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A Proof of Lemma 1

Overview of the Proof: Throughout this proof, I will fix the parameters of the game (u1, u2, c, π, δ̂, δ) as

well as a Nash equilibrium (σ1, σ2) under that parameter configuration, I construct a strategy σ∗
1 for the op-

portunistic type and verify that (σ∗
1, σ2) is a public equilibrium under (u1, u2, c, π, δ̂, δ) using the hypothesis

that (σ1, σ2) is a Nash equilibrium under (u1, u2, c, π, δ̂, δ). I start from introducing some notation.

Notation: Recall that H is the set of player 2’s histories. Let H denote the set of player 1’s histories, which

consists of his type, the sequence of actions players took in the past, as well as whether he has erased each of

his past action. The opportunistic type’s strategy is σ1 : H → ∆
(
A1×{0, c}

)
, which is a mapping from his

histories to a distribution over his actions and his erasing decisions.1 Player 2’s strategy is σ2 : H → ∆(A2).

For any strategy profile (σ1, σ2), let H(σ1, σ2) ⊂ H denote the set of player 2’s histories that occur with

positive probability under (σ1, σ2). For any h ∈ H(σ1, σ2), let α1(h, σ1, σ2) ∈ ∆(A1) denote player 2’s

expectation of the opportunistic type’s action conditional on her history being h. For every a1 that belongs

to the support of α1(h, σ1, σ2), let c(a1|h, σ1, σ2) ∈ [0, 1] denote the expected probability with which the

opportunistic type erases a1 after taking it conditional on player 2’s history being h. Since A1 and A2 are

finite sets, the definition of H(σ1, σ2) implies that these conditional probabilities are well-defined.

For every h ∈ H(σ1, σ2), let ϕ(h) denote the probability that player 2’s history is h conditional on

player 1 being the honest type. Since the honest type always plays a∗1 and never erases any action and player

2 cannot observe previous short-run players’ actions, ϕ(h) is the same for all strategy profiles (σ1, σ2). Let

p0(h) denote the probability that player 2’s history is h conditional on calendar time is 0, which by definition,

is the Dirac measure on h0∗ and is independent of player 1’s type. Let µ(h|σ1, σ2) denote the probability

that player 2’s history is h conditional on (i) player 1 being the opportunistic type and (ii) players behaving

according to (σ1, σ2). Let Q(h′ → h|σ1, σ2) denote the probability that player 2’s history in the next period
1For every a1 ∈ A1, (a1, c) stands for taking action a1 and then erasing it and (a1, 0) stands for taking action a1 and then not

erasing it. For every h ∈ H, σ1(h) is a distribution over the product set A1 × {0, c}.
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is h conditional on (i) player 2’s current-period history being h′, (ii) player 1 being the opportunistic type,

and (iii) players behaving according to (σ1, σ2). I establish the following lemma:

State Distribution Lemma. For any strategy profile (σ1, σ2) and any h ∈ H(σ1, σ2), we have

µ(h|σ1, σ2) = (1− δ)p0(h) + δ
∑
h′∈H

µ(h′|σ1, σ2)Q(h′ → h|σ1, σ2). (A.1)

Proof of Lemma: I will omit (σ1, σ2) in this proof in order to avoid cumbersome notation. For every t ∈ N,

let pt(h) denote the probability that player 2’s history being h conditional on player 1 being the opportunis-

tic type and the current calendar time being t, and let qt(h′ → h) denote the probability that player 2’s

current-period history being h conditional on her history in the period before being h′, player 1 being the

opportunistic type, and the calendar time in the period before being t. The law of total probability implies

that pt+1(h) =
∑

h′∈H pt(h
′)qt(h

′ → h). Since player 2’s prior belief assigns probability (1 − δ)δ
t

to

calendar time being t, by the law of total probability and Bayes rule, we have

µ(h′) =

+∞∑
t=0

(1− δ)δ
t
pt(h

′) and Q(h′ → h) =

∑+∞
t=0 (1− δ)δ

t
pt(h

′)qt(h
′ → h)∑+∞

t=0 (1− δ)δ
t
pt(h′)

.

These equations imply the following two equations:

∑
h′∈H

µ(h′)Q(h′ → h) =
∑
h′∈H

+∞∑
t=0

(1−δ)δ
t
pt(h

′)qt(h
′ → h) =

+∞∑
t=0

(1−δ)δ
t ∑
h′∈H

pt(h
′)qt(h

′ → h) =

+∞∑
t=0

(1−δ)δ
t
pt+1(h)

and

δ
−1

{
µ(h)− (1− δ)p0(h)

}
= δ

−1
{ +∞∑

t=0

(1− δ)δ
t
pt(h)− (1− δ)p0(h)

}
=

+∞∑
t=0

(1− δ)δ
t
pt+1(h).

These two equations together imply the following equation that is equivalent to (A.1):

∑
h′∈H

µ(h′)Q(h′ → h) = δ
−1

{
µ(h)− (1− δ)p0(h)

}
.

This lemma implies that the distribution over player 2’s histories {µ(h|σ1, σ2)}h∈H conditional on

player 1 being the opportunistic type depends on the strategy profile (σ1, σ2) only through {Q(h′ →

h|σ1, σ2)}h,h′∈H. The latter depends on (σ1, σ2) only through the distribution over the opportunistic type’s
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behavior (i.e., action and erasing decision) conditional on player 2’s history.

Construction of Public Strategy σ∗
1: I construct a strategy for the opportunistic type σ∗

1 : H → ∆
(
A1 ×

{0, c}
)

from (σ1, σ2), which is measurable with respect to player 2’s history and is defined as follows:

• At every h ∈ H(σ1, σ2), strategy σ∗
1 asks the opportunistic type to play α1(h, σ1, σ2), and to erase his

action with probability c(a1|h, σ1, σ2) if his realized pure action is a1 ∈ supp(α1(h, σ1, σ2)). This

construction implies that α1(h, σ1, σ2) = α1(h, σ
∗
1, σ2) and c(a1|h, σ1, σ2) = c(a1|h, σ∗

1, σ2).

I will leave the behaviors at h /∈ H(σ1, σ2) unspecified since they are not relevant for verifying the conditions

of public equilibria. The rest of my proof proceeds in five steps.

Step 1: I show that H(σ1, σ2) = H(σ∗
1, σ2) and µ(h|σ1, σ2) = µ(h|σ∗

1, σ2) for every h ∈ H(σ1, σ2), that

is, the distribution over on-path histories are the same under (σ1, σ2) and under (σ∗
1, σ2).

Suppose by way of contradiction that there exists h ∈ H(σ1, σ2)\H(σ∗
1, σ2). Since the empty history

∅ belongs to H(σ1, σ2) ∩ H(σ∗
1, σ2), there exists h∗ ∈ H(σ1, σ2)\H(σ∗

1, σ2) such that the immediate pre-

decessor of h∗, denoted by h∗∗, belongs to H(σ1, σ2)
⋂
H(σ∗

1, σ2). Therefore, either there exists an action

a1 ∈ A1 such that α1(h
∗∗, σ1, σ2) assigns positive probability to a1 but α1(h

∗∗, σ∗
1, σ2) does not, or there

exists a1 that occurs with positive probability under both α1(h
∗∗, σ1, σ2) and α1(h

∗∗, σ1, σ2) but the oppor-

tunistic type erases a1 with different expected probabilities under the two strategies. Both of these cases

are at odds with the construction of σ∗
1 under which α1(h

∗∗, σ1, σ2) = α1(h
∗∗, σ∗

1, σ2) and the expected

probabilities with which they erase each action are the same. Similarly, one can show that there exists no h

that belongs to H(σ∗
1, σ2)\H(σ1, σ2). The two parts together imply that H(σ1, σ2) = H(σ∗

1, σ2).

My construction of σ∗
1 implies that for every h ∈ H(σ1, σ2), (i) player 2’s expectations of player 1’s

action at h are the same under (σ1, σ2) and under (σ∗
1, σ2), that is, α1(h, σ1, σ2) = α1(h, σ

∗
1, σ2), and (ii)

her expected probabilities with which player 1 will erase each action a1 ∈ supp(α1(h, σ1, σ2)) at h are the

same under (σ1, σ2) and under (σ∗
1, σ2), that is, c(a1|h, σ1, σ2) = c(a1|h, σ∗

1, σ2). The lemma I established

earlier then implies that µ(h|σ1, σ2) = µ(h|σ∗
1, σ2) for every h ∈ H(σ1, σ2) = H(σ∗

1, σ2).

Step 2: I show that (σ∗
1, σ2) is a public equilibrium as long as (σ1, σ2) is a Nash equilibrium. For this

purpose, I only need to show that (σ∗
1, σ2) is a Nash equilibrium as long as (σ1, σ2) is a Nash equilibrium.

This is because by construction, σ∗
1 depends only on player 2’s history.

First, I show that σ2 best replies to σ∗
1 as long as σ2 best replies to σ1. If σ2 is player 2’s best reply to σ1,

then for every h ∈ H(σ1, σ2), player 2’s action at h, denoted by σ2(h), best replies to player 2’s expectation
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of player 1’s action at h under (σ1, σ2), which according to Bayes rule, equals

(1− π)µ(h|σ1, σ2)
(1− π)µ(h|σ1, σ2) + πϕ(h)︸ ︷︷ ︸

prob of opportunistic type conditional on h

α1(h, σ1, σ2) +
πϕ(h)

(1− π)µ(h|σ1, σ2) + πϕ(h)︸ ︷︷ ︸
prob of honest type conditional on h

a∗1. (A.2)

Alternatively, under (σ∗
1, σ2), player 2’s expectation of player 1’s action at h is:

(1− π)µ(h|σ∗
1, σ2)

(1− π)µ(h|σ∗
1, σ2) + πϕ(h)

α1(h, σ
∗
1, σ2) +

πϕ(h)

(1− π)µ(h|σ∗
1, σ2) + πϕ(h)

a∗1. (A.3)

Since α1(h, σ1, σ2) = α1(h, σ
∗
1, σ2), µ(h|σ1, σ2) = µ(h∗|σ1, σ2) for every h ∈ H(σ1, σ2), and the dis-

tribution over player 2’s histories conditional on player 1 being the honest type ϕ(·) does not depend on

(σ1, σ2), player 2’s expectations of player 1’s action at h are the same under (σ1, σ2) and under (σ∗
1, σ2).

Therefore, σ2(h) also best replies to player 2’s expectation of player 1’s action at h under (σ∗
1, σ2). Since

H(σ1, σ2) = H(σ∗
1, σ2), we know that player 2’s strategy σ2 best replies to player 2’s expectation of player

1’s action at h under (σ∗
1, σ2) for every h ∈ H(σ∗

1, σ2). This implies that σ2 best replies to σ∗
1 .

Next, I show that σ∗
1 best replies to σ2 as long as σ1 best replies to σ2. This part uses the observation

that player 1 can observe player 2’s history, which implies that player 2’s strategy is also measurable with

respect to player 1’s history. For any player 1’s history h ∈ H and player 2’s history h ∈ H, I say that h is

consistent with h if player 1’s history being h implies that player 2’s history being h.

For every h ∈ H(σ∗
1, σ2) = H(σ1, σ2) and every (a1, c̃) ∈ A1 × {0, c} that the opportunistic type of

player 1 chooses with positive probability under σ∗
1 at history h, the construction of σ∗

1 implies that there

exists a player 1’s history h that is (i) consistent with h and (ii) occurs with positive probability under

(σ1, σ2), such that player 1 plays (a1, c̃) with positive probability at h under (σ1, σ2). Since player 2’s

strategy σ2 is measurable with respect to player 2’s history and the opportunistic type’s payoff depends

only on his action and player 2’s action, the opportunistic type’s best reply problem is also measurable with

respect to player 2’s history. Under the hypothesis that (σ1, σ2) is a Nash equilibrium, we know that (a1, c̃)

is optimal for the opportunistic type at h when player 2’s strategy is σ2. As a result, (a1, c̃) must also be

optimal for the opportunistic type at any player 1’s history h
′

that is consistent with h when player 2’s

strategy is σ2. Hence, every pair (a1, c̃) that σ∗
1 chooses with positive probability at any h ∈ H(σ∗

1, σ2) is

optimal. This implies that σ∗
1 is the opportunistic type’s best reply against σ2.

Step 3: I show that at every h ∈ H(σ1, σ2), player 2’s belief about player 1’s type and behavior (action

and erasing probability) are the same under (σ1, σ2) and under (σ∗
1, σ2).
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According to Bayes rule, player 1’s reputation at h under (σ1, σ2) is πϕ(h)
(1−π)µ(h|σ1,σ2)+πϕ(h) and his repu-

tation at h under (σ∗
1, σ2) is πϕ(h)

(1−π)µ(h|σ∗
1 ,σ2)+πϕ(h) , which are the same since µ(h|σ1, σ2) = µ(h|σ∗

1, σ2).

According to (A.2) and (A.3), player 2’s beliefs about player 1’s actions are the same conditional on

every h ∈ H(σ1, σ2). Conditional on every h ∈ H(σ1, σ2) and every a1 ∈ supp
(
α1(h, σ1, σ2)

)
, when

the opportunistic type uses strategy σ1, the expected probability with which player 1 erases a1 equals

c(a1|h, σ1, σ2) for every a1 ̸= a∗1, and when a1 = a∗1, it equals

(1− π)µ(h|σ1, σ2)p(h|σ1)
(1− π)µ(h|σ1, σ2)p(h|σ1) + πϕ(h)︸ ︷︷ ︸

prob of opportunistic type conditional on taking action a∗1 at history h

c(a∗1|h, σ1, σ2) (A.4)

where p(h|σ1) is the expected probability that the opportunistic type takes action a∗1 conditional on player

2’s history being h when the opportunistic type plays according to strategy σ1. When the opportunistic type

uses strategy σ∗
1 , the expected probability with which player 1 erases a1 equals c(a1|h, σ∗

1, σ2) for every

a1 ̸= a∗1, and when a1 = a∗1, it equals

(1− π)µ(h|σ∗
1, σ2)p(h|σ∗

1)

(1− π)µ(h|σ∗
1, σ2)p(h|σ∗

1) + πϕ(h)
c(a∗1|h, σ∗

1, σ2) (A.5)

where p(h|σ∗
1) is the expected probability that the opportunistic type takes action a∗1 conditional on player

2’s history being h when the opportunistic type plays according to strategy σ∗
1 . The values of (A.4) and

(A.5) are the same given my earlier conclusion that µ(h|σ1, σ2) = µ(h|σ∗
1, σ2) and p(h|σ1) = p(h|σ∗

1).

Step 4: I show that the opportunistic type receives the same discounted average payoff under (σ∗
1, σ2) and

under (σ1, σ2). Let Σ1 denote the set of the opportunistic type’s strategies in the repeated game. Since

(σ1, σ2) is a Nash equilibrium, we have U1(σ1, σ2) ≥ U1(σ
′
1, σ2) for every σ′

1 ∈ Σ1, where U1(·, ·) denotes

the opportunistic type’s discounted average payoff as a function of his own strategy σ1 and player 2’s strategy

σ2. Since (σ∗
1, σ2) is also a Nash equilibrium, we have U1(σ

∗
1, σ2) ≥ U1(σ

′
1, σ2) for every σ′

1 ∈ Σ1. Since

both σ1 and σ∗
1 are best replies to σ2, they must yield the same discounted average payoff. Therefore, the

opportunistic type receives the same discounted average payoff under (σ∗
1, σ2) and under (σ1, σ2).

Step 5: I show that the sum of the short-run players’ payoffs are the same under (σ∗
1, σ2) and under

(σ1, σ2). I use two observations. First, for every h ∈ H(σ1, σ2), conditional on observing history h,

player 2’s payoffs are the same under (σ1, σ2) and (σ∗
1, σ2), which I denote by v(h). This is because her

expectations of player 1’s actions are the same and σ2 is player 2’s best reply against both σ∗
1 and σ1.
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Second, since I have shown before that µ(h|σ1, σ2) = µ(h|σ∗
1, σ2) for every h ∈ H(σ1, σ2) and that

the distribution of h conditional on player 1 being the honest type does not depend on players’ strategy

profile, the unconditional distributions over player 2’s histories are the same under (σ1, σ2) and (σ∗
1, σ2),

which I denote by µ̃ ∈ ∆(H). I use 2k to denote the player 2 who arrives in period k. Let µ̃k(h) denote the

probability that player 2k observes history h under (σ1, σ2). Let µ̃∗
k(h) denote the probability that player 2k

observes history h under (σ∗
1, σ2). Since player 2’s prior belief assigns probability (1− δ)δ

k
to the calendar

time being k, we have

µ̃(h) =
+∞∑
k=0

(1− δ)δ
k
µ̃k(h) =

+∞∑
k=0

(1− δ)δ
k
µ̃∗
k(h).

This implies that

E(σ1,σ2)
[ +∞∑
k=0

(1−δ)δ
k
u2(a1,k, a2,k)

]
=

+∞∑
k=0

{
(1−δ)δ

k ∑
h∈H(σ1,σ2)

v(h)µ̃k(h)
}
=

∑
h∈H(σ1,σ2)

v(h)
( +∞∑

k=0

(1−δ)δ
k
µ̃k(h)

)

=
∑

h∈H(σ1,σ2)

v(h)µ̃(h) =
∑

h∈H(σ1,σ2)

v(h)
( +∞∑

k=0

(1− δ)δ
k
µ̃∗
k(h)

)
= E(σ∗

1 ,σ2)
[ +∞∑
k=0

(1− δ)δ
k
u2(a1,k, a2,k)

]
.

This implies that the expected sum of player 2’s payoffs are the same under (σ1, σ2) and under (σ∗
1, σ2).

B Inability to Erase Actions or High Cost of Erasing Actions

Proof of Proposition 1: Recall from the definition of γ that player 2 has a strict incentive to play a∗2 when

player 1’s mixed action assigns probability at least γ ∈ (0, 1) to a∗1. Fix the parameter values (u1, u2, δ, π)

as well as an arbitrary Nash equilibrium (σ1, σ2) under these parameters. I bound the opportunistic type’s

payoff from below when he deviates from σ1 and instead, plays a∗1 in every period, which I denote by U∗
1 .

Since (σ1, σ2) is a Nash equilibrium, the opportunistic type’s equilibrium payoff is weakly greater than U∗
1 .

Suppose player 1 deviates to playing a∗1 in every period. In every period, (i) either player 2 plays a∗2

with probability 1, or (ii) she has an incentive to take actions other than a∗2. In the second case, her belief

assigns probability less than γ to a∗1. According to Bayes rule, in every such period, the posterior belief she

assigns to the honest type is multiplied by at least 1/γ. Since her prior belief assigns probability π to the

honest type and the probability of the honest type is non-decreasing over time when player 1 plays a∗1 in

every period, there can be at most log π
log γ periods in which player 2 has an incentive to take actions other than

a∗2. Since u1(a1, a2) is strictly increasing in a2, player 1’s stage-game payoff is at least u1(a∗1, a2) when he
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plays a∗1. As a result,

U∗
1 ≥ (1− δ

log π
log γ )u1(a

∗
1, a2) + δ

log π
log γ u1(a

∗
1, a

∗
2). (B.1)

The payoff lower bound in Proposition 1 is obtained once we rearrange the terms in (B.1).

High Cost of Erasing Actions: I maintain all the assumptions in the baseline model except for Assump-

tion 4. Instead, I assume that player 1’s cost of erasing actions c is large enough in the sense that

c > c̃ ≡ max
a2∈A2

{
u1(a1, a2)− u1(a

∗
1, a2)

}
. (B.2)

In the following product choice game, we have c̃ = g and condition (B.2) translates into c > g.

seller \ consumer Large Quantity Small Quantity

Good Products 1, 1 −g, x

Bad Products 1 + g,−x 0, 0

with g > 0 and x ∈ (0, 1).

I show that as long as player 1’s effective discount factor is greater than some cutoff, his payoff in every

equilibrium is bounded below by something that is close to his commitment payoff u1(a∗1, a
∗
2).

Similar to the payoff lower bound in Fudenberg and Levine (1989), this payoff lower bound applies to

all values of π ∈ (0, 1) and furthermore, it depends on δ̂ and δ only through the product of the two δ.

Theorem. Suppose (u1, u2) satisfies Assumptions 1, 2, and 3. For every c > c̃, π ∈ (0, 1), and ε > 0,

there exists δ∗ ∈ (0, 1) such that in every equilibrium where δ > δ∗, the opportunistic type’s discounted

average payoff is at least u1(a∗1, a
∗
2)− ε and he never erases any action on the equilibrium path.

This result is not straightforward since even when playing a1 and then erasing it leads to a strictly

lower stage-game payoff compared to playing a∗1, the opportunistic type may have an incentive to do so if it

increases his continuation value. My proof below rules out the above concern.

Proof. Fix any equilibrium. Player 1 will not take any action a1 that is strictly greater than a1 and then

erase it. This is because doing so is strictly dominated by taking action a1 and then erasing it since the two

strategies lead to the same history for player 2’s in the next period (and hence, the same continuation value

for player 1) but the latter results in a strictly higher stage-game payoff. Let hk∗ denote the history where

player 1 has k unerased actions, all of which are a∗1. Let βk denote player 2’s action at hk∗ . Let Vk denote

the opportunistic type’s continuation value at history hk∗ . The rest of the proof proceeds in three steps.
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Step 1: Let µk denote the probability that the history is hk∗ conditional on player 1 being the opportunistic

type. Let qk denote the probability that the opportunistic type takes action a1 at hk∗ and then erase it. Let pk

denote the probability that the opportunistic type takes action other than a∗1 at hk∗ and then not erase it. By

definition, the opportunistic type takes action a∗1 at hk∗ with probability 1 − pk − qk. Since player 2’s prior

belief assigns probability (1 − δ)δ
k

to player 1’s age in the game being k, the state distribution lemma in

Online Appendix A implies that

µ0 = (1− δ) + δq0µ0

and µk = δ
{
(1− pk−1 − qk−1)µk−1 + qkµk

}
for every k ≥ 1,

which is equivalent to

µ0 =
1− δ

1− δq0
(B.3)

and
µk

µk−1
=

δ(1− pk−1 − qk−1)

1− δqk
for every k ≥ 1. (B.4)

Equations (B.3) and (B.4) together imply that for every k ≥ 1, we have:

µk

(1− δ)δ
k
=

1

1− δqk
·
k−1∏
i=0

1− pi − qi

1− δqi
. (B.5)

I show that for every x ∈ (0, 1) and y > 0, there exist at most a finite number of k such that µk

(1−δ)δ
k ≥ y

and pk + qk ≥ 1− x. This is because for every k ∈ N, we have

1− pk − qk

1− δqk
≤ 1,

and for every k where pk + qk ≥ 1− x, we have

1− pk − qk

1− δqk
≤ x

1− δ + δx
< 1. (B.6)

Moreover,
1

1− δqk
≤ 1

1− δ
. (B.7)

Suppose by way of contradiction that there are infinitely many k such that µk

(1−δ)δ
k ≥ y and pk+ qk ≥ 1−x.

Combining (B.5), (B.6) and (B.7), we know that there exists t ∈ N such that as long as there are t such

periods before history hs∗,
µs

(1− δ)δ
s ≤

( x

1− δ + δx

)t
· 1

1− δ
< y. (B.8)
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This contradiction implies that there exist at most a finite number of such k.

Step 2: At every history hk∗ where with positive probability, the opportunistic type takes action a1 and

then erases it, his incentive constraint at that history implies that

u1(a1, βk)− c ≥ (1− δ)u1(a
∗
1, βk) + δVk+1. (B.9)

Since c > c̃, we know that u1(a1, βk)− c < u1(a
∗
1, βk). Therefore, inequality (B.9) implies that

Vk+1 ≤
u1(a1, βk)− c− (1− δ)u1(a

∗
1, βk)

δ
<

u1(a
∗
1, βk)− (1− δ)u1(a

∗
1, βk)

δ
= u1(a

∗
1, βk).

This implies that there exists s > k such that player 2 takes action a∗2 with probability strictly less than 1 at

history hs∗. This is because otherwise, the opportunistic type can secure payoff u1(a∗1, a
∗
2), which is weakly

greater than u1(a
∗
1, βk) by taking action a∗1 in every period starting from history hk+1

∗ . This will contradict

our earlier conclusion that Vk+1 < u1(a
∗
1, βk).

Since player 2 has an incentive to take actions strictly lower than a∗2 at hk∗ , there exists x ∈ (0, 1)

such that (i) player 1’s reputation at hk∗ , measured by the probability that he is the honest type, is no more

than x, and (ii) the opportunistic type takes action a∗1 at hk∗ with probability less than x, or equivalently,

pk + qk ≥ 1− x. Since the honest type induces history hk∗ with probability (1− δ)δ
k
, player 1’s reputation

at hk∗ , denoted by πk, satisfies:
1− πk
πk

=
1− π

π
· µk

(1− δ)δ
k
. (B.10)

Combining Step 1 and Step 2, we know that in every equilibrium, there exist at most a finite number of k

such that the opportunistic type erases action a1 with positive probability at hk∗ .

Step 3: If there exists no k ∈ N such that the opportunistic type erases action a1 with positive probability

at hk∗ , then the desired conclusion follows from the argument in Fudenberg and Levine (1989).

Suppose by way of contradiction that there exists at least one k ∈ N such that the opportunistic type

erases action a1 with strictly positive probability at hk∗ . Let t denote the largest of such integer k. First, we

show that πt+1 ≥ π. By definition, qt+1 = 0, and according to (B.5),

µt+1

(1− δ)δ
t+1 =

1

1− δqt+1

t∏
i=0

1− pi − qi

1− δqi
=

t∏
i=0

1− pi − qi

1− δqi
≤ 1.

Therefore, πt+1 ≥ π follows from (B.10). The result in Fudenberg and Levine (1989) implies that for every
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π ∈ (0, 1) and ε > 0, there exists δ∗ ∈ (0, 1) such that in every equilibrium where δ > δ∗, the opportunistic

type’s continuation value at ht+1
∗ is at least u1(a∗1, a

∗
2)−ε. Let us consider the opportunistic type’s incentive

at ht∗. By definition, at history hk∗ , he prefers to take action a2 and then erases it, to taking action a∗1. This

leads to the following incentive constraint:

u1(a1, βt)− c ≥ (1− δ)u1(a
∗
1, βt) + δVt+1 ≥ (1− δ)u1(a

∗
1, βt) + δ

(
u1(a

∗
1, a

∗
2)− ε

)
. (B.11)

However, since c > c̃, inequality (B.11) cannot be true for any ε that satisfies u1(a∗1, a
∗
2)− ε > u1(a1, βt)−

c. This contradiction implies that when δ is close enough to 1, there exists no equilibrium in which the

opportunistic type erases action with positive probability at any history where he has a strictly positive

reputation. It also implies that for every ε > 0, there exists δ∗ ∈ (0, 1), such that in every equilibrium, the

opportunistic type’s payoff is at least u1(a∗1, a
∗
2)− ε as long as δ > δ∗.

C Alternative Promises & Information Disclosure Policies

I adopt the “imperfect promise” interpretation of my model. The long-run player commits to play a∗1 in every

period. However, instead of committing to fully reveal all past actions, he commits to a general disclosure

policy according to which he discloses his past actions to the short-run players. The short-run players believe

that the long-run player will honor his promise with probability π and with complementary probability, he

may take other actions and may also erase actions from his records at cost c. Whether the long-run player

can directly observe the signals received by the short-run players does not affect my results.

I restrict attention to disclosure policies that take the form of a mapping q ≡ {qm(n)}n,m∈N such that

if the long-run player’s record length is m ∈ N, then he commits to reveal a record with length n ∈ N

consisting only of a∗1 with probability qm(n).2 This class of disclosure policies includes disclosing the last

K actions, randomizing between disclosing all past actions and disclosing no past action, and so on.3 It rules

out disclosure policies that requires the long-run player to fabricate records, namely, revealing an action that

he has never taken to the short-run players.

I derive an upper bound on the long-run player’s discounted average payoff when he can renege. This is

because his payoff when he honors his promise is weakly lower than his payoff when he can renege, which
2Since the long-run player commits to play a∗

1 in every period, all his past actions are a∗
1 conditional on the event that he honors

his promise, in which case his history can be summarized by the number of a∗
1 that he has taken.

3There are other reasonable restrictions on the set of disclosure policies that the long-run player can commit to, such as the
length of record he reveals cannot exceed the number of actions that he has taken. I do not include any additional restriction since
my result applies to all disclosure policies that belong to the class I just specified, which makes the result stronger.
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implies that player 1’s expected payoff is also lower than the upper bound I derived.

I start from a benchmark in which the long-run player commits to reveal the null history to the short-run

players regardless of his past actions, that is, qm(0) = 1 for every m ∈ N. For every π ∈ (0, 1), let aπ2

denote player 2’s highest best reply to player 1’s mixed action πa∗1 + (1− π)a1 and let aπ2 denote player 2’s

lowest best reply to πa∗1 + (1 − π)a1. The following lemma derives lower and upper bounds on player 1’s

equilibrium payoff conditional on the event that he can renege on his promise:

Lemma. If qm(0) = 1 for every m ∈ N, then conditional on player 1 can renege, his payoff in every

equilibrium is at least max{(1− δ)u1(a1, a
π
2 ), u1(a1, a

π
2 )− c} and is at most max{1−δ

δ c, u1(a1, a
π
2 )− c}.

For generic probability with which the long-run player will honor his promise π, player 2 has a unique

best reply to πa∗1 + (1− π)a1, in which case aπ2 = aπ2 and the payoff lower and upper bounds derived in the

lemma will converge to the same value as δ → 1.

Proof. Since the long-run player commits to reveal the null record, when he can renege, it is optimal for him

to take action a1 in every period. This is because a1 is player 1’s strictly dominant action in the stage game

and after player 1 shows any action to the short-run players, he reveals that he will not honor his promise

and will therefore, receive a continuation value of 0. Therefore, at history h0∗, the short-run player’s action

is at least aπ2 and is at most aπ2 , and at any other on-path history, the short-run player’s action is a2.

Let us bound the long-run player’s payoff conditional on the event that he can renege on his promise.

His payoff is at least (1− δ)u1(a1, a
π
2 ) if he plays a1 in period 0 and does not erase it; his payoff is at least

u1(a1, a
π
2 ) − c if he plays a1 in every period and then erases it. Hence, his equilibrium payoff is at least

max{(1 − δ)u1(a1, a
π
2 ), u1(a1, a

π
2 ) − c}. His payoff is at most u1(a1, a

π
2 ) − c if he plays a1 and erases it

after each period and is at most 1−δ
δ c if he plays a1 in period 0 and then does not erase it. Since playing a1

is optimal, his equilibrium payoff is at most max{1−δ
δ c, u1(a1, a

π
2 )− c}.

I state a theorem which shows that as long as player 1 is sufficiently long-lived, regardless of the dis-

closure policy that he commits to and regardless of the equilibrium being played, his payoff when he can

renege cannot be significantly greater than his highest equilibrium payoff when he promises to show the null

record no matter what. I also show that the short-run players’ welfare cannot be significantly greater than

that when the long-run player commits to reveal all his actions, i.e., qn(m) = 1 if and only if n = m.

Theorem. Fix any π > 0, δ̂ ∈ (0, 1), and (u1, u2, c) that satisfies Assumptions 1,2,3 and 4. For every

ε > 0, there exists δ∗ ∈ (0, 1) such that for every δ > δ∗, in every equilibrium under every disclosure policy,

11



player 1’s equilibrium payoff when he can renege is at most

max
{1− δ

δ
c, u1(a1, a

π
2 )− c

}
. (C.1)

If in addition that u2(a1, a2) is weakly increasing in a1, then player 2’s welfare U2 in any equilibrium under

any disclosure policy is no more than πu2(a
∗
1, a

∗
2) + ε.

This theorem implies that as long as the short-run players suspect that (i) the long-run player may renege

with positive probability and (ii) the reneging long-run player has the option to erase past actions at a low

cost, the long-run player can no longer benefit from having his actions monitored relative to the benchmark

scenario in which his actions cannot be monitored at all.4 This conclusion stands in contrast to usual lessons

from the theories of repeated games, that a patient player can obtain strictly higher payoffs when his op-

ponents can monitor his actions. Compared to the baseline model where player 1 commits to disclose all

past actions to the short-run players, this theorem implies that committing to alternative disclosure policies

cannot benefit the short-run players but can benefit the long-run player when his opponents believe that he

will honor his promise with probability above some cutoff.

Proof. Using the same argument as in the proof of Theorem 1, I can show that in every equilibrium (i) there

exists t ∈ N such that when the long-run player can renege, (ii) he takes action a∗1 with positive probability

at every history hk∗ with k < t, and that he takes action a1 with positive probability at every history, and (iii)

player 2’s action at hk∗ , denoted by βk, is strictly increasing in k in the sense of FOSD.

Therefore, even conditional on the event that player 1 can renege, his equilibrium payoff is bounded

above by max{ (1−δ)c
δ , u1(a1, β0)− c}. This is because (1−δ)c

δ is an upper bound on player 1’s equilibrium

payoff when he does not erase a1 with positive probability and u1(a1, β0)−c is his equilibrium payoff when

he takes action a1 and then erases it in every period. This payoff upper bound is no more than (C.1) unless

(i) u1(a1, β0) > c/δ and (ii) there exists an action strictly greater than aπ2 that belongs to the support of β0.

The first requirement implies that at every hk∗ , when player 1 can renege, he strictly prefers to erase a1

after taking it at hk∗ . This implies that the reneging player 1 never reveals to the short-run players that he can

renege on his promise. Recall the definition of aπ2 . Since βk is non-decreasing in k, the second requirement

implies that for every βk with k ≥ 0, there exists an action that is strictly greater than aπ2 that belongs to the

support of βk. This implies that there exists p > 0 depends only on (u1, u2) such that conditional on player

4The current theorem neither implies nor is implied by Theorem 2 in the main text. This is because Theorem 2 derives a stronger
payoff upper bound for the long-run player and a sharper characterization of the short-run players’ welfare under full disclosure
while the current result derives weaker conclusions but allows for a larger class of disclosure policies.
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1 can renege, the expected probability with which he takes action a∗1 is at least p. This is because otherwise,

player 2 will have no incentive to take actions strictly greater than aπ2 at hk∗ for every k ∈ N.

Fix any δ̂ ∈ (0, 1). Suppose by way of contradiction that for every δ∗ ∈ (0, 1), there exists a survival

probability δ > δ∗, a disclosure policy q, and an equilibrium under (q, δ, δ̂) such that player 1’s payoff

when he can renege is strictly greater than (C.1). Let q̃ ∈ ∆(N) denote the distribution over player 1’s

revealed record conditional on he honors his promise, which is pinned down the disclosure policy q. Since

at every history hk∗ with k < t, player 1 is indifferent between playing a∗1 and playing a1 and then erasing it

conditional on he can renege, we know that

Vk+1 − Vk = (1− δ)
(
u1(a1, βk+1)− c− u1(a

∗
1, βk)

)
. (C.2)

This implies that t is bounded from above by some linear function of (1− δ)−1.

Since player 2 has an incentive to take some action that is strictly greater than aπ2 at h0∗ and player 2’s

action increases in the length of player 1’s good record in the sense of FOSD, there exists x > π such

that player 2’s belief assigns probability at least x to a∗1 at every hk∗ with k ≤ t − 1. Importantly, this x

depends only on (u1, u2) and does not depend on δ̂, δ, and the promised disclosure policy. Recall that µ∗
k is

the probability that the history is hk∗ conditional on player 1 being the opportunistic type and that p∗k is the

probability with which the opportunistic type plays a∗1 at hk∗ . Player 2’s incentive constraint at history hk∗

implies that
πq̃(k) + (1− π)µ∗

kp
∗
k

(1− π)µ∗
k(1− p∗k)

≥ x

1− x
for every k ∈ {1, ..., t− 1}. (C.3)

Since π < x, (C.3) is true for every k ≤ t − 1 only when
∑t−1

j=0 µ
∗
jp

∗
j is uniformly bounded above 0 as

δ → 1. Notice that Lemma 3 in the main text applies to all disclosure policies. It implies that µ∗
jp

∗
j ≤ 1− δ

for every j ≤ t− 1. Therefore,
∑t−1

j=0 µ
∗
jp

∗
j is bounded above 0 if and only if t is bounded below by a linear

function of (1 − δ)−1. For any fixed δ̂ ∈ (0, 1), there exists δ close to 1 such that the lower bound on t

is strictly greater than the upper bound on t implied by the opportunistic type’s incentive constraints. This

rules out equilibria in which player 1’s payoff being strictly greater than (C.1). Similarly, fix any equilibrium

and the resulting distribution over player 1’s actions, player 2’s payoff cannot be greater than their payoff

when they can observe player 1’s realized pure action before choosing their action. This upper bound cannot

be greater than πu2(a
∗
1, a

∗
2) + (1− π)u2(a1, a2) as δ → 1 since Pr(Ek) ≤ 1− δ for every k ≤ t and t is at

most proportional to (1− δ)−1.
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D Multiple Honest and Opportunistic Types

This appendix extends my results to settings with multiple honest and opportunistic types. Formally, the

set of player 1’s types is denoted by Ω ≡ Θ
⋃
Ã1, where each θ ∈ Θ stands for an opportunistic type who

is characterized by a stage-game payoff function u1(θ, a1, a2) and a cost of erasing actions c(θ), and each

a1 ∈ Ã1 ⊂ A1 stands for an honest type who takes action a1 in every period and never erases his action.

I assume that the type distribution π ∈ ∆(Ω) has full support, player 2’s payoff u2(a1, a2) does not

depend on player 1’s type, and that for every θ ∈ Θ, u1(θ, a1, a2) and u2(a1, a2) satisfy Assumptions 1, 2

and 3. I also adopt the normalization that u1(θ, a1, a2) = 0 for every θ ∈ Θ.

I start from the benchmark without any honest type. Similar to the case with only one opportunistic

type, when the cost of erasing actions c(θ) is lower than some cutoff c(θ) for every θ ∈ Θ, player 1 plays a1

and player 2 plays a2 at every on-path history of every Nash equilibrium, regardless of δ̂ and δ. Formally,

for each strategy profile (σ1, σ2), let H(σ1, σ2|θ) be the set of player 1 histories that occur with positive

probability under (θ, σ1, σ2). Recall that a′1 is the lowest action in A1 under which a2 is not a best reply. Let

c(θ) ≡ min
β∈∆(A2)

{
u1(θ, a1, β)− u1(θ, a

′
1, β)

}
. (D.1)

Proposition. Suppose (u1, u2) satisfies Assumptions 1, 2, and 3 for every θ ∈ Θ, c(θ) < c(θ) for every

θ ∈ Θ, and the probability of honest types is 0. If (σ1, σ2) is a Nash equilibrium, then for every θ ∈ Θ, type

θ of player 1 plays a1 and player 2 plays a2 at every history that belongs to H(σ1, σ2|θ).

This proposition implies that the presence of incomplete information by itself cannot alleviate the inef-

ficiencies caused by the long-run player’s ability to erase actions at a low cost. Even when there are multiple

opportunistic types with potentially different stage-game payoffs and different costs of erasing actions, each

opportunistic type will take action a1 at every on-path history and there is no cooperation in any equilibrium.

Proof. I use h to denote a generic history of player 2’s. Let β(h) ∈ ∆(A2) denote player 2’s action at

history h. Let Vθ(h) denote type θ’s continuation value at h.

Suppose by way of contradiction that there exists an equilibrium (σ1, σ2) in which some opportunistic

type θ1 ∈ Θ of player 1 plays a′′1 ̸= a1 with positive probability at some history h ∈ H(σ1, σ2|θ1). Let

V θ1 ≡ sup
h∈H(σ1,σ2|θ1)

Vθ1(h), (D.2)

which is type θ1’s highest continuation value in this equilibrium. Suppose by way of contradiction that
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V θ1 = 0, then Vθ1(h) = 0 for every h ∈ H(σ1, σ2|θ1) since type θ1 can secure payoff 0 by playing a1 in

every period. It is never optimal for player 1 to play a′′1 and then erase the record since it is strictly dominated

by playing a1 and erasing the record. This implies that at any history h where type θ1 has an incentive to

play a′′1 , type θ1’s continuation value Vθ1(h) satisfies

Vθ1(h) = (1− δ)u1(θ1, a
′′
1, β(h)) + δVθ1(h, a

′′
1).

Therefore, u1(θ1, a′′1, β(h)) = 0. Since u1 is strictly increasing in a2 and is strictly decreasing in a1, a′′1 ≻ a1

implies that β(h) FOSDs a2. This implies that type θ1 can secure payoff (1− δ)u1(θ1, a1, β(h)) by playing

a1 in every period, which is strictly positive. This contradicts the hypothesis that V θ1 = 0.

Hence, it must be the case that V θ1 > 0. For every ε that satisfies:

0 < ε < min
{V θ1

2
,
(1− δ)(c(θ1)− c(θ1))

δ

}
, (D.3)

there exists a history h(1) ∈ H(σ1, σ2|θ1) such that Vθ1(h(1)) > V θ1 − ε. I consider type θ1’s incentive at

h(1). His continuation value for playing a1 and then erasing it is at least

(1− δ)
(
u1(θ1, a1, β(h(1)))− c(θ1)

)
+ δ(V θ1 − ε).

His continuation value for playing any action a1 ̸= a1 is at most (1 − δ)u1(θ1, a1, β(h(1))) + δV θ1 . This

upper bound is strictly less than (1− δ){u1(θ1, a1, β(h(1)))− c(θ1)}+ δ(V θ1 − ε). This implies that type

θ1 has no incentive to play any action weakly greater than a′1 at h(1). Player 2 cannot have a strict incentive

to play a2 at h(1). This is because otherwise,

V θ1 − ε < Vθ1(h(1)) ≤ (1− δ)u1(θ1, a1, a2) + δV θ1

which implies that V θ1 − ε
1−δ < u1(θ1, a1, a2) = 0 for every ε that satisfies (D.3). Therefore, V θ1 ≤ 0,

which contradicts our earlier conclusion that V θ1 > 0.

In order for player 2 to play actions other than a2 at h(1), there must exist a type of player 1, denote it

by θ2, that occurs with positive probability at h(1) and plays some action a′′1 ≿ a′1 with positive probability

at h(1). As I shown before, type θ2 has no incentive to erase a′′1 after playing it at history h(1).

Consider the continuation game at history (h(1), a′′1). Type θ1 occurs with zero probability at that history
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since he never plays any action that is weakly greater than a′1 at h(1). Let

V θ2 ≡ sup
h∈H(σ1,σ2|θ2),h⪰(h(1),a′′1 )

Vθ2(h),

I show that V θ2 > 0. This is because otherwise, V θ2 = 0 = Vθ2(h(1), a
′′
1), in which case type θ2 has a strict

incentive to deviate to a1 at h(1). Applying the same argument as before, one can obtain that there exists

h(2) ⪰ (h(1), a′′1) such that type θ2 has no incentive to play any action weakly greater than a′1 and there

exists another type θ3 that occurs with positive probability at h(2) and plays some action a′′′1 ≿ a′1 with

positive probability. Since Θ is finite, one can obtain a contradiction after a finite number of iterations.

Next, I consider games with honest types. The next theorem generalizes Theorem 2 in the main text

by showing that for any level of patience δ̂ and any full support distribution π, every opportunistic type’s

equilibrium payoff cannot be significantly greater than his minmax value 0 as his expected lifespan diverges.

Theorem. For every π ∈ ∆(Ω), c(θ) < c(θ) for every θ ∈ Θ, and δ̂ ∈ (0, 1), there exists δ∗ ∈ (0, 1)

such that for every δ > δ∗ and θ ∈ Θ, type θ’s payoff in every equilibrium is no more than (1−δ)c(θ)
δ .

The intuition is similar to that behind Theorem 2 in the main text. As long as there exists one opportunis-

tic type θ ∈ Θ whose payoff is strictly greater than (1−δ)c(θ)
δ , then the probability of the event that player

1 is the opportunistic type and will erase a1 at every history is bounded below by π(θ). As in the proof of

Theorem 2, one can obtain that the number of periods it takes for player 1 to have a perfect reputation must

be bounded from below by something proportional to (1 − δ)−1. However, since each opportunistic type

can erase actions at a low cost, his incentive to take actions greater than a′1 implies that his continuation

value needs to increase by something proportional to 1− δ as the length of his good record increases. This

implies that the number of periods with which each opportunistic type may take actions other than a1 must

be bounded above by something proportional to (1 − δ)−1. As δ → 1, the lower bound will exceed the

upper bound and this contradiction rules out equilibria in which the opportunistic type obtains high payoffs.

Proof. At any history where player 1’s record length is no less than 1, player 2’s belief assigns strictly

positive probability to at most one honest type. I establish this theorem in a model with only one honest type

a∗1. This proof easily extends to models with multiple honest types playing stationary pure strategies.

Let a∗2 be player 2’s strict best reply to a∗1. Player 1 plays only a∗1 and a1 with positive probability, and

according to the proposition earlier in this appendix, he plays a∗1 with positive probability only at histories

that belong to H∗.
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Recall the definitions of hk∗ , βk, and pk in the main text. Let xk denote the probability player 2’s belief

assigns to a∗1 at history hk∗ . Let Vθ(k) be type θ’s continuation value at history hk∗ . Recall the definition of

B ⊂ ∆(A2) in the main text. Since u2 does not depend on θ and satisfies Assumptions 1 and 3, every pair

of elements in B can be ranked according to FOSD. The case where u1(θ, a
∗
1, a

∗
2) ≤ 0 for every θ ∈ Θ is

trivial. In what follows, I focus on the interesting case where u1(θ, a
∗
1, a

∗
2) > 0 for some θ ∈ Θ.

Type θ of player 1 prefers not to erase a1 at hk∗ if and only if (1−δ)u1(θ, a1, βk) ≥ u1(θ, a1, βk)−c(θ),

or equivalently,

u1(θ, a1, βk) ≤
c(θ)

δ
. (D.4)

I only need to show that in every equilibrium, every opportunistic type θ ∈ Θ has an incentive to play a1

and then not erase it at h0∗, since (D.4) will then imply that every type θ’s payoff is no more than (1−δ)c(θ)
δ .

Suppose by way of contradiction that there exists an equilibrium such that there exists a type θ who has

no incentive to play a1 and then not erase it at h0∗. The rest of the proof consists of five steps.

Step 1: I show that in every equilibrium, there exists t ∈ N such that player 2 assigns probability 1 to the

honest type starting from history ht∗. Let V θ be type θ’s highest continuation value. Fix any ε that satisfies:

0 < ε < min
{V θ

2
,
(1− δ)(c(θ)− c(θ))

δ

}
,

there exists tθ ∈ N such that Vθ(tθ) > V θ − ε. According to the proof of the proposition earlier in this ap-

pendix, type θ has no incentive to play a∗1 at htθ∗ , which implies that player 2’s belief assigns zero probability

to type θ at history htθ+1
∗ . Suppose player 2’s belief assigns positive probability to some opportunistic type

at htθ+1
∗ , pick any type θ∗ that it assigns positive probability to. Let V θ∗ be type θ∗’s highest continuation

value at histories that succeed htθ+1
∗ . Type θ∗ has no incentive to play a∗1 when his continuation value is

sufficiently close to V θ∗ . Iterate this process finitely many times, we can find a history ht∗ at which player

2’s belief assigns zero probability to all opportunistic types. In what follows, I use t to denote the smallest

integer such that player 2’s belief assigns zero probability to all opportunistic types at ht∗.

Step 2: I derive an upper bound on t. At every history hk∗ with k < t − 1, there exists at least one

opportunistic type that plays a∗1 with positive probability. Let this type be θ. His continuation value at hk∗

satisfies:

Vθ(k) = (1− δ)u1(θ, a
∗
1, βk) + δVθ(k + 1) ≥ u1(θ, a1, βk)− c(θ), (D.5)
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where the RHS is type θ’s payoff if he plays a1 and erases it in every subsequent period. Therefore,

Vθ(k + 1)− Vθ(k) =
1− δ

δ

{
Vθ(k)− u1(θ, a

∗
1, βk)

}
≥ 1− δ

δ

{
u1(θ, a1, βk)− c(θ)− u1(θ, a

∗
1, βk)

}
Since c(θ) < c(θ), there exists ∆(θ) > 0 such that u1(θ, a1, b) − c(θ) − u1(θ, a

∗
1, b) ≥ ∆(θ) for every

b ∈ B. Therefore,

Vθ(k + 1)− Vθ(k) ≥
1− δ

δ
∆(θ) > 0. (D.6)

Since type θ’s continuation value is at least 0 and is at most u1(θ) ≡ maxa1,a2 u1(θ, a1, a2), an upper bound

on t is given by

t ≤
∑
θ∈Θ

δ · u1(θ)
(1− δ)∆(θ)

. (D.7)

Step 3: I show that for every type θ ∈ Θ and integer k ≤ t−1, if type θ has no incentive to play a1 and not

erase it at hk∗ , then he has no incentive to play a1 and not erase it at hk+1
∗ . Suppose by way of contradiction

that there exist such k and θ, then it must be the case that βk ⪰ βk+1. My hypothesis implies that type θ

weakly prefers playing a∗1 at hk∗ and then playing a1 and not erasing at hk+1
∗ to the following two strategies

(i) playing a1 and erasing in every subsequent period after reaching hk∗ as well as (ii) playing a1 and not

erasing in every subsequent period after reaching hk∗ . These two incentive constraints imply that

(1− δ)u1(θ, a
∗
1, βk) + δ(1− δ)u1(θ, a1, βk+1) ≥ u1(θ, a1, βk)− c(θ) (D.8)

and

(1− δ)u1(θ, a
∗
1, βk) + δ(1− δ)u1(θ, a1, βk+1) ≥ (1− δ)u1(θ, a1, βk) (D.9)

Since c(θ) < c(θ), we have u1(θ, a1, βk) − c(θ) > u1(θ, a
∗
1, βk). Therefore, (D.8) together with βk ⪰

βk+1 implies that (1 − δ)u1(θ, a1, βk+1) > u1(θ, a
∗
1, βk) ≥ u1(θ, a

∗
1, βk+1). Inequality (D.9) implies that

u1(θ, a
∗
1, βk) ≥ u1(θ, a1, βk)− δu1(θ, a1, βk+1) ≥ (1− δ)u1(θ, a1, βk). This leads to a contradiction.

Step 4: For any equilibrium (σ1, σ2) in which players’ strategies depend only on player 2’s history, we

modify player 1’s strategy to σ∗
1 such that (σ∗

1, σ2) remains a Nash equilibrium and that player 2’s expectation

about player 1’s action at every on-path history is the same under (σ1, σ2) and under (σ∗
1, σ2). That is to say,

the two equilibria are equivalent.

Since player 2’s action belongs to B at every on-path history and every pair of elements in B can be

ranked according to FOSD (see Lemma 2 in the main text), for every θ ∈ Θ, there exists at most one
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β∗(θ) ∈ B such that inequality (D.4) holds with equality. The conclusion in Step 3 implies that for every

θ ∈ Θ, there exists at most one period k(θ) ≤ t− 1 such that βk(θ) = β∗(θ).

I describe every opportunistic type’s strategy under σ∗
1 . For every θ ∈ Θ such that k(θ) does not exist,

type θ’s strategies under σ1 and under σ∗
1 are the same. For every θ ∈ Θ such that k(θ) exists, type θ’s

actions under σ1 and under σ∗
1 are the same at every history except for hk(θ)∗ . At history h

k(θ)
∗ , type θ erases

a1 with probability 1 if calendar time is strictly above k(θ), and erases a1 with probability p(θ) ∈ [0, 1] if

calendar time equals k(θ). There exists p(θ) such that player 2’s belief about type θ’s action at hk(θ)∗ remains

the same. This is because (i) when p(θ) = 1, player 2 believes that type θ plays a1 and then does not erase

it, (ii) when p(θ) = 0, player 2 believes that type θ either plays a∗1 or plays a1 and then erases it, and (iii)

player 2’s belief changes continuously with p(θ).

Step 5: I derive a lower bound on t based on the equilibrium (σ∗
1, σ2) we constructed in Step 4. This

lower bound also applies to (σ1, σ2) since the two are equivalent. Let E∗ denote the event that player 1 is

opportunistic and erases a1 whenever he plays it. Let Ê denote the event that player 1 is opportunistic and

does not erase a1 after he plays it. The conclusions in Step 3 and Step 4 imply that when player 1 is one

of the opportunistic types, either event E∗ or event Ê will happen under the probability measure induced by

(σ∗
1, σ2). Let π∗ denote the probability of event E∗. Let π̂ denote the probability of event Ê . Let π denote

the probability that player 1 is the honest type. Let θ denote the type such that playing a1 and then erasing

it at h0∗ is strictly suboptimal. The conclusion in Step 3 implies that π∗ ≥ π(θ) > 0.

Let µ∗
k denote the probability of history hk∗ conditional on event E∗. Let p∗k denote the probability that

player 1 plays a∗1 conditional on event E∗ and the history in the current period being hk∗ . Let µ̂k denote

the probability of history hk∗ conditional on event Ê . Let p̂k denote the probability that player 1 plays a∗1

conditional on event Ê and the history in the current period being hk∗ . The state distribution lemma in Online

Appendix A implies that:

µ∗
0 = (1− δ) + δµ∗

0(1− p∗0), (D.10)

µ∗
k = δµ∗

k−1p
∗
k−1 + δµ∗

k(1− p∗k) for every k ∈ {1, 2, ..., t− 1}, (D.11)

and

µ̂k = (1− δ)δ
k
Πk−1

j=0 p̂j . (D.12)
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Equation (D.11) implies that

µ∗
k

µ∗
k−1

=
δp∗k−1

1− δ(1− p∗k)
for every k ∈ {1, 2, ..., t− 1}. (D.13)

Let xk denote the probability that player 2’s belief assigns to a∗1 at hk∗ . According to Bayes rule,

xk
1− xk

=
π(1− δ)δ

k
+ π∗µ∗

kp
∗
k + π̂µ̂kp̂k

π∗µ∗
k(1− p∗k) + π̂µ̂k(1− p̂k)

=
π∗µ∗

kp
∗
k + (1− δ)δ

k
Ik

π∗µ∗
k(1− p∗k) + (1− δ)δ

k
Jk

, (D.14)

where Ik ≡ π + π̂Πk
j=0p̂j and Jk ≡ π̂(1− p̂k)Π

k−1
j=0 p̂j . Equation (D.14) implies that

π∗µ∗
k(xk − p∗k) = (1− δ)δ

k
{
Ik − xk(Ik + Jk)

}
≤ (1− δ)δ

k
(π + π̂). (D.15)

I define two new sequences {pk}tk=0 and {µk}tk=0 according to

µk(xk − pk) = (1− δ)δ
k π + π̂

π∗ , (D.16)

µ0 =
1− δ

1− δ(1− p0)
and µk =

δpk−1µk−1

1− δ(1− pk)
. (D.17)

Similar to the proof of Theorem 2 in the main text, one can show that p0 is bounded above 0 and pk−1−pk <

1− δ, which implies that pt = 0 if and only if t is bounded below by something proportional to (1− δ)−1.

In order to complete the proof, I only need to show by induction that pk ≥ pk for every k ≤ t, regardless

of {Ik, Jk}tk=0. When k = 0, we have

µ∗
0 =

1− δ

1− δ(1− p∗0)
and µ∗

0(x0 − p∗0) ≤ (1− δ)
π + π̂

π∗ .

Since µ∗
0 is strictly decreasing in p∗0, we obtain that p∗0 is bounded above 0, and moreover, p∗0 ≥ p0. If

p∗j ≥ pj for every j ≤ k, then when j = k + 1, we have

µ∗
k+1 =

δµ∗
kp

∗
k

1− δ(1− p∗k+1)
and µ∗

k(xk − p∗k) ≤ (1− δ)
π + π̂

π∗ .

Since µ∗
j is strictly decreasing in p∗j for every j ≤ k, we know that the value of p∗k+1 is minimized when

{p∗0, ..., p∗k} all reach their minimal values {p0, ..., pk}. The definitions of {pk}tk=0 and {µk}tk=0 then imply

that p∗k+1 ≥ pk+1. This completes the proof that t is bounded below by something proportional to (1−δ)−1.

As δ → 1, this lower bound exceeds the upper bound I derived in Step 2, which rules out equilibria in which
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some opportunistic type θ receives a payoff strictly greater than (1−δ)c(θ)
δ .

E Extensions: Stochastic Arrivals and Stochastic Reviews

I discuss two extensions: one in which the consumers arrive with probability less than one in each period

and one in which the consumers post reviews with probability less than 1 after interacting with the seller. In

these extensions, the seller’s age in the game may not coincide with the length of his record, even when he

is honest and has not erased any action. I argue that my main result, Theorem 2, continues to hold in these

environments and the qualitative features of the equilibria are similar to those in the baseline model.

Stochastic Arrivals: I start from an extension in which the short-run players arrive stochastically over

time. Suppose in each period, a short-run player arrives with some exogenous probability p ∈ (0, 1). If

a short-run player arrives, then players play the stage game, and by the end of that period, the long-run

player decides whether to erase his action. If no short-run player arrives in a given period, then the long-run

player’s record remains the same regardless of his behavior and his stage-game payoff is normalized to 0.

In this setting, the opportunistic type maximizes p
∑+∞

k=0(1− δ)δk
(
u1(a1,k, a2,k)− ck

)
. The short-run

players’ prior belief assigns probability (1 − δ)δ
k

to the long-run player’s age in the game being k and

assigns probability (1− δ̃)δ̃k to the honest type having interacted with k short-run players, where

δ̃ ≡ 1− 1− δ

1− δ(1− p)
. (E.1)

Using the same method as in the proof of Theorem 2, one can show that for every c < c, p ∈ (0, 1),

π ∈ (0, 1), δ̂ ∈ (0, 1), and ε > 0, there exists δ∗ ∈ (0, 1) such that when δ > δ∗, the opportunistic type’s

payoff is no more than

u(p) ≡ (1− δ)(1− δ + δp)

δ
c (E.2)

in every equilibrium. This payoff converges to his minmax value 0 as δ → 1. Under an additional assump-

tion that u2(a1, a2) is weakly increasing in a1, the short-run players’ welfare, measured by the expected

sum of their payoffs, is ε-close to pπu2(a
∗
1, a

∗
2) + p(1− π)u2(a1, a2) in every equilibrium.

I explain how to extend the proof of Theorem 2 to the case with stochastic arrivals. I omit the details

in order to avoid repetition. Suppose by way of contradiction that there exists an equilibrium in which the

opportunistic type of player 1 strictly prefers to erase action a1 after taking it at the null history h0∗. Since

his continuation value at hk∗ is strictly increasing in k for every k ≤ t, he also has a strict incentive to erase
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a1 at every hk∗ . On the one hand, player 1 has an incentive to take action a∗1 at history hk∗ only if

(1− δ)u1(a
∗
1, βk) + δp(u1(a1, βk+1)− c) ≥ (1− δ)u1(a1, βk) + δp(u1(a1, βk)− c).

A necessary condition for the above inequality is that player 1’s continuation value increases by something

linear in 1−δ when his record length increases from k to k+1. This leads to an upper bound on the number

of periods with which the opportunistic type can take action a∗1, which is an affine function of (1− δ)−1.

On the other hand, the argument in the proof of Theorem 2 implies that the rate with which player 1’s

reputation increases is bounded above by something proportional to 1− δ̃. This implies that the number of

periods with which the opportunistic type needs to take action a∗1 is at least a linear function of (1 − δ̃)−1.

As δ → 1, expression (E.1) implies that δ̃ also goes to 1, and the lower bound on t will exceed the upper

bound. Therefore, in every equilibrium, the opportunistic type has an incentive not to erase a1 at h0∗.

I bound player 1’s payoff in equilibria where he has an incentive not to erase a1 at history h0∗. Suppose

a short-run player arrives at history h0∗ and that the opportunistic type took action a1 at that history, the

opportunistic type prefers not to erase a1 if

(1− δ)u1(a1, β0) ≥ (1− δ)(u1(a1, β0)− c) + δp(u1(a1, β0)− c),

or equivalently,

u1(a1, β0) ≤
(1− δ)(1− δ + δp)

δp
c = u(p). (E.3)

In order to bound the short-run players’ payoffs, I establish a generalized version of Lemma 3 that the

probability of event Ek is no more than 1− δ̃.

The short-run players’ equilibrium welfare is no less than their payoff when they take action a∗2 if and

only if the length of player 1’s good record exceeds t, and takes action a2 otherwise. This lower bound

converges to pπu2(a
∗
1, a

∗
2) + p(1 − π)u2(a1, a2) as δ̃ → 1, since the expected number of periods for the

honest type to obtain a record length t is a linear function of (1 − δ)−1, which is lower than the decay rate

of their belief δ̃. Their equilibrium welfare is no more than their payoff when they can observe the realized

pure action of player 1. This upper bound converges to pπu2(a
∗
1, a

∗
2) + p(1− π)u2(a1, a2) as δ̃ → 1, since

the average probability with which the opportunistic type takes action a∗1 vanishes as δ̃ → 1. The lower and

the upper bounds coincide, which pins down the short-run players’ equilibrium welfare.
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Stochastic Online Reviews: I discuss an extension in which the short-run players post reviews with prob-

ability less than 1. Suppose after interacting with the long-run player, the short-run player does not leave any

review with probability p ∈ [0, 1), in which case the long-run player’s record does not change regardless of

his action. Conditional on the short-run player posts a review, the long-run player decides whether to erase

it at cost c. My baseline model assumes that p = 0.

I explain how to extend Theorem 2 to any arbitrary p ∈ [0, 1). The opportunistic type’s continuation

value equals his minmax value 0 after separating from the honest type. After taking action a1 at history h, he

prefers to erase it if and only if his continuation value at history h, denoted by V (h), satisfies V (h) ≥ (1−δ)c
δ .

Hence, in any equilibrium where the opportunistic type has an incentive not to erase a1 after taking it in

period 0, player 1’s equilibrium payoff is no more than (1−δ)c
δ .

Suppose by way of contradiction that for every δ∗ ∈ (0, 1), there exist δ > δ∗ and an equilibrium under

which the opportunistic type strictly prefers to erase a1 after taking it in period 0. Let t ∈ N be such that

the opportunistic type plays a∗1 with positive probability at hk∗ if and only if k < t− 1. Let Vk denote player

1’s continuation value at hk∗ and let βk denote player 2’s action at hk∗ . Since at every hk∗ with k < t− 1, the

opportunistic type is indifferent between playing a∗1 and playing a1 and then erasing it, we have:

(1− δ)u1(a
∗
1, βk) + δ

{
pVk + (1− p)Vk+1

}
= (1− δ)

{
u1(a1, βk)− (1− p)c

}
+ δVk,

which implies that

Vk+1 − Vk =
1− δ

δ(1− p)

{
u1(a1, βk)− u1(a

∗, βk)− c(1− p)
}
. (E.4)

Since u1(a1, βk)− u1(a
∗, βk)− c(1− p) > 0, there exists a constant λ > 0 such that t ≤ λ

1−δ .

Recall the definitions of µ∗
k and p∗k in the proof of Theorem 2. When the short-run players do not leave

reviews with probability p, we have

µ∗
0 = (1− δ) + δ

{
(1− p∗0) + p∗0p

}
and

µ∗
k = δ

{
µ∗
k−1p

∗
k−1(1− p) + µ∗

k(1− p∗k + p∗kp)
}

or equivalently,

µ∗
0 =

1− δ

1− δ(1− p∗0 + p∗0p)
(E.5)
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and
µ∗
k

µ∗
k−1

=
δp∗k−1(1− p)

1− δ(1− p∗k + p∗kp)
. (E.6)

Let xk denote player 2’s belief about the probability of a∗1 at history hk∗ . As in the baseline model, we have

π

1− π
(1− δ)δ

k
= µ∗

k

{ xk
1− xk

(1− p∗k)− p∗k

}
= µ∗

k

xk − p∗k
1− xk

(E.7)

and
µ∗
k

µ∗
k−1

= δ
xk−1 − p∗k−1

xk − p∗k
· 1− xk
1− xk−1

≤ δ
xk − p∗k−1

xk − p∗k
. (E.8)

Plugging k = 0 into (E.7) and applying equation (E.5), we know that p∗0 is bounded above 0 as δ → 1.

Equations (E.6) and (E.8) together imply that

xk − p∗k−1

xk − p∗k
≥

δp∗k−1(1− p)

1− δ(1− p∗k + p∗kp)
, (E.9)

which is equivalent to

p∗k−1 − p∗k ≤ (1− δ)
x− p∗k−1

x(1− p)
(1− p∗k(1− p)). (E.10)

This leads to an upper bound on t, which is proportional to (1− δ)−1.

When δ → 1, the lower bound on t exceeds the upper bound on t driven by the opportunistic type’s

incentives to take action a∗1, which rules out equilibria in which the opportunistic type has a strict incentive

to erase a1 in period 0 and implies that player 1’s payoff in every equilibrium is no more than (1−δ)c
δ .

The short-run players’ welfare is arbitrarily close to πu2(a
∗
1, a

∗
2)+(1−π)u2(a1, a2) in every equilibrium.

This is because the probability of event Ek, defined before the statement of Lemma 3, is µ∗
kp

∗
k and satisfies

µ∗
kp

∗
k ≤ (1− δ)δ

k 1

1− δp
. (E.11)

This bound coincides with the one in Lemma 3 of the main text when p = 0. This can be shown using the

same induction argument as in the proof of Lemma 3 of the main text. Since t is bounded above by a linear

function of (1 − δ)−1, the average probability with which the opportunistic type takes action a∗1 is close to

0 when δ is close to 1 in every equilibrium.
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