ(θ) = (PX,β/σ).
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Identification: Comments

I “Normalization”: researchers typically assume further that |β| = 1, β0 = 1, or σ = 1.

I The model with σ = 1 is called Probit and it identifies θ = (β, PX, 1).

I To see this, note that from P1 and σ = 1

Pθ{Y = 1|X} = Φ
(
X ′β

)
= Φ

(
X ′β∗

)
= Pθ∗ {Y = 1|X}

holds a.s. for β 6= β∗ iff
PX{X ′β = X ′β∗} = 1 , (3)

which violates P2 with A = {x ∈ Rk+1 : x ′(β−β∗) = 0}.

I Other parametric assumptions possible: Logit.

I Question: is θ identified without parametric assumptions on PU|X?
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QUESTIONS?
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Mean independence

I First idea: mimic the linear model.

I Linear model: all we needed from PU|X was E[U|X] = 0.

I Replacing P1 with E[U|X] = 0 does not work

– Manski (1988) shows nothing is learned about (β, PU|X).

I Note even useful to identify λ(θ) = β in this case.

I In general: mean independence assumptions are rather useless in non-linear models.
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Median independence

I Median independence: λ(θ) = β is identified under reasonable conditions if Med(U|X) = 0.

ASSUMPTION (SEMI-PARAMETRIC)

S1 Med(U|X) = 0 with probability 1 under PX

S2 There exists no A ⊆ Rk+1 such that A has probability one under PX and A is a proper linear subspace of Rk+1

S3 |β| = 1.

S4 PX is such that at least one component of X has support equal to R conditional on the other components with
probability 1 under PX. Moreover, the corresponding component of β is non-zero.

I S1 is weaker than P1

I S2 is the same as P2

I S3 is a normalization similar to σ = 1 in the Probit case.

I S4 is new: stronger assumption on PX and also on β.
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Identification: median independence
The following lemma will help us prove the result.

LEMMA

Let θ = (β, PX, PU|X) satisfying S1 be given. Consider any β∗. If

Pθ
{

X ′β∗ < 0 6 X ′β∪X ′β < 0 6 X ′β∗
}
> 0 (4)

then there exists no θ∗ = (β∗, P∗X, P∗U|X) satisfying S1 and also having Pθ = Pθ∗ .

PROOF: Suppose by contradiction that (4) holds yet there exists such θ∗.

Because Pθ = Pθ∗ then PX = P∗X. Now note that Y = I{X ′β− U > 0} so

Pθ{Y = 1|X} >
1
2
⇐⇒ Pθ{X ′β > U} >

1
2

⇐⇒ X ′β > 0 by Assumption S1 .

Likewise
Pθ∗ {Y = 1|X} >

1
2
⇐⇒ Pθ∗ {X ′β∗ > U} >

1
2

⇐⇒ X ′β∗ > 0 by Assumption S1 .
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Identification: median independence

Pθ
{

X ′β∗ < 0 6 X ′β∪X ′β < 0 6 X ′β∗
}
> 0

Our condition implies that with positive probability, either

X ′β∗ < 0 6 X ′β

or
X ′β < 0 6 X ′β∗ ,

which implies that either

Pθ∗ {Y = 1|X} <
1
2
6 Pθ{Y = 1|X}

or

Pθ{Y = 1|X} <
1
2
6 Pθ∗ {Y = 1|X} .

This contradicts the fact that Pθ = Pθ∗ and completes the proof.
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Identification: median independence

THEOREM

Under assumptions S1 − S4, λ(θ) = β is identified.

PROOF: Assume wlog that the component of X specified in S4 is the kth component and that βk > 0.

Let θ satisfying S1-S4 be given. Consider any β∗ 6= β.

Wish to show there is no θ∗ = (P∗X,β∗, P∗U|X) satisfying S1-S4 s.t Pθ = Pθ∗ .

From the previous Lemma it suffices to show that:

Pθ
{

X ′β∗ < 0 6 X ′β∪X ′β < 0 6 X ′β∗
}
> 0 .

We now divide the proof in three cases according to sign(β∗k )
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Identification: median independence

CASE 1 Suppose β∗k < 0. Then,

Pθ{X ′β∗ < 0 6 X ′β} = Pθ
{

Xk > −
X ′−kβ

∗
−k

β∗k
, Xk > −

X ′−kβ−k

βk

}
.

This probability is positive by S4

CASE 2 Suppose β∗k = 0. Then,

Pθ{X ′β∗ < 0 6 X ′β} = Pθ
{

X ′−kβ
∗
−k < 0, Xk > −

X ′−kβ−k

βk

}
(5)

Pθ{X ′β < 0 6 X ′β∗} = Pθ
{

X ′−kβ
∗
−k > 0, Xk <

X ′−kβ−k

βk

}
(6)

If Pθ{X ′−kβ
∗
−k < 0} > 0 then (♣) is positive by S4

If Pθ{X ′−kβ
∗
−k > 0} > 0 then (6) is positive by S4.
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Identification: median independence

CASE 3 Suppose β∗k > 0. Then,

Pθ{X ′β∗ < 0 6 X ′β} = Pθ

{
−

X ′−kβ−k

βk
6 Xk < −

X ′−kβ
∗
−k

β∗k

}
(7)

Pθ{X ′β < 0 6 X ′β∗} = Pθ

{
−

X ′−kβ
∗
−k

β∗k
6 Xk < −

X ′−kβ−k

βk

}
(8)

I Problem if

Pθ

{
X ′−kβ−k

βk
=

X ′−kβ
∗
−k

β∗k

}
= 1 (♣)

I Assumption S3: implies that β∗ is not a scalar multiple of β, Therefore,

β∗−k
β∗k
6= β−k
βk

I It follows from S2 and S3 that ♣ cannot happen.

I Adding S4 then implies that at at least one of (7) and (8) must be positive. This concludes the proof.
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QUESTIONS?
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Estimation: parametric cases

I Previous Theorem identifies β only: not enough for marginal effects (later)

I Go back to parametric case where
P{Y = 1|X} = F(X ′β)

with F(·) being

1. PROBIT: F(x) =Φ(x)

2. LOGIT: F(x) =
exp(x)

1+exp(x)

I Data: a random sample of size n from the distribution of (Y, X), i.e., (Y1, X1), . . . , (Yn, Xn)

I The model is parametric, so we can do Maximum Likelihood Estimation.

I First write the probability mass function (pmf) of Yi

fβ(Yi|Xi) = F(X ′iβ)
Yi(1 − F(X ′iβ))

1−Yi

I Now we can write the log-likelihood.
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MLE

I Log-likelihood function:

`n(b) =
1
n

n∑
i=1

ln
(

fb(Yi|Xi)
)

=
1
n

n∑
i=1

{
Yi ln

(
F(X ′i b)

)
+ (1 − Yi) ln

(
1 − F(X ′i b)

)}
I Can be shown β is the unique maximizer of Q(b) = E[`n(b)].

I Let β̂n be the MLE.

I By usual MLE results,
√

n(β̂n −β)
d→ N(0, V)

where V = I−1
β and

Iβ = −E
[

∂2

∂β∂β ′
ln
(
fβ(Yi|Xi)

)]
.
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Asymptotic Variance

I By the information equality

Iβ = −E
[

∂2

∂β∂β ′
ln
(
fβ(Yi|Xi)

)]
= E

[
∂

∂β
ln
(
fβ(Yi|Xi)

) ∂

∂β ′
ln
(
fβ(Yi|Xi)

)]
.

I Since
∂

∂β
ln
(
fβ(Yi|Xi)

)
=

[
Yi − F(X ′iβ)

F(X ′iβ)(1 − F(X ′iβ))

]
F ′(X ′iβ)Xi

We get that

Iβ = E

[[
Yi − F(X ′iβ)

F(X ′iβ)(1 − F(X ′iβ))

]2

F ′(X ′iβ)
2XiX

′
i

]

= E

[
F ′(X ′iβ)

2

F(X ′iβ)(1 − F(X ′iβ))
XiX

′
i

]
.

The second equality comes from the law of iterated expectations and law of total variance (480-2).
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Interpreting β

I For the moment, consider Xj continuously distributed.

I In linear regression with E[U|X] we had

∂E[Y|X]

∂Xj
= βj .

I In Binary models we rather have

∂E[Y|X]

∂Xj
=
∂P{Y = 1|X}

∂Xj
=
∂F(X ′β)
∂Xj

βj .

I PROBIT: F ′ = φ so that
∂P{Y = 1|X}

∂Xj
= φ(X ′β)βj .

I LOGIT: F ′ = F(1 − F) so that

∂P{Y = 1|X}

∂Xj
= F(X ′β)(1 − F(X ′β))βj .
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Interpreting β - cont.

I We can still extract information by simply inspecting β

I Fact 1: ratio of β has meaning in terms of partial effects

∂P{Y=1|X}
∂Xj

∂P{Y=1|X}
∂Xk

=
βj

βk
.

I Fact 2: Since F ′ > 0, sign(βj) identifies the sign of the marginal effect.

I Fact 3: easy to get upper bound on marginal effects from β

PROBIT
∂P{Y = 1|X}

∂Xj
6 0.4βj since φ(x) 6 φ(0) =

1√
2π
≈ 0.4 .

LOGIT
∂P{Y = 1|X}

∂Xj
6

1
4
βj since F(1 − F) 6

1
4

.
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Estimation of marginal effects

I Marginal effects for Xj depends on the entire vector X.

I We can compute the average/mean marginal effect,

E

[
∂P{Y = 1|X}

∂Xj

]
= E[F ′(X ′β)]βj

I And estimate this by
1
n

n∑
i=1

F ′(X ′i β̂n)β̂n,j .

I Distinction between that and marginal effects “at the average”, i.e.

F ′(E[X] ′β)βj ,

which can be estimated by
F ′(X̄ ′nβ̂n)β̂n,j .

I Stata offers both options with the option margins.
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Estimation of marginal effects II

I Partition X = (X1, D) where X ∈ Rk and D ∈ {0, 1}. Partition β = (β1,β2) accordingly.
In this case using

E
[
∂P{Y = 1|X}

∂D

]
= E[F ′(X ′β)]β2

does not make a lot of sense.

I The marginal effect in this case is

P{Y = 1|X1, D = 1}− P{Y = 1|X1, D = 0} = F(X ′1β1 +β2) − F(X ′1β1) .

I Averaging X1 out,
E
[
F(X ′1β1 +β2) − F(X ′1β1)

]
.

I And we can estimate this by

1
n

n∑
i=1

F(X ′1β̂n,1 + β̂n,2) − F(X ′1,iβ̂n,1) .

I Alternative: marginal effect on the treated by conditioning on D = 1.
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Estimation of marginal effects III

I Note: It often makes sense to report marginal effects in a table

I This requires standard errors for those marginal affects.

I In the continuous case
∂P{Y = 1|X}

∂Xj
= F ′(X ′β)βj = h(β)

for a known function h(β). Similarly for the discrete case.

I Can compute standard errors via the Delta Method.

I Stata has options for this: see margins.
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Logit and the odds ratio

I In statistic and Biostatistic the Logit model has particular appeal.

I Let pi = P{Yi = 1|Xi}. Since

pi =
exp(X ′iβ)

1 + exp(X ′iβ)
⇒ pi

1 − pi
= exp(X ′iβ)

and so taking logs

ln
(

pi
1 − pi

)
= X ′iβ .

I p/(1 − p) is the odds ratio or relative risk. Say Y = 1 if you live and Y = 0 if you die in a clinical trial.
An odds ratio of 2 means that the odds of survival are twice those of death.

I βj is the marginal effect of Xj on the log odds ratio.

I Interpretation: βj = 0.1 means the relative probability of survival increases by 10% (roughly)

I Such easy rounding works for small values of βj.
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QUESTIONS?
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Linear probability model

I Some people still advocate the use of the linear probability model where

Y = X ′β+ U (9)

and E[U|X] = 0.

I Reason: β directly delivers “marginal effects”, easy to accommodate instrumental variables, panels
with fixed effects, etc.

I If Y is binary, 2SLS still admits LATE interpretation, etc.

I These extensions are hard in Probit/Logit: e.g., bivariate Probit and other more recent methods.

I However: hard to interpret the linear model causally as E[Y|X] cannot be linear in most cases
The true E[Y|X] may arise from a causal model, but the regression is only providing a linear approximation
to the true E[Y|X].

I Still, may use the linear model as a descriptive tool to approximate E[Y|X] - will still be the best linear
approximation and predictor.

I But E[Y|X = x] is fundamentally non linear.
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Linear probability model

I Consequence: LPM often delivers predicted probabilities outside [0, 1].

I Angrist and Pischke (p.103): “...[linear regression] may generate fitted values outside the LDV
boundaries. This fact bothers some researchers and has generated a lot of bad press for the linear
probability model.”

I Well said...however, later on they add...

I Angrist and Pischke (p.197): “Yet we saw that the added complexity and extra work required to
interpret the results from latent index models may not be worth the trouble”.

I This statement is controversial, at the very least. You should read MHE with care...



30

Comments

I Logit, Probit, and LPM yield quite different estimates β̂n.

I Expected: if we use the upper bounds for marginal effects, we get

β̂logit ≈ 4β̂ols

β̂probit ≈ 2.5β̂ols

β̂logit ≈ 1.6β̂probit .

I However, average marginal effects from Logit, Probit, and even LPM are often “close”.

I Partly due because there is averaging going on.
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Extensions

I Similar ideas to those discuss here apply to other settings.

I Ordered choice: individual decides how many units to buy from the same item.

I Unordered choice: individual decides to buy 1 of many different alternatives.

I Conditional Logit and multinomial Logit arise.

I Most popular example: “BLP” in IO.

I These topics are covered in second year IO classes.
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THE END


	Thanks for Coming!

