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Abstract: A patient player interacts with a sequence of short-run players. The patient player is either an
honest type who always takes a commitment action and never erases any record, or an opportunistic type
who decides which action to take and whether to erase his action at a low cost. I show that in every equilib-
rium, the patient player will take the commitment action with positive probability until he has accumulated a
long enough good record, at which point he can secure a payoff that is strictly greater than his commitment
payoff. However, as long as the patient player is sufficiently long-lived, his equilibrium payoff must be
close to his minmax value. Although a tiny probability of opportunistic type can wipe out all of the patient
player’s returns from building reputations, it only has a negligible effect on the short-run players’ welfare.
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1 Introduction

In most of the existing works on repeated games and reputations, the lengths of players’ records are exoge-

nous. These include the models of Fudenberg and Maskin (1986) and Fudenberg and Levine (1989) where

players’ records contain the full history of play and the models of Liu and Skrzypacz (2014), Bhaskar and

Thomas (2019), Levine (2021), and Pei (2024a) where players’ record length is some bounded number.

However, in many situations, the lengths of players’ records are endogenous and are affected by their

strategic behaviors. To fix ideas, sellers in online platforms may bribe consumers for deleting negative re-

views, and may even threaten to sue them for defamation if the negative reviews are not removed.1 Through

these bribes and threats, the seller could affect the number of reviews future consumers observe.

This paper takes a first step to study reputation formation when players’ record lengths are endogenous.

I analyze a novel reputation model in which a long-lived player might be able to erase his past actions
*Department of Economics, Northwestern University. Email: harrydp@northwestern.edu. I thank Jeff Ely, Nina Fluegel,

Drew Fudenberg, Marina Halac, David Levine, Teddy Mekonnen, Ayça Kaya, Alessandro Pavan, Larry Samuelson, Ali Shourideh,
Andrzej Skrzypacz, Egor Starkov, Philipp Strack, Bruno Strulovici, Yiman Sun, Alex Wolitzky, and Yutong Zhang for helpful
comments. I thank the NSF Grants SES-1947021 and SES-2337566 as well as the Cowles Foundation for financial support.

1According to Section 5 in Tadelis (2016), the lack of negative reviews due to seller reciprocity, retaliation, and harassment has
caused significant biases in online reviews. A 2019 report in CNBC documents that many consumers who left negative reviews on
Yelp were sued by firms in SLAPP lawsuits. Reports from CNET and the Guardian document that in the US and the UK, many
Amazon sellers bribe consumers for deleting negative reviews. Bolton, Greiner, and Ockenfels (2013) provide empirical evidence
for seller reciprocity and retaliation, making it more costly for buyers to post negative reviews than posting positive ones. Nosko
and Tadelis (2015) document that only 0.07% of the reviews on eBay are negative despite a much larger fraction of the consumers
complained to consumer service. Cai, et al (2014) and Tadelis (2016) report similar findings on EachNet and Airbnb.
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from his records. The main takeaway is that when a player is patient, the possibility that he can erase

records cannot eliminate his incentives to build reputations. However, it can wipe out all of his returns from

building reputations even when his opponents only assign a low probability to types who can erase records.

I study a repeated game between a long-run player (e.g., a seller) and a sequence of short-run players

(e.g., consumers). The long-run player discounts future payoffs and exits the game with some exogenous

probability after each period. Players’ stage-game payoffs are monotone-supermodular. The product choice

game in Mailath and Samuelson (2001) satisfies my assumption, which I use to illustrate my results:

seller \ consumer Large Quantity Small Quantity

Good Products 1, 1 −g, x

Bad Products 1 + g,−x 0, 0

with g > 0 and x ∈ (0, 1).

By the end of each period, the seller can erase his action in that period at a positive cost c.2 I focus on the

case where the cost of erasing an action c is strictly lower than the cost of supplying good products g.3

The seller has persistent private information about his type: He is either an honest type who always

supplies good products and never erases any action, or an opportunistic type who decides which products

to supply and whether to erase his actions in order to maximize his payoff. Each consumer can observe

the seller’s unerased actions (i.e., the seller’s record) but cannot observe how many actions were erased.

Consistent with the literature on reputation effects with limited memories such as Liu and Skrzypacz (2014),

the consumers cannot directly observe the seller’s age in the game, or equivalently calendar time.4 They

have a prior belief about the seller’s age, which is determined by the seller’s exit rate. After observing the

seller’s record, the consumers update their beliefs about the seller’s age and type via Bayes rule.5

When there is no honest type, the opportunistic seller will always have a strict incentive to supply bad

products and will receive his minmax value 0 no matter how patient he is. However, as long as the honest

type occurs with positive probability, Theorem 1 shows that a patient opportunistic seller will supply good

products with positive probability for a long time until he has a sufficiently long good record at which point
2The seller in my model can only erase reviews but cannot modify the content of reviews. Arguably, it is harder to persuade

dissatisfied consumers to write positive reviews than to ask them to stay silent. My main result shows that reputation effects will
fail when sellers can manipulate their records, which is stronger when they can only erase reviews but cannot modify their content.

3I study the case where c > g in Online Appendix B. My assumption that c < g seems reasonable since the consumers’ losses
from their bad experiences are sunk, so they might be willing to remove their negative reviews in exchange for a small bribe or to
avoid a defamation lawsuit. The firms’ marginal costs of issuing giftcards and making legal threats seem to be reasonably low.

4Information about the seller’s age on the market is not available or cannot be easily obtained by consumers in online platforms
such as Yelp, Amazon, and TMall since they only display in a salient place the number of reviews each seller received, the number
times that he received each rating, together with some comments. Online Appendix E extends my results to settings where either
the consumers arrive stochastically or they post reviews with probability less than 1, in which cases the seller’s age on the market,
the number of consumers that he has interacted with, and the number of reviews that he has received may not be the same.

5The canonical reputation model in Fudenberg and Levine (1989) is consistent with my formulation. This is because when the
long-run player cannot erase any action, his age in the game (i.e., calendar time) equals the length of his record. In this case, the
short-run players will have a degenerate posterior belief about calendar time after they observe the long-run player’s record.
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his continuation value will be strictly greater than his commitment payoff 1. The intuition is that the seller

can signal his honesty via the length of his good record, and in every equilibrium, both the seller’s reputation

and the probability with which the consumers play L are increasing in the length of the seller’s good record.

Despite Theorem 1 shows that the seller can secure a high payoff after accumulating a long good record,

it does not imply that he will receive a high payoff in equilibrium. My main result, Theorem 2, shows that

as long as a patient seller is sufficiently long-lived, (i) his equilibrium payoff must be close to its minmax

value 0 and (ii) the consumers’ equilibrium welfare, measured by the expected sum of their payoffs, must

be close to that in an auxiliary complete information game where the seller’s type is common knowledge.

My result implies that the presence of a small fraction of opportunistic types who may supply bad

products and may erase records can wipe out all of the seller’s returns from building reputations. However,

it has little effect on consumer welfare. It also implies that when a seller promises to the consumers that he

will supply good products and will never erase any action, his benefit from such a promise will be seriously

compromised as long as the consumers entertain a grain of doubt about his willingness to honor his promise.

Intuitively, the seller’s returns from building reputations is wiped out by the conflict between two effects,

both of which are driven by his ability to erase records. First, the opportunistic seller can sustain his current

continuation value by supplying bad products and then erasing his action. Therefore, he has an incentive to

supply good products only when his continuation value increases fast enough with the length of his good

record. This leads to an upper bound on the maximal length of good record that the opportunistic type may

have, or equivalently, the minimal length of good record required for the seller to have a perfect reputation.

Second, the opportunistic type’s ability to erase records enables him to pool with a younger honest type.

According to Bayes rule, this will lower the seller’s reputation when he has a short good record, which leads

to a lower bound on the length of good record required for the seller to have a perfect reputation. This lower

bound increases in the seller’s expected lifespan since a decrease in the exit rate increases the likelihood

of the old opportunistic type relative to the young honest type. Once this lower bound on the length of

good record exceeds the upper bound implied by the need to provide the opportunistic type incentives, the

opportunistic type has to separate from the honest type in the beginning of the game in order to boost his

initial reputation. If this is the case, then the opportunistic type’s equilibrium payoff must be close to his

minmax value since his continuation value after separating from the honest type equals his minmax value.

In terms of consumer welfare, although the opportunistic type will play G with probability bounded

above 0 at some histories, I show that when the seller is sufficiently long-lived, such histories must occur

with probability close to 0. An implication of this observation is that the average probability with which the

opportunistic-type seller plays G vanishes to zero as his expected lifespan goes to infinity. Hence, in every
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equilibrium of the incomplete information game, consumers’ welfare must be close to that in an auxiliary

complete information game where the seller’s type is known and the opportunistic type never plays G.

This paper contributes to the reputation literature by taking a first step to analyze reputation formation

when players’ record lengths are endogenous and are determined by their strategic behaviors. It stands in

contrast to Ekmekci (2011), Vong (2022), Kovbasyuk and Spagnolo (2023), and Wong (2023) which study

games where the record systems are designed by social planners who can commit, Liu (2011) which studies

a reputation model where the uninformed players decide how much information to acquire about the game’s

history, as well as Ekmekci, Gorno, Maestri, Sun and Wei (2022) and Saeedi and Shourideh (2023) in which

a long-run player can manipulate the content of the public signals rather than the length of his records.

My reputation model has several merits relative to some of the existing ones. First, it leads to sharp

predictions not only on the long-run player’s equilibrium payoff, but also on players’ behaviors and the

short-run players’ welfare. In contrast, the results in Fudenberg and Levine (1989) and many follow-up

results focus exclusively on the long-run player’s equilibrium payoff but cannot deliver sharp predictions on

players’ behaviors and the short-run players’ welfare. The details are explained in Li and Pei (2021).

Second, the predictions of my reputation model fit some of the empirical findings in online marketplaces.

For example, Livingston (2005) finds that sellers’ sales on eBay depend mostly on the lengths of their good

records. Nosko and Tadelis (2015) document that 99.3% of the reviews on eBay are positive despite a much

larger fraction of consumers are dissatisfied and complained to customer service. These findings match the

predictions of my model that when the seller’s cost of erasing actions is low, (i) consumers trust the seller

with higher probability when the latter has a longer good record and (ii) the number of negative reviews

is much smaller than the number of times that the consumers are dissatisfied (i.e., the seller supplied low

quality). Meanwhile, in Fudenberg and Levine (1989), the relationship between the consumers’ actions and

the length of the seller’s record is not necessarily monotone. In Liu and Skrzypacz (2014), the consumers’

actions depend only on the timing of the latest bad review rather than on the number of good reviews.

Third, my results suggest that when a long-run player’s record length is endogenous, the equilibrium

outcomes depend not only on his effective discount factor, but also on whether it results from his time

preference or his survival probability. This novel feature stands in contrast to Fudenberg and Levine (1989)

and existing reputation models where calendar time (i.e., the long-run player’s age) is not observed such as

Liu (2011), Liu and Skrzypacz (2014), Levine (2021), and Pei (2024a) in which players’ time preferences

and their survival probabilities play the same role and there is no need to distinguish between the two.

My reputation failure result is related to Ely and Välimäki (2003) and Ely, Fudenberg and Levine (2008).

They focus on participation games in which the short-run players can shut down learning and show that the
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patient player will receive a low payoff when there are bad commitment types. In my model, the short-run

players cannot shut down learning and reputation failure is caused by the low rate of learning.6

My model can be interpreted as a continuum of sellers and consumers being randomly matched in each

period. Each consumer observes the record of the seller she is matched with, but the sellers cannot observe

the consumers’ records. This is related to community enforcement models with a continuum of players,

such as Takahashi (2010), Heller and Mohlin (2018), Bhaskar and Thomas (2019), and Clark, Fudenberg

and Wolitzky (2021).7 My contribution is to introduce endogenous record length to this literature.

In a follow-up work (Pei 2024b), I study a community enforcement model with complete information,

where all players are long-lived and each player can erase signals from his records. In contrast, the current

model has only one long-run player but allows for incomplete information about his type. The results in the

current paper shed light on the dynamics of players’ behaviors, which is not the case in Pei (2024b).

My work is also related to several recent papers on dynamic information censoring such as Smirnov and

Starkov (2022), Hauser (2023), and Sun (2024). Compared to their works, I highlight the roles of record

length and the informed player’s expected lifespan on the value of reputations. Unlike those papers in which

the uninformed player’s payoff depends only on the informed player’s type, the uninformed player’s payoff

in my model depends only on the informed player’s action. My formulation is standard in models of repeated

games and reputations, which fits markets where quality provision is subject to moral hazard.

The long-run player in my model decides whether to disclose each of his past actions but cannot fabricate

information. This is related to the literature on disclosing hard information pioneered by Grossman (1981),

Milgrom (1981), and Dye (1985). More closely related is Dziuda (2011) in which a sender has some pieces

of good evidence and bad evidence and chooses a subset of them to disclose. In contrast to her static model

in which the distribution of the evidence available to the sender is exogenous, my model is dynamic in which

the numbers of good and bad actions are endogenously determined by the long-run player’s behaviors.

2 The Baseline Model

Time is indexed by k = 0, 1, 2, ... A long-lived player 1 (e.g., seller) interacts with an infinite sequence of

short-lived player 2s (e.g., consumers), arriving one in each period and each plays the game only in the period

she arrives. In each period k ∈ N, players choose their actions a1,k ∈ A1 and a2,k ∈ A2 simultaneously

6The conclusion that delays are necessary for the patient player to signal his type also appears in repeated signaling games with
interdependent values where the receiver’s payoff depends directly on the sender’s type, such as Kaya (2009). In contrast, my
model has private values and costly delays are caused by the patient player’s ability to erase actions from his records.

7Sugaya and Wolitzky (2020) show that players’ equilibrium payoffs are arbitrarily close to their minmax values when there are
bad commitment types who always defect. However, their model has a finite number of players and focuses on symmetric stage
games with a pairwise dominant action (e.g., the prisoner’s dilemma). Both features stand in contrast to my model.
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from finite sets A1 and A2. Their stage-game payoffs are u1(a1,k, a2,k) and u2(a1,k, a2,k).

Unlike in existing reputation models where player 1’s time preference and survival probability play the

same role, their roles are different when record length is endogenous. In order to capture this new feature,

I distinguish between the two reasons for why player 1 discounts future payoffs. First, by the end of each

period, he exits the game for exogenous reasons with probability 1 − δ where δ ∈ (0, 1), after which the

game ends and both players receive zero payoffs. Second, conditional on surviving in period k + 1, he is

indifferent between δ̂ ∈ (0, 1) unit of utility in period k and 1 unit of utility in period k + 1. Therefore,

player 1 discounts future payoffs by δ ≡ δ · δ̂, which I call his effective discount factor. Player 1’s expected

lifespan is (1− δ)−1, which depends only on his survival probability δ but not on his time preference δ̂.

Player 1’s type is fixed over time and is denoted by ω. With probability π ∈ (0, 1), he is an honest

type ωh, who takes a fixed commitment action a∗1 ∈ A1 in every period and never erases any action. With

probability 1− π, he is an opportunistic type ωo, who can choose any action and by the end of each period

k (but before period k + 1) can decide whether to erase his period-k action a1,k at cost c > 0.8 I denote the

decision of whether to erase a1,k by ck ∈ {0, c}, where ck = c stands for a1,k being erased and vice versa.

Before choosing a1,k, player 1 observes his type ω ∈ {ωh, ωo} and the full history of the game

{a1,s, a2,s, cs}k−1
s=0 . Player 1 observes ω, {a1,s, a2,s, cs}k−1

s=0 , and (a1,k, a2,k) before choosing ck.

Each player 2 observes player 1’s unerased actions but cannot directly observe player 1’s type, the

number of actions player 1 erased, and the time at which each unerased action was taken. Formally, player

2’s period k history is {a1,τ0 , ..., a1,τm(k)
} where 0 ≤ τ0 < ... < τm(k) ≤ k − 1 such that for every

s ∈ {0, 1, ..., k − 1}, there exists i ∈ {0, 1, ...,m(k)} such that s = τi if and only if cs = 0. Let H denote

the set of player 2’s histories, or equivalently, player 1’s records. Let h denote a typical element of H. My

results extend to the case in which player 2 only observes the number of times that each a1 ∈ A1 occurred

in the sequence {a1,τ0 , ..., a1,τm(k)
}, that is, the summary statistics of player 1’s unerased actions.

I also assume that the short-run players cannot directly observe the long-run player’s age in the game, or

equivalently, calendar time. This assumption is common in reputation models with limited memories such

as Liu (2011), Liu and Skrzypacz (2014), Levine (2021), and Pei (2024a). It is consistent with the context

that motivates my study, namely, the consumers may not know the extent to which the seller has erased his

records. It seems reasonable on platforms such as Yelp, Amazon, and TMall, which show the number of

each rating the seller has received but do not display in a salient place the seller’s time on the market.

As in Liu and Skrzypacz (2014), the short-run players have a prior belief about player 1’s age and type,

which is their belief after knowing that the game has not ended but before they observe their history. After
8All my results except for Proposition 6 extend to the case where the cost of erasing actions is 0. In my baseline model, the

opportunistic type cannot erase actions taken in previous periods. I will discuss this modeling assumption in Section 4.
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they observe their history, they update their belief about player 1’s age and type using Bayes rule.9

Recall that the short-run player’s prior belief assigns probability π to the honest type, which might be

different from her posterior belief after she observes that the long-run player has no action in his record. The

probability that her posterior belief at h ∈ H assigns to the honest type is called player 1’s reputation at h.

In terms of the short-run player’s prior belief about the long-run player’s age, recall that the long-run

player exits the game with probability 1 − δ after each period. Therefore, the probability that the short-run

player’s prior belief assigns to the long-run player’s age being k+1 should equal δ times the probability that

her prior belief assigns to the long-run player’s age being k. The unique prior that satisfies this condition for

every k ∈ N is the one that assigns probability (1− δ)δ
k

to the long-run player’s age being k.10

The opportunistic type’s strategy σ1 and the short-run player’s strategy σ2 are mappings from their

histories to their mixed actions, and for the opportunistic type, it also includes the probability with which he

erases each of his actions. Let H(σ1, σ2) ⊂ H denote the set of player 2’s histories that occur with positive

probability when (i) the honest type always plays a∗1 and never erases any action, (ii) the opportunistic type

uses strategy σ1, and (iii) player 2 uses strategy σ2. I call H(σ1, σ2) the set of on-path histories.

A Nash equilibrium is a strategy profile (σ1, σ2) such that (i) σ1 maximizes the opportunistic type’s

discounted average payoff
∑+∞

k=0(1− δ)δk{u1(a1,k, a2,k)− ck} against σ2 and (ii) at every on-path history,

σ2 maximizes player 2’s stage-game payoff against σ1. To simplify the description of players’ equilib-

rium behaviors, I examine the common properties of all public equilibria (hereafter, equilibria), which are

Nash equilibria such that the opportunistic type’s strategy is measurable with respect to player 2’s history,

or equivalently, the history that both players observe. Focusing on public equilibria is common in reputa-

tion models with limited memories or with incomplete records, see for example, Liu (2011) and Liu and

Skrzypacz (2014). In fact, I show that restricting attention to public equilibria is without loss of generality:

Lemma 1. For any Nash equilibrium (σ1, σ2), there exists a public equilibrium (σ∗1, σ2) such that

(i) H(σ1, σ2) = H(σ∗1, σ2), (ii) at every h ∈ H(σ1, σ2), player 2’s beliefs about player 1’s behavior

and type at h are the same under (σ1, σ2) and under (σ∗1, σ2), and (iii) the expected values of
∑+∞

k=0(1 −

δ)δk
{
u1(a1,k, a2,k)− ck

}
and

∑+∞
k=0 δ

k
u2(a1,k, a2,k) are the same under (σ1, σ2) and under (σ∗1, σ2).

The proof is in Online Appendix A. In that appendix, I also establish a state distribution lemma (Page

2), which applies to all Nash equilibria and will be used not only in the proof of Lemma 1 but also in the

proofs of other results in this paper. Lemma 1 implies that focusing on public equilibria is without loss of
9The short-run players’ posterior belief about player 1’s age and type will depend on players’ equilibrium strategies. Fudenberg

and Levine (1989)’s model is also consistent with my formulation, since after observing the long-run player’s record, which consists
of the entire sequence of his actions, the short-run players’ posterior belief will assign probability 1 to the true calendar time.

10Hu (2020) provides a foundation for this exponential prior belief about the long-run player’s age by examining a game in which
the short-run players face uncertainty about the entry process and establishing the equivalence between these two models.
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generality in the sense that for any Nash equilibrium, there exists an equivalent public equilibrium such that

the opportunistic type’s discounted average payoff, the short-run players’ strategy, their beliefs about player

1’s behavior and type at every on-path history, and the sum of their expected payoffs (taking into account

the fact that the game ends with probability 1− δ after each period) remain the same. Therefore, as long as

some properties on player 1’s equilibrium payoff, player 1’s reputation, the sum of player 2’s payoffs, and

player 2’s behavior apply to all public equilibria, they must also apply to all Nash equilibria.

Next, I introduce three assumptions on (u1, u2). I start from a standard monotone-supermodularity

assumption, which is also satisfied in Mailath and Samuelson (2001), Ekmekci (2011), and Liu (2011).

Assumption 1. There exist a complete order ≿1 on A1 and a complete order ≿2 on A2 such that

u1(a1, a2) is strictly decreasing in a1 and is strictly increasing in a2, and u2 satisfies strictly increasing

differences, i.e., u2(a1, a2)− u2(ã1, a2) > u2(a1, ã2)− u2(ã1, ã2) for every a1 ≻1 ã1 and a2 ≻2 ã2.11

The product choice game in the introduction satisfies Assumption 1 once the row player’s actions are

ranked according to G ≻1 B and the column player’s actions are ranked according to L ≻2 S.

Let a1 denote the lowest action in A1, which by Assumption 1, is strictly dominant in the stage game.

Let a2 denote player 2’s lowest best reply to a1. Under Assumption 1, u1(a1, a2) is player 1’s minmax value

in the sense of Fudenberg, et al (1990), which requires player 2 to play a best reply to some α1 ∈ ∆(A1).

I normalize players’ stage-game payoffs so that u1(a1, a2) = u2(a1, a2) ≡ 0. Let a∗2 denote player 2’s

highest best reply to a∗1. I focus on the interesting case in which player 1’s commitment payoff u1(a∗1, a
∗
2) is

strictly greater than his minmax value 0. Otherwise, player 1 will have no incentive to build reputations.

Assumption 2. u1(a∗1, a∗2) > u1(a1, a2) ≡ 0.

In order to simply the analysis, I also make an assumption that is generically satisfied.

Assumption 3. For every i ∈ {1, 2} and a−i ∈ A−i, player i has a strict best reply to a−i. For every

a2 ∈ A2 and λ ∈ [0, 1], if a2 best replies to player 1’s mixed action λa∗1 + (1 − λ)a1, then there exists

λ̃ ∈ [0, 1]\{λ} such that a2 also best replies to mixed action λ̃a∗1 + (1− λ̃)a1.

The first part of Assumption 3 requires each player to have a strict best reply to each of their opponent’s

pure actions. This assumption is generically satisfied sinceA1 andA2 are finite sets. Under this assumption,

a2 is the unique best reply to a1 and a∗2 is the unique best reply to a∗1. This part of Assumption 3 together

with Assumptions 1 and 2 implies that a∗1 ≻1 a1 and a∗2 ≻2 a2. The second part of Assumption 3 rules

11Strict orders on A1 and A2, ≻1 and ≻2, are defined naturally from ≿1 and ≿2. Abusing notation, for every β, β′ ∈ ∆(A2), I
use β ≿2 β′ to denote β first-order-stochastically dominates β′ under the order induced by ≿2 and similarly for β ≻2 β′.
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out player 2’s action that only best replies to one mixture between a∗1 and a1. It allows some of player 2’s

actions to be strictly dominated and also allows some actions to best reply to an open set of mixtures. Let

B ≡
{
β ∈ ∆(A2)

∣∣∣β best replies to λa∗1 + (1− λ)a1 for some λ ∈ [0, 1]
}
, (2.1)

which is the set of player 2’s mixed actions that best reply to some mixtures between a∗1 and a1. Lemma

2 shows that under my assumptions, each pair of player 2’s mixed actions in B can be ranked according to

FOSD and that one can generate a rich set of payoffs for player 1 by varying player 2’s actions in B.

Lemma 2. Suppose (u1, u2) satisfies Assumptions 1, 2, and 3. The set of elements in B can be com-

pletely ranked according to FOSD, with a2 the lowest element and a∗2 the highest element. For every a1 ∈ A1

and v ∈ [u1(a1, a2), u1(a1, a
∗
2)], there exists a unique β ∈ B that satisfies u1(a1, β) = v.

Appendix A shows Lemma 2 and explains why the second part of Assumption 3 is generically satisfied.

Later, we will see that Lemma 2 implies that player 2’s mixed actions on the equilibrium path can be ranked.

Remark: An alternative interpretation of my model is that before the game starts, player 1 promises to

all the short-run players that he will always take action a∗1 and that he will never erase any action. Player 2

believes that player 1 will keep his promise with probability π. With probability 1− π, player 1 can renege

in the sense that he may take actions other than a∗1 and may also erase his actions. Whether player 1 can

renege is determined by a random draw in period 0 after he makes his promise and remains fixed throughout

the infinite horizon game.12 I will use this interpretation to discuss the implications of my theorems.

2.1 Discussions on the Modeling Assumptions

My baseline model assumes that a consumer will arrive in each period, in which case the honest type’s age

will coincide with the number of actions in his record. In Online Appendix E, I discuss extensions to settings

where the consumers either arrive stochastically or do not post reviews with positive probability. In these

cases, even the honest type’s age may not coincide with the number of actions in his record.

In my model, player 1 can erase actions from his records but cannot modify the content of his records.

This is motivated by an observation in Tadelis (2016) that most of the consumers post reviews because they

are intrinsically motivated to share their opinions, to reward sellers’ good behaviors and to punish bad ones,

or to provide future consumers useful information. If this is the case, then it seems more challenging for
12This form of imperfect promises is studied by Lipnowski, Ravid and Shishkin (2022) in a one-shot communication game. This

formulation has also been used in dynamic settings, such as in the reputational bargaining models of Kambe (1999) and Wolitzky
(2012), where a player first announces a bargaining posture and then becomes committed to it with positive probability.
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sellers to convince consumers to explicitly lie about their experiences than to ask them to stay silent. My

main result shows that sellers will receive low payoffs when they cannot commit not to manipulate their

records, which is stronger when they can only erase reviews but cannot modify the content of reviews.13

My baseline model focuses on the case in which (i) the short-run players’ best reply does not depend

on whether the long-run player will erase his action and (ii) the cost of erasing actions does not depend

on the action profile being played. In practice, if we interpret erasing actions as offering a partial refund

or a giftcard in exchange for deleting a review, then the consumers’ demands for refunds or giftcards may

depend on the quantity they purchased and on the seller’s action (e.g., the quality he supplies). My results

can be extended to cases where (i) each consumer’s best reply also depends on the probability with which

the seller erasing his action, and (ii) the seller’s cost of erasing actions depends on the actions being played.

My baseline model focuses on the case in which there is only one honest type and one opportunistic

type and assumes that the honest type cannot erase actions. Section 4 studies an extension where the honest

type mechanically takes action a∗1 in every period but can strategically decide whether to erase his action at

a strictly positive cost c > 0 in order to maximize his discounted average payoff. In Online Appendix D, I

study another extension where (i) there are multiple honest types taking different pure actions and (ii) there

are multiple opportunistic types with different stage-game payoffs and different costs of erasing actions.

My baseline model assumes that the short-run players cannot observe previous short-run players’ ac-

tions. This assumption is standard in reputation models with limited memories, which is also made in Liu

(2011), Liu and Skrzypacz (2014), and Pei (2024a). When a short-run player who arrives in period s > k

observes a1,k and a2,k, the realized a2,k is an informative signal about the time at which a1,k was taken,

leading to an intractable statistical inference problem. I leave the analysis of this case to future work.

My baseline model also assumes that the short-run players can perfectly observe the long-run player’s

unerased actions. This rules out situations in which they can only observe noisy signals about those actions.

Analyzing repeated games with incomplete information, imperfect monitoring, and limited observations

is challenging. This explains why most of the existing analysis on reputation games with finite record

lengths such as Liu (2011), Liu and Skrzypacz (2014), and Heller and Mohlin (2018) all focus on perfect

monitoring.14 The case with endogenous record length and imperfect monitoring is left for future work.
13If the opportunistic type can modify the content of his records at a low cost, e.g., he can change his record to a∗

1 when his
action was a1, then he will never play a∗

1 since doing so is strictly dominated by playing a1 and then modifying his record to a∗
1.

Compared to the predictions of my model that the seller will build a reputation, the prediction that the seller never supplies high
quality does not seem to match the stylized fact in Tadelis (2016) that online reviews motivate many sellers to supply high quality.

14Bhaskar and Thomas (2019) allow for imperfect monitoring, but they focus on a complete information game in which the
long-run player has only one type. Levine (2021) allows for imperfect monitoring but assumes that players’ record length is 1.
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3 Analysis

Section 3.1 shows that the patient player can secure his commitment payoff in all equilibria when he cannot

erase actions. This is also the case when his cost of erasing actions is high enough. My subsequent analysis

focuses on the case where the cost of erasing actions is low. Section 3.3 characterizes the dynamics of

players’ behaviors. Section 3.4 states a reputation failure result, which implies that when the patient player

is sufficiently long-lived, his payoff in every equilibrium must be close to his minmax value 0 even when the

honest type occurs with high probability. My analysis also pins down the short-run players’ welfare.

3.1 Benchmark: The Opportunistic Type Cannot Erase Actions

I start from a benchmark scenario in which player 1 cannot erase any action. Since A1 and A2 are finite sets

and a∗2 is a strict best reply to a∗1, there exists a constant γ ∈ (0, 1) that depends only on (u1, u2) such that

that a∗2 is a strict best reply to any mixed action of player 1’s that assigns probability at least γ to a∗1.

Proposition 1. If player 1 cannot erase actions and (u1, u2) satisfies Assumptions 1, 2, and 3, then

player 1’s payoff in every equilibrium is at least u1(a∗1, a
∗
2)− (1− δ

log π
log γ )

(
u1(a

∗
1, a

∗
2)− u1(a

∗
1, a2)

)
.

The proof of Proposition 1 is in Online Appendix B, which follows from Fudenberg and Levine (1989).

Intuitively, when the opportunistic type deviates to playing a∗1 in every period, either player 2 has a strict

incentive to play a∗2, or she believes that a∗1 will be played with probability less than γ in which case after

observing a∗1, her posterior belief about the honest type will be multiplied by at least 1/γ. Therefore, in

periods where player 2 does not play a∗2, player 1’s reputation grows at an exponential rate, so there can be

at most log π/ log γ such periods. This leads to a lower bound on player 1’s discounted average payoff under

such a deviation and his equilibrium payoff must be weakly greater than his payoff under any deviation.

Proposition 1 implies that when player 1 cannot erase actions, as long as the effective discount factor δ

exceeds some cutoff δ∗, his equilibrium payoff is bounded below by something ε-close to his commitment

payoff u1(a∗1, a
∗
2). In Online Appendix B, I extend this conclusion to settings where the cost of erasing

actions c is greater than some cutoff, in which I also show that player 1 will never erase any action on the

equilibrium path. In the product choice game, the cutoff cost equals the cost g of supplying good products.

Importantly, the payoff lower bounds in these results depend on δ̂ and δ only through their product δ ≡ δ · δ̂.

3.2 The Threshold Cost of Erasing Actions

Motivated by the benchmark result in Section 3.1, my subsequent analysis focuses on settings where the cost

of erasing actions c is lower than the cost of supplying good products g. This restriction seems reasonable
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since consumers’ losses from their bad experiences are sunk,15 so they might be willing to remove their

negative reviews in exchange for a small bribe, or to avoid a defamation lawsuit. From the firm’s perspective,

the marginal costs of paying bribes (e.g., issuing giftcards) and making legal threats are usually not that high.

In order to define the threshold cost of erasing actions more generally, let a′1 denote the lowest action in

A1 such that a2 does not best reply to a′1. Since a2 best replies to a1, Assumption 1 implies that a′1 ≻1 a1.

Assumption 2 requires that u1(a∗1, a
∗
2) > u1(a1, a2), which implies that a∗2 ≻2 a2 and a∗1 ⪰1 a

′
1.

Assumption 4. The cost of erasing actions c satisfies c < c ≡ mina2∈A2

{
u1(a1, a2)− u1(a

′
1, a2)

}
.16

Assumption 4 requires c to be less than c, which is defined as the lowest cost that player 1 needs to

incur in order to increase his action from a1 to a′1. In the product choice game, c = g. Since a∗1 ⪰1 a
′
1 and

u1(a1, a2) is strictly decreasing in a1, Assumption 4 implies that c is lower than the cost of playing a∗1.

3.3 The Dynamics of Players’ Behaviors

In this section, I characterize players’ equilibrium behaviors when the opportunistic type’s cost of erasing

actions is strictly less than c. I start from a result which implies that players will have strict incentives to

play the minmax action profile (a1, a2) after player 1 is revealed to be the opportunistic type.

Proposition 2. Suppose π = 0 and (u1, u2, c) satisfies Assumptions 1, 2, 3, and 4. In every equilibrium

(σ1, σ2) and at every on-path history h ∈ H(σ1, σ2), players have strict incentives to play a1 and a2.

Intuitively, even after his opponents rule out the honest type, it is not obvious why player 1 has no

incentive to take actions above a1 since he could be rewarded or punished based on the number of high

actions he took, which cannot be fabricated. I show that this logic breaks down in absence of the honest

type since the opportunistic type has no incentive to take high actions at histories where his continuation

value is close to its maximum. Anticipating this, the short-run players strictly prefer a2 at such histories,

which implies that they will have no incentive to reward the opportunistic type when the latter is supposed to

receive a high continuation value. The incentive to take high actions disappears due to the lack of rewards.

Proof of Proposition 2: Fix any equilibrium (σ1, σ2). Since the opportunistic type’s continuation value

depends only on player 2’s history h ∈ H, I use V (h) to denote player 1’s continuation value at h. Let

15An interpretation is that the seller decides whether to supply high quality experienced goods and the consumers decide how
much to purchase without knowing product quality. The consumers can observe the seller’s action, i.e., quality, after purchase.
Then they post a review that honestly reflects the seller’s action. The seller then decides whether to erase that review at cost c.

16Even when player 1 has a continuum of actions, the threshold cost of erasing actions c is also strictly bounded above 0. As
a concrete example, suppose a seller chooses his effort from the unit interval [0, 1] and the consumers have an incentive trust him
only when his expected effort is more than x ∈ (0, 1), then c equals the seller’s minimal cost of exerting effort x.
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V ≡ suph∈H(σ1,σ2) V (h). Suppose by way of contradiction that V > 0. The definition of V implies that

for every ε that satisfies

0 < ε < min
{V
2
,
(1− δ)(c− c)

δ

}
, (3.1)

there exists h ∈ H(σ1, σ2) such that V (h) > V − ε. I examine the opportunistic type’s incentive at such

a history h. His payoff from playing a1 and then erasing it is at least (1 − δ)(u1(a1, β(h)) − c) + δV (h),

where β(h) ∈ ∆(A2) is player 2’s equilibrium action at h. His payoff from playing any a1 ≿1 a
′
1 is at most

(1 − δ)u1(a1, β(h)) + δV , which is strictly less than (1 − δ)(u1(a1, β(h)) − c) + δV (h) given that c < c

and ε satisfies (3.1). This comparison implies that player 1 has no incentive to play any a1 ≿1 a
′
1 at h. Since

π = 0, the definition of a′1 implies that player 2 has a strict incentive to play a2 at h. Therefore,

V − ε < V (h) ≤ (1− δ)u1(a1, a2) + δV = δV ,

which implies that V − ε
1−δ < 0 for every ε that satisfies (3.1). Hence, V ≤ 0. Since the opportunistic type’s

minmax value is u1(a1, a2) ≡ 0, his continuation value is always 0. Since u1(a1, a2) is strictly decreasing

in a1, player 1 strictly prefers to play a1 and in response, player 2 strictly prefers to play a2.

Next, I examine the case where the honest type occurs with positive probability. A useful observation

is that player 1 will never take any action other than a∗1 and a1 with positive probability. This is because if

in equilibrium, he takes any action a1 /∈ {a∗1, a1} with positive probability and does not erase it afterwards,

then he will be separated from the honest type and Proposition 2 implies that his continuation value will be

0. In order to obtain a strictly positive continuation value after taking action a1, he needs to erase a1. But

taking action a1 and then erasing it is strictly dominated by taking action a1 and then erasing it, since they

lead to the same history for player 2 in the next period but the latter results in a higher stage-game payoff.

Since player 1 only takes a∗1 and a1 with positive probability, player 2’s action at every h2 ∈ H(σ1, σ2)

belongs to B defined in (2.1). Let hk∗ denote player 2’s history where she observes k actions, all of which

are a∗1. Let H∗ ≡
{
hk∗

∣∣k ≥ 0
}

denote the set of hk∗ . Let βk ∈ ∆(A2) denote player 2’s action at hk∗ . Let

πk ∈ [0, 1] denote player 1’s reputation at hk∗ . Theorem 1 characterizes some common properties of players’

behaviors and reputations, which apply to all equilibria under all π ∈ (0, 1), δ̂ ∈ (0, 1), and δ ∈ (0, 1).

Theorem 1. Fix any π > 0 and (u1, u2, c) that satisfies Assumptions 1, 2, 3, and 4. In every equilibrium,

there exist two cutoffs for player 1’s record length t0 ∈ N and t ∈ N with 0 ≤ t0 ≤ t such that:

1. The opportunistic type mixes between a∗1 and a1 at h if and only if h = hk∗ for some k < t, and at other

on-path histories, he plays a1 for sure. For every k ≤ t, πk < 1. For every k ≥ t + 1, βk = a∗2 and
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πk = 1. The opportunistic type’s continuation value at ht+1
∗ is max{u1(a1, a∗2)−c, (1−δ)u1(a1, a∗2)}.

2. When k ≤ t, πk is strictly increasing in k and βk is strictly increasing in k in the sense of FOSD.

3. At history hk∗ , the opportunistic type never erases a1 if k < t0 and erases a1 for sure if t0 < k ≤ t.

He never erases a∗1 at any history and never erases any action at histories that do not belong to H∗.

According to Theorem 1, the opportunistic type’s equilibrium behavior is characterized by two cutoffs

t0 and t such that (i) he mixes between a∗1 and a1 if and only if his record length is less than t and does not

contain any action other than a∗1, and plays a1 for sure otherwise, (ii) he erases a1 if and only if his record

length is more than t0 and does not contain any action other than a∗1. Hence, the maximal length of good

record that the opportunistic type will have is t. By Bayes rule, player 1’s reputation equals 1 when the

length of his good record reaches t+ 1. If the opportunistic type has a good record of length at least t+ 1,

then his continuation value is max{u1(a1, a∗2)−c, (1−δ)u1(a1, a∗2)}, which under Assumption 4, is strictly

greater than his commitment payoff u1(a∗1, a
∗
2). In terms of the dynamics, as the length of player 1’s good

record increases, his reputation increases and player 2’s action increases in the sense of FOSD.

The behaviors described in Theorem 1 stand in contrast to the conclusion in Proposition 2, according

to which players have strict incentives to play a1 and a2 at every on-path history of every equilibrium.

Proposition 3 highlights this comparison even further by providing a uniform lower bound on the equilibrium

value of t, which is the maximal length of good record that the opportunistic type will have.

Proposition 3. Fix any π > 0 and (u1, u2, c) that satisfies Assumptions 1, 2, 3, and 4. There exists a

constant λ > 0 which is independent of δ̂ and δ such that t ≥ λ(1− δ)−1 − 1 in every equilibrium.

Proposition 3 suggests that in any equilibrium, the maximal length of good record that the opportunistic

type will have must be uniformly bounded below by an affine function of (1 − δ)−1. This lower bound

diverges to infinity as δ → 1. That is to say, as long as the opportunistic type has a high effective discount

factor δ, he has an incentive to build a reputation for a long time and will do so with positive probability.

The proofs are in Appendices B and C. The rest of this section offers an intuitive explanation for Theo-

rem 1. As in the benchmark without honest type, the opportunistic type has no incentive to play a∗1 at hwhen

his continuation value at h, denoted by V (h), is close to his highest continuation value V . However, player

2 might still be willing to take actions strictly greater than a2 even when they know that the opportunistic

type will play a1 for sure, since their posterior belief may assign a high probability to the honest type. Their

willingness to reward player 1 with high reputations provides the opportunistic type an incentive to build a

reputation via accumulating a long record of a∗1, until his continuation value becomes close to V .
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Since the opportunistic type has the option to play a1 and then erase it at a low cost, he has an incentive

to take the commitment action a∗1 only if a longer good record results in a higher continuation value. Since

u1(a1, a2) increases in a2, a higher continuation value for the long-run player translates into a higher action

for the short-run players. When opportunistic type decides whether to erase action a1, he trades off the

benefit from doing so (which is to sustain his current continuation value) and its cost. As a result, he has a

stronger incentive to erase actions when his continuation value is higher,17 or equivalently, when he has a

longer good record. The long-run player’s reputation is strictly increasing in the length of his good record

since the honest type takes the commitment action with probability 1 while the opportunistic type does so

with probability less than 1. That is to say, a longer good record signals the long-run player’s honesty.

3.4 The Long-Lived Player’s Equilibrium Payoff & The Short-Run Players’ Welfare

Although Theorem 1 implies that the opportunistic type of the patient player can secure a payoff that is

strictly greater than his commitment payoff after he accumulates a long enough good record, it remains

silent about the patient player’s equilibrium payoff and the short-run players’ welfare. This is because it

does not characterize the time it takes for the opportunistic type to secure the high continuation value.

Theorem 2 characterizes the opportunistic type’s equilibrium payoff and the short-run players’ welfare

when the patient player is sufficiently long-lived. Recall that δ̂ stands for player 1’s time preference, δ stands

for his survival probability, and that stage-game payoffs are normalized so that u1(a1, a2) = u2(a1, a2) = 0.

Theorem 2. Suppose (u1, u2, c) satisfies Assumptions 1, 2, 3, and 4. For every π ∈ (0, 1), δ̂ ∈ (0, 1),

and ε > 0, there exists δ∗ ∈ (0, 1) such that when δ ∈ (δ∗, 1), in every equilibrium:

1. The opportunistic type’s discounted average payoff is no more than (1− δ)c/δ.

2. Under an additional assumption that u2(a1, a2) is weakly increasing in a1, player 2’s welfare, mea-

sured by U2 ≡
∑+∞

k=0(1− δ)δ
k
u2(a1,k, a2,k), belongs to an ε-neighborhood of πu2(a∗1, a

∗
2).

Theorem 2 implies that even when player 1 has a high effective discount factor δ and is likely to be

the honest type, as long as he is sufficiently long-lived, his payoff in every equilibrium must be close to

his minmax value 0. When the two types share the same stage-game payoff function, the honest type’s

payoff is also no more than (1 − δ)c/δ since the opportunistic type can imitate the honest type. Under the

interpretation that a sufficiently long-lived player promises to his opponents that he will always play a∗1 and

will never erase any action, although he can obtain his commitment payoff u1(a∗1, a
∗
2) when his opponents

17A similar intuition appears in the bad news model of Board and Meyer-ter-Vehn (2013), in which an agent has stronger
incentives to exert costly effort when his continuation value is higher.
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fully believe in his promise (i.e., π = 1), his benefit from such a promise is wiped out almost entirely when

his opponents entertain a grain of doubt about his willingness to honor his promise (i.e., π < 1).

My conclusion stands in contrast to the result in Fudenberg and Levine (1989, or Proposition 1 in the

current paper) which shows that when player 1 cannot erase actions and his effective discount factor δ is

above some cutoff, his payoff in every equilibrium must be bounded below by something ε-close to his

commitment payoff u1(a∗1, a
∗
2). However, when player 1 can erase actions, his equilibrium payoff is close

to his minmax value 0 even if his effective discount factor δ ≡ δ̂ · δ is arbitrarily close to 1, which is the case

when his time preference δ̂ is fixed to be something close to 1 and his survival probability δ converges to 1.

This comparison highlights how endogenous record length affects the long-run player’s equilibrium payoff.

In Section 4, instead of assuming that the survival probability δ goes to 1 at a faster rate than the time

preference δ̂, I consider the opposite case where δ̂ goes to 1 at a faster rate than δ, or even δ̂ = 1. Proposition

4 shows that the long-run player’s payoff is no more than (1−δ)c
δ when the probability of the honest type π

is below some cutoff, which implies that Theorem 2 partially extends to the case where δ̂ is much closer to

1 relative to δ. Proposition 5 shows that for any payoff v < u1(a1, a
∗
2) − c, there exist equilibria in which

the opportunistic type’s discounted average payoff is more than v as long as π is above some cutoff. The

comparison between this result and Theorem 2 highlights the distinction between players’ time preference

and survival probability in determining the game’s equilibrium outcomes: Fix a large enough π, player 1’s

equilibrium payoffs when δ goes to 1 faster than δ̂ are different from those when δ̂ goes to 1 faster than δ.

This stands in contrast to the canonical reputation models such as the one in Fudenberg and Levine (1989)

where the time preference and the survival probability play the same role. It also justifies my modeling

choice of distinguishing between the two reasons for why the long-run player discounts future payoffs.

If in addition that u2(a1, a2) is weakly increasing in a1, which translates into the consumers’ payoff

increases in the seller’s effort, then Theorem 2 also leads to a sharp prediction on the short-run players’

welfare. In particular, the sum of their equilibrium payoffs in the incomplete information game must be

arbitrarily close to that in an auxiliary complete information game where they can observe player 1’s type.18

This implies that although a tiny probability of opportunistic type can wipe out all of the long-lived player’s

returns from building reputations, it only has a negligible effect on the short-run players’ welfare.

Nevertheless, my result evaluates the short-run players’ welfare via the expected sum of their payoffs.

Under this criteria, conditional on the game will continue to the next period, the planner who evaluates

welfare does not value the current player’s payoff more than the next one’s. However, consumer welfare
18The additional assumption is not needed to show that player 2’s welfare is at most πu2(a

∗
1, a

∗
2) + ε but is needed to show that

player 2’s welfare is at least πu2(a
∗
1, a

∗
2)− ε. This is because Assumption 1 only requires u2 to be supermodular but does not say

anything about player 2’s preference over player 1’s actions, so there is no guarantee that u2(a1, a2) is less than u2(a
∗
1, a2).
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can be low once it is evaluated by a planner who weights the current consumer’s payoff much more than the

ones in the future. To see this, take the product choice game example and recall the definition of t in the

statement of Theorem 1. In equilibrium, the first t consumers find it optimal to play S, from which their

payoff is no more than x ∈ (0, 1). Since Proposition 3 implies that t is bounded below by an affine function

of (1− δ)−1, we know that even when the seller is the honest type with probability close to 1, there will be

a large number of consumers whose payoffs are bounded below their first-best level 1 (in fact, less than x).

The proof of Theorem 2 is in Sections 3.5 and 3.6. Intuitively, the opportunistic type receives a low

payoff due to the conflict between two forces that are driven by his ability to erase records: (i) the need to

motivate him to take the commitment action and (ii) the time it takes for him to establish a reputation.

First, the opportunistic type has an incentive to take the commitment action a∗1 only when a longer good

record increases his continuation value by at least something proportional to 1 − δ. This is because he has

the option to play a1 and then erase it, by which he can sustain his current continuation value. The need to

motivate him to accumulate longer good records leads to an upper bound on the maximal length of good

record that he may have in any equilibrium and this upper bound is proportional to (1− δ)−1.

Second, the opportunistic type’s ability to erase records enables him to pool with a younger honest type.

According to Bayes rule, this will lower player 1’s reputation when he has a short good record, which will in

turn increase the length of good record required for him to have a perfect reputation. An increase in player

1’s survival probability will further increase the length of good record required for a perfect reputation since

it increases the likelihood of the old opportunistic type relative to the young honest type.

The key step of my proof is to show that as the length of player 1’s good record increases by 1, his

reputation increases by at most 1 − δ. This finding is consistent with my intuition that it takes longer for

player 1 to establish a reputation when his expected lifespan increases. The speed of reputation building

in my model stands in contrast to models where player 1 cannot erase records (e.g., Fudenberg and Levine

1989), in which case player 1’s reputation grows exponentially in periods where his opponents refuse to play

a∗2. Since player 1’s reputation reaches 1 once the length of his good record reaches t+ 1, the upper bound

on the speed of reputation building leads to a lower bound on t, which is an affine function of (1− δ)−1.

Once we fix player 1’s time preference δ̂ and let his survival probability δ go to 1, the ratio between 1−δ

and 1 − δ goes to 0. The opportunistic type must separate from the honest type with positive probability

at time 0 in order to boost his initial reputation (i.e., his reputation at the null history h0∗). This is because

otherwise, the lower bound on t implied by the speed of reputation building will exceed the upper bound

on t implied by the need to provide the opportunistic type incentives. The opportunistic type’s equilibrium

payoff must be close to his minmax value 0 since separating from the honest type at time 0 is optimal for

17



him and by Proposition 2, his continuation value after separation equals his minmax value 0.

As for the second part, it is not obvious why consumer welfare is arbitrarily close to their welfare under

complete information. This is because first, by Proposition 3, the opportunistic type will play a∗1 with

probability bounded above 0 in many periods and second, histories h0∗, ..., h
t−1
∗ may occur with very high

probability when player 1 is the opportunistic type due to his ability to erase past actions.

The key observation is that for any k ∈ N, it can never be the case that history hk∗ occurs with a high

probability and the opportunistic type plays a∗1 at hk∗ with a high probability. In fact, I show that either the

probability of history hk∗ or the probability that the opportunistic type plays a∗1 at hk∗ is at most proportional

to 1 − δ. I formally state this observation as Lemma 3, with proof in Section 3.5. Intuitively, when the

opportunistic type cannot erase actions, hk∗ occurs with probability (1− δ)δ
k
, which vanishes to 0 as player

1 becomes infinitely long-lived. Similarly, hk∗ also occurs with a low probability when the opportunistic type

erases actions at hk∗ with a low probability, which is the case when he takes action a∗1 with a high probability.

The above observation together with my earlier conclusion that t is bounded above by a linear function

of (1 − δ)−1 implies that when player 1’s time preference is fixed but his expected lifespan diverges to

infinity, the average probability with which the opportunistic type plays a∗1 vanishes to 0. This upper bound

on the average probability of playing a∗1 leads to the conclusion in the second part of Theorem 2.

3.5 Proof of Theorem 2: Part 1

Let βk ∈ ∆(A2) denote player 2’s action at hk∗ . The opportunistic type prefers to erase a1 at hk∗ if and only

if:

u1(a1, βk)− c︸ ︷︷ ︸
player 1’s payoff from playing a1 in every period and then erasing it

≥ (1− δ)u1(a1, βk)︸ ︷︷ ︸
player 1’s payoff from playing a1 and not erasing it

,

or equivalently,

u1(a1, βk) ≥ c/δ. (3.2)

Fix any equilibrium (σ1, σ2) in which the opportunistic type does not have a strict incentive to erase a1

after taking it at h0∗. I show that the opportunistic type’s payoff under (σ1, σ2) is no more than (1 − δ)c/δ.

This is because if the opportunistic type finds it weakly optimal not to erase a1 at h0∗, then (3.2) implies that

u1(a1, β0) ≤ c/δ. According to Proposition 2, his continuation value after he plays a1 (and does not erase

it) is 0. As a result, his equilibrium payoff equals (1− δ)u1(a1, β0), which is no more than (1− δ)c/δ.

Next, suppose by way of contradiction that for every δ∗ ∈ (0, 1), there exist δ ∈ (δ∗, 1) and an equilib-

rium (σ1, σ2) under (u1, u2, c, π, δ̂, δ) such that the opportunistic type has a strict incentive to erase a1 after

taking it at h0∗. Part 1 of Theorem 2 is established once I find a contradiction and rule out such equilibria.
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Step 1: I use the opportunistic type’s incentive to take action a∗1 to derive an upper bound on the maximal

length of good record that the opportunistic type may have in any equilibrium, which is denoted by t.

The definition of t implies that for every k < t, the opportunistic type plays a∗1 with strictly positive

probability at hk∗ . Let Vk denote the opportunistic type’s continuation value at hk∗ . If the opportunistic type

strictly prefers to erase a1 after taking it at h0∗, then by Theorem 1, he will erase a1 with probability 1 at

hk∗ for every k < t. This implies that at every hk∗ with k < t, the opportunistic type is indifferent between

playing a∗1 and playing a1 and then erasing it. This leads to the following expression for Vk:

Vk = u1(a1, βk)− c = (1− δ)u1(a
∗
1, βk) + δVk+1 for every k < t. (3.3)

Plugging Vk+1 = u1(a1, βk+1)− c into (3.3), we obtain that

u1(a1, βk+1)− u1(a1, βk) = (1− δ)
(
u1(a1, βk+1)− c− u1(a

∗
1, βk)

)
> (1− δ)

(
u1(a1, βk)− c− u1(a

∗
1, βk)

)
≥ (1− δ)(c− c), (3.4)

where the first inequality uses Assumption 1 and the conclusion in Theorem 1 that βk+1 FOSDs βk and the

second inequality uses Assumption 4. Since the opportunistic type’s continuation value is at most u1(a1, a
∗
2)

and is at least 0, we have

t ≤ T ≡ (1− δ)−1u1(a1, a
∗
2)

(c− c)
. (3.5)

Step 2: I use player 2’s incentives to derive a lower bound on t. For every k ≤ t − 1, let µ∗k denote the

probability of history hk∗ conditional on player 1 being the opportunistic type. Let q∗k denote the probability

that the opportunistic type plays a1 at hk∗ and then erases it. Let p∗k denote the probability with which the

opportunistic type plays a∗1 at hk∗ . Since the game ends with probability 1 − δ after each period, one can

apply the state distribution lemma on page 2 of Online Appendix A and obtain that

µ∗0 = (1− δ) + δµ∗0q
∗
0 and µ∗k = δ(µ∗k−1p

∗
k−1 + µ∗kq

∗
k) for every k ∈ {1, ..., t}. (3.6)

My hypothesis that the opportunistic type strictly prefers to erase action a1 after taking it at h0∗ implies that

q∗k = 1− p∗k for every k ∈ {0, ..., t}. Therefore, (3.6) implies that

µ∗0 =
1− δ

1− δ(1− p∗0)
and

µ∗k
µ∗k−1

=
δp∗k−1

1− δ(1− p∗k)
for every k ∈ {1, ..., t}. (3.7)
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Applying Bayes rule to player 1’s probability of being the honest type, we obtain that

πk
1− πk

=
π

1− π
· (1− δ)δ

k

µ∗k
⇒

µ∗k
µ∗k−1

= δ · 1− πk
πk

· πk−1

1− πk−1
. (3.8)

According to Theorem 1, πk−1 < πk for every k ≤ t. This together with (3.8) implies that µ∗k/µ
∗
k−1 ≤ δ.

Combining this upper bound on µ∗k/µ
∗
k−1 with its expression in (3.7), we obtain that

p∗k−1 ≤ (1− δ) + δp∗k ⇒ p∗k−1 − p∗k ≤ (1− δ)(1− p∗k) ≤ 1− δ. (3.9)

Since the opportunistic type plays a∗1 with zero probability at history ht∗, we have p∗t = 0. This implies that

t ≥ p∗0(1− δ)−1. (3.10)

I show that there exists p∗ ∈ (0, 1) such that p∗0 > p∗ for all δ ∈ (0, 1) that is greater than some cutoff.

Let xk denote the probability with which player 2’s belief at hk∗ assigns to player 1’s current-period action

being a∗1. According to Bayes rule, we have:

xk
1− xk

=
π(1− δ)δ

k
+ (1− π)µ∗kp

∗
k

(1− π)µ∗k(1− p∗k)
,

or equivalently,
π

1− π
(1− δ)δ

k
= µ∗k

{ xk
1− xk

(1− p∗k)− p∗k

}
= µ∗k

xk − p∗k
1− xk

. (3.11)

Take k = 0 in (3.11), replace µ∗0 with its expression in (3.7), and divide both sides by 1− δ, we have

π

1− π
=

1

1− δ(1− p∗0)
· x0 − p∗0
1− x0

. (3.12)

Recall the normalization that u1(a1, a2) = 0. The hypothesis that the opportunistic type strictly prefers to

erase a1 at h0∗ implies that u1(a1, β0) > c/δ ≥ 0. Under Assumption 1, this is the case only if player 2’s

action β0 assigns positive probability to some a′2 ∈ A2 that is strictly greater than a2. Since a2 is a strict

best reply to a1, there exists x∗ > 0 such that player 2 has a strict incentive to play a2 as long as player 1

plays a∗1 with probability less than x∗. Player 2’s incentive to play a′2 implies that x0 ≥ x∗. Since the RHS

of (3.12) diverges to +∞ as p∗0 → 0 and δ → 1, for every π ∈ (0, 1), there exist δ∗, p∗ ∈ (0, 1) such that

π

1− π
<

1

1− δ∗(1− p∗)
· x

∗ − p∗

1− x∗
. (3.13)
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Since the RHS of (3.12) is strictly decreasing in p∗0, is strictly increasing in x0, and is strictly increasing in

δ, inequality (3.13) implies that as long as δ ≥ δ∗ and x0 ≥ x∗, (3.12) does not hold when p∗0 ≤ p∗. Hence,

it must be the case that p∗0 > p∗ for every δ > δ∗, that is to say, p∗0 is uniformly bounded from below by p∗.

For any π ∈ (0, 1) and δ̂ ∈ (0, 1), there exists δ∗ ∈ (0, 1) such that when δ > δ∗, the upper bound on

t obtained in (3.5) is strictly less than the lower bound on t obtained in (3.10). This contradiction rules out

equilibria in which the opportunistic type has a strict incentive to erase a1 at h0∗. As a result, the opportunistic

type’s discounted average payoff in every equilibrium is no more than (1− δ)c/δ.

3.6 Proof of Theorem 2: Part 2

Step 1: Recall the definitions of t and t0 in the statement of Theorem 1. I show that there exist m ∈ N

that depends only on (π, u1, u2) and λ > 0 that depends only on (u1, u2) such that t ≤ m+ λ(1− δ)−1.

According to (3.4), the opportunistic type’s incentive to play a∗1 from ht0∗ to ht−1
∗ implies that t − t0 is

bounded above by an affine function of (1 − δ)−1, with the coefficients of this function depending only on

(u1, u2). At every hk∗ with k < t0, player 1 has no incentive to erase any action at hk∗ and player 2 takes

actions other than a∗2 with strictly positive probability. Let γ ∈ (0, 1) be such that a∗2 is a strictly best reply to

all mixed actions that assign probability more than γ to a∗1. Hence, the unconditional probability that player

1 plays a∗1 at hk∗ is no more than γ for every k < t0. According to Bayes rule, player 1’s reputations at hk∗

and hk+1
∗ , denoted by πk and πk+1, satisfy πk+1 ≥ πk/γ for every k < t0. Since player 1’s reputation at ht0∗

is no more than 1, we know that t0 ≤ m ≡ log π
log γ . The two parts together imply that t ≤ m+ λ(1− δ)−1.

Step 2: I bound the short-run players’ welfare from above by deriving an upper bound on the opportunistic

type’s average probability of playing a∗1. Fix any equilibrium. For every k ∈ N, I define event Ek as

Ek ≡ {the current history being hk∗ and player 1 playing a∗1 in the current period}.

Lemma 3. In every equilibrium and for every k ∈ N, the probability of event Ek conditional on player

1 being the opportunistic type is no more than (1− δ)δ
k
.

Proof. By definition, the probability of event Ek conditional on player 1 being the opportunistic type is

µ∗kp
∗
k. I show by induction that µ∗kp

∗
k ≤ (1− δ)δ

k
for every k ∈ N. The first part of (3.7) implies that:

µ∗0p
∗
0 =

(1− δ)p∗0
1− δq∗0

≤ (1− δ)p∗0
1− δ(1− p∗0)

≤ 1− δ for every p∗0 ∈ [0, 1].
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Next, suppose µ∗j−1p
∗
j−1 ≤ (1− δ)δ

j−1
for some j ≥ 1, then the second part of (3.7) implies that

µ∗jp
∗
j =

δp∗jp
∗
j−1µ

∗
j−1

1− δq∗j
≤

δp∗jp
∗
j−1µ

∗
j−1

1− δ(1− p∗j )
≤ δ

j (1− δ)p∗j

1− δ(1− p∗j )
≤ (1− δ)δ

j
for every p∗j ∈ [0, 1].

Conditional on player 1 being the opportunistic type, the probability of event Ek is 0 for every k > t since

the opportunistic type never reaches ht+1
∗ . The ex ante probability that the opportunistic type takes action

a∗1 is
∑t

k=0 Pr(Ek), which by Lemma 3, is no more than 1 − δ
t

in any equilibrium. Fix any equilibrium

(σ1, σ2) as well as the resulting distribution over player 1’s actions. Player 2’s payoff is no more than her

payoff when she can observe player 1’s realized pure action before choosing her action, which is at most

(1−π)
{
1−(1−δt)

}
u2(a1, a2)+

{
π+(1−δt)(1−π)

}
u2(a

∗
1, a

∗
2) =

{
π+(1−δt)(1−π)

}
u2(a

∗
1, a

∗
2). (3.14)

Since t is bounded above by an affine function of (1 − δ)−1, for every δ̂ ∈ (0, 1) and ε > 0, there exists

δ∗ ∈ (0, 1) such that when δ > δ∗, the value of (3.14) is no more than πu2(a∗1, a
∗
2) + ε.

Step 3: I bound the short-run players’ welfare from below. Fix any equilibrium. Suppose player 2 deviates

by playing a∗2 at hk∗ for every k ≥ t + 1 and playing a2 at any other history. Since player 1’s strategy does

not depend on player 2’s actions, the expected value of
∑+∞

k=0(1 − δ)δ
k
u2(a1,k, a2,k) under this deviation,

denoted by U2, is weakly lower than its expected value in equilibrium. Since the honest type reaches record

ht+1
∗ in period t+ 1 and the opportunistic type never reaches ht+1

∗ , we obtain that

U2 ≥
{
(1− δ

t+1
)π + (1− π)

}
u2(a1, a2) + δ

t+1
πu2(a

∗
1, a

∗
2) = δ

t+1
πu2(a

∗
1, a

∗
2). (3.15)

Inequality (3.15) relies on u2(a1, a2) being weakly increasing in a1 since it ensures that u2(a∗1, a2) ≥

u2(a1, a2) ≡ 0. Recall from the first step of this proof that t ≤ m + λ(1 − δ)−1. For every δ̂ ∈ (0, 1) and

ε > 0, there exists δ∗ ∈ (0, 1) such that when δ > δ∗, the RHS of (3.15) is at least πu2(a∗1, a
∗
2)− ε.

4 Concluding Remarks

I take a first step to analyze reputation formation when a patient player’s record length is determined endoge-

nously by his own strategic behaviors. Although the patient player has a strict incentive to take his strictly

dominant action when he cannot build reputations, he will have an incentive to take the commitment action
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for a long time when he can build a reputation. This is because a longer good record signals his honesty and

leads to a higher continuation value. In fact, the patient player can secure a continuation value that is strictly

greater than his commitment payoff once the length of his good record exceeds some cutoff.

However, as long as the patient player is sufficiently long-lived, his equilibrium payoff must be close to

his minmax value. This is because the opportunistic type’s ability to erase records enables him to pool with

a younger honest type, which lowers his reputation when he has a short good record. A longer expected

lifespan (or equivalently, a higher survival probability) further slows down the reputation building process

since it increases the likelihood ratio between the old opportunistic type and the young honest type.

My results imply that (i) the possibility of erasing actions cannot eliminate patient players’ incentives

to build reputations, (ii) a small probability of opportunistic type can entirely wipe out the patient player’s

returns from building reputations, although it has a negligible effect on the short-run players’ welfare. I

conclude with a discussion of my modeling assumptions and results beyond those discussed in Section 2.1.

Time Preference vs Survival Probability: Theorem 2 shows that regardless of the probability of honest

type, as long as player 1’s survival probability δ goes to 1 much faster his time preference δ̂ goes to 1, his

equilibrium payoff must be close to his minmax value 0. In what follows, I consider the opposite case where

δ̂ = 1 but δ is less than 1. The results that I derived here also apply to the case where δ̂ goes to 1 much faster

than δ goes to 1. I start from a result which shows that my reputation failure result (Theorem 2) extends to

the case where δ̂ = 1 as long as the probability of the honest type is lower than some cutoff.

Proposition 4. Suppose δ̂ = 1 and (u1, u2, c) satisfies Assumptions 1, 2, 3, and 4. There exists π ∈

(0, 1) such that for every π ∈ (0, π) and δ ∈ (0, 1), the opportunistic type’s discounted average payoff in

every equilibrium is no more than (1− δ)c/δ.

The proofs of this result and the next one are in Appendices D and E. According to Proposition 4, as long

as the probability of the honest type is lower than some cutoff π, player 1’s equilibrium payoff is arbitrarily

close to his minmax value 0 even when his effective discount factor δ ≡ δ̂ · δ is arbitrarily close to 1. This

stands in contrast to the result in Fudenberg and Levine (1989, also see Proposition 1 of the current paper),

that fix any probability of the honest type π > 0 and any ε > 0, player 1 can secure a payoff that is ε-close

to his commitment payoff u1(a∗1, a
∗
2) when his effective discount factor δ is above some cutoff.

Next, I state a result which shows that player 1 can receive a high payoff in some equilibria when the

probability of honest type π is high enough. This conclusion stands in contrast to the one in Theorem 2

that for every δ̂ ∈ (0, 1) and π ∈ (0, 1), the long-run player’s payoff in every equilibrium is no more than

(1− δ)c/δ when δ is arbitrarily close to 1. This comparison highlights the different roles of player 1’s time
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preference δ̂ and his survival probability δ in determining the game’s equilibrium outcomes, which is a novel

feature compared to existing reputation models such as the one in Fudenberg and Levine (1989). This also

justifies my choice of modeling players’ time preference and survival probability separately, since they are

not only conceptually different but also have different implications on the equilibrium outcomes.

Proposition 5. Suppose δ̂ = 1 and (u1, u2, c) satisfies Assumptions 1, 2, 3, and 4. For every v <

u1(a1, a
∗
2) − c, there exist π∗ ∈ (0, 1) and δ∗ ∈ (0, 1) such that for every π > π∗ and δ > δ∗, there exists

an equilibrium in which the opportunistic type’s payoff is at least v.

Stochastic Arrivals & Stochastic Reviews: My baseline model assumes that a consumer arrives in each

period, in which case the honest type’s age coincides with the number of actions in his record. In Online

Appendix E, I discuss extensions when the consumers either arrive stochastically or do not post reviews

with positive probability. In these cases, the honest type’s age may not coincide with the number of actions

in his record. Nevertheless, the qualitative features of the equilibria and the results remain unchanged.

The Honest Type Erasing Actions: In my baseline model, the honest type cannot erase any action. My

results can be extended to the case where the honest type mechanically takes action a∗1 in every period, as in

canonical reputation models, but he can strategically decide whether to erase his action in order to maximize

his discounted average payoff, defined as

+∞∑
k=0

(1− δ)δk
{
u1(a

∗
1, a2,k)− ck

}
.

Proposition 6. Suppose (u1, u2, c) satisfies Assumptions 1, 2, 3, and 4 and c > 0, then the honest type

will never erase his action at any on-path history of any equilibrium even when he has the option to do so.

The proof is in Appendix F. This result does not rely on both types sharing the same stage-game payoff

function. It remains valid when the honest type’s stage-game payoff ũ1(a1, a2) is different from that of the

opportunistic type’s u1(a1, a2), as long as ũ1(a1, a2) is also strictly increasing in a2.

Erasing Past Actions: My baseline model assumes that the patient player can only erase a1,k by the end

of period k but cannot do so after period k. My result for the complete information game, Proposition 2,

continues to hold when the patient player also has the ability to erase past actions.

However, my characterization results for the incomplete information game, Theorems 1 and 2, rely on

this simplifying assumption, under which the opportunistic type’s continuation value equals his minmax
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value 0 after he separates from the honest type. Intuitively, when player 1 can erase past actions, his con-

tinuation value at histories that contain actions other than a∗1 might be strictly positive since he can erase

these actions in the future, after which the short-run players will still assign strictly positive probability to

the honest type. Such a possibility makes the model intractable.

The Uniqueness & Multiplicity of Equilibrium: Theorem 1 characterizes the common properties of

all equilibria and Theorem 2 provides a sharp characterization of players’ equilibrium payoffs. One may

wonder whether there is a unique equilibrium, and if not, what are the sources for multiplicity.

Recall the definition of B in (2.1) and that by Lemma 2, every pair of elements in B can be ranked

according to FOSD. Recall that hk∗ denotes player 2’s history in which there are k actions, all of which

are a∗1, µ∗k denotes the probability of hk∗ conditional on player 1 being the opportunistic type, πk denotes

player 1’s reputation at hk∗ , βk denotes player 2’s action at hk∗ , and pk∗ denotes the probability with which the

opportunistic type plays a∗1 at hk∗ . Fix any β0 ∈ B, player 2’s actions when player 1 has a positive reputation,

β1, β2, ..., βt, are pinned down by player 1’s indifference condition at hk∗ for k ∈ {0, 1, 2, ..., t− 1}:

max
{
u1(a1, βk)− c, (1− δ)u1(a1, βk)

}
︸ ︷︷ ︸

player 1’s continuation value at hk∗

= (1−δ)u1(a∗1, βk)+δmax
{
u1(a1, βk+1)− c, (1− δ)u1(a1, βk+1)

}
︸ ︷︷ ︸

player 1’s continuation value at hk+1
∗

.

This recursive process also pins down the value of t since βt must be weakly lower than a∗2 but must be high

enough so that player 1 does not have an incentive to play a∗1 at ht∗.

Let β† ∈ B be such that u1(a1, β
†) = c/δ. When c < c, such an action exists when δ > c

u1(a1,a
∗
2)

and is

unique by Lemma 2. One can also show that β† is nontrivially mixed when δ is large enough. To see this, I

consider two cases. If there exists a pure action β ∈ B such that u1(a1, β) = c, then β† must be nontrivially

mixed when δ is close to 1. If the unique β ∈ B that satisfies u1(a1, β) = c is nontrivially mixed, then a

continuity argument implies that β† is also nontrivially mixed for every δ close enough to 1.

When δ and δ̂ are bounded below 1, player 2’s action in period 0 can be bounded below β†. If her action

in period 0 is a pure action, then there are multiple probabilities with which player 1 can play a1 in period

0, leading to a multiplicity of equilibrium outcomes.

Fix any π. When δ is close enough to 1, it must be the case that β0 = β† or β0 is close to β†. This is

because the speed with which β increases in t is proportional to 1− δ and similar to Fudenberg and Levine

(1989), the speed with which player 1’s reputation increases when β < β† is bounded above 0. If it takes

too many periods for β to reach β†, then player 1’s reputation will exceed 1 before β reaches β†, which will

lead to a contradiction. If π is small enough such that β0 is strictly lower than β†, then even when both β†
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and β0 are nontrivially mixed, there may exist multiple values of β0 in equilibrium, which is another source

of multiplicity. However, as long as δ is close to 1, β0 must be close to β†, and the values of β∗1 , ..., β
∗
t ,

p∗0, ..., p
∗
t , and µ∗0, ..., µ

∗
t are also close across different equilibria.

When π is above some cutoff and δ is close to 1, I can show that β0 = β† in all equilibria, from

which I can pin down the values of t as well as β1, β2, ..., βt−1, βt. If all of β0, ..., βt−1, βt are nontrivially

mixed, which happens under generic δ, then the conclusion that p∗t = 0 as well as player 2’s indifference

conditions pin down the values of p∗0, ..., p
∗
t and µ∗0, ..., µ

∗
t . When some actions in {β0, β1, ..., βt−1, βt} are

pure actions, there are multiple actions of player 1’s under which player 2 has an incentive to play that

pure action. This implies that there are multiple values of p∗0, ..., p
∗
t and µ∗0, ..., µ

∗
t that can satisfy player 2’s

incentive constraints, leading to multiple equilibrium outcomes. However, even at these degenerate values of

δ where multiple equilibrium outcomes occur, the equilibrium values of p∗0, ..., p
∗
t and µ∗0, ..., µ

∗
t are pinned

down except for periods in which player 2 takes a pure action in equilibrium.

The Imperfect Promise Interpretation & Information Disclosure Policies: Recall the imperfect promise

interpretation in Section 2 that before the game starts, player 1 promises to all short-run players that he will

always take action a∗1 and that he will disclose all his past actions. Player 2 believes that player 1 will honor

his promise with probability π. With complementary probability, player 1 can renege in the sense that he

may take actions other than a∗1 and may also erase his actions. Whether player 1 can renege is determined by

a random draw after he makes his promise and is fixed over time. Under this interpretation, Theorem 2 im-

plies that when player 1 is sufficiently long-lived, his benefit from making such a promise is entirely wiped

out even when his opponents only entertain a grain of doubt about his willingness to honor his promise.

In Online Appendix C, I examine a natural follow-up question, namely, can player 1 obtain higher

payoffs from alternative promises when his opponents believe that he will renege with positive probability?

In the spirit of commitment types in the reputation literature, I still assume that player 1 commits to play

a∗1 in every period. However, instead of committing to fully disclose all of his past actions, he can commit

to alternative information disclosure policies, such as only disclosing his last K actions, disclosing his last

K actions with probability 1/2 and disclosing nothing otherwise, and so on. My analysis and conclusion in

that appendix also apply to several alternative scenarios, such as when an online platform commits to reveal

at most K ∈ N unerased actions from each seller (i.e., K reviews each seller received) to the consumers.

When the patient player is sufficiently long-lived, I show that under a large class of disclosure policies,

the opportunistic type’s payoff is no more than his payoff in the game where the patient player commits to

reveal no action to his opponents. My finding implies that a long-lived player can benefit from committing to
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alternative information disclosure policies (relative to fully disclosing all past actions) only if his opponents

believe that he will honor his promise with probability above some cutoff. It also implies that as long as

a sufficiently long-lived player can selectively erase his records with positive probability, he cannot benefit

from being monitored in the sense that his payoff under any disclosure policy is no more than his payoff

under no disclosure. This stands in contrast to the usual lessons from the theories of repeated games, that a

sufficiently long-lived and patient player can attain strictly higher payoffs (at least in some equilibria) when

his actions are being monitored compared to the case in which his actions cannot be monitored at all.

A Proof of Lemma 2

First, I show that for every λ ∈ [0, 1], player 2 has at most two pure-strategy best replies to player 1’s mixed

action λa∗1 + (1 − λ)a1. Suppose by way of contradiction that there exist a2, a′2, a
′′
2 with a2 ≻ a′2 ≻ a′′2

and λ∗ ∈ [0, 1] such that a2, a′2, a
′′
2 best reply to λ∗a∗1 + (1 − λ∗)a1 Then the last part of Assumption 3

implies that there exist λ, λ′, λ′′ ∈ [0, 1]\{λ∗} where λ, λ′, λ′′ can be the same such that a2 best replies to

λa∗1 + (1− λ)a1, a′2 best replies to λ′a∗1 + (1− λ′)a1, and a′′2 best replies to λ′′a∗1 + (1− λ′′)a1.

Since λ ̸= λ∗, λ′ ̸= λ∗, and λ′′ ̸= λ∗, we know that either at least two of λ, λ′ and λ′′ are strictly

more than λ∗, or at least two of λ, λ′ and λ′′ are strictly less than λ∗. In the first case, a2 best replies to

λ∗a∗1 + (1 − λ∗)a1 and at least one of a′2 and a′′2 best replies to an action that FOSDs λ∗a∗1 + (1 − λ∗)a1.

This is because λ′a∗1 + (1− λ′)a1 FOSDs λ∗a∗1 + (1− λ∗)a1 when λ′ > λ∗ and λ′′a∗1 + (1− λ′′)a1 FOSDs

λ∗a∗1 + (1 − λ∗)a1 when λ′′ > λ∗. Since a′2 and a′′2 are strictly lower than a2, this contradicts Assumption

1 that u2(a1, a2) has strictly increasing differences. Using a symmetric argument, one can also derive a

contradiction in the second case where at least two of λ, λ′ and λ′′ are strictly less than λ∗. This implies that

for every λ ∈ [0, 1], player 2 has at most two pure-strategy best replies to λa∗1 + (1− λ)a1.

Next, let A∗
2 denote the set of player 2’s pure best replies against mixtures between a∗1 and a1:

A∗
2 ≡ {a2 ∈ A2|there exists λ ∈ [0, 1] s.t. a2 best replies to λa∗1 + (1− λ)a1}. (A.1)

Recall that u2(a1, a2) has strictly increasing differences. Since a∗2 best replies to a∗1, a2 best replies to a1,

and a∗1 ≻ a1, we know that a∗2 is the highest action in A∗
2 and a2 is the lowest action in A∗

2. Assumption

3 then implies that there exist 0 ≡ λ0 < λ1 < ... < λn ≡ 1 such that for every a2 ∈ A∗
2, there exists

j ∈ {1, 2, ..., n} such that a2 is a strict best reply to λa∗1 + (1− λ)a1 if and only if λ ∈ (λj−1, λj).

To see why this is true as well as how the cutoffs for λ are constructed, note that the first part of

Assumption 3 implies that player 2 has a strict best reply a2 to a1, which implies that a2 also best replies to
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λa∗1 + (1− λ)a1 when λ is close to 0. Let λ1 be the largest λ such that a2 best replies to λa∗1 + (1− λ)a1.

Since a∗1 ≻1 a1 and a∗2 ≻2 a2, we know that λ1 < 1. By definition, a2 does not best reply to λa∗1+(1−λ)a1
for any λ = λ1 + ε with ε > 0. The upper-hemi-continuity of best reply correspondences implies that there

exists a′2 ≻2 a2 that best replies to λ1a∗1 + (1 − λ1)a1. Since player 2 has at most two pure best replies

to every λa∗1 + (1 − λ)a1, such a′2 ≻2 a2 is unique. The second part of Assumption 3 then implies that

a′2 must also best reply to some λa∗1 + (1 − λ)a1 with λ ̸= λ1. Since u2(a1, a2) has strictly increasing

differences, such λ must be strictly greater than λ1. Let λ2 denote the largest λ such that a′2 best replies to

λa∗1 + (1− λ)a1... Iterate this process, we can obtain the cutoffs, denoted by λ1, λ2, ..., until λ reaches 1.

The above construction implies that for every j ∈ {1, 2, ..., n − 1}, player 2 has two pure-strategy best

replies to λja∗1+(1−λj)a1, which are her strict best replies when λ ∈ (λj−1, λj) and when λ ∈ (λj , λj+1),

respectively. Therefore, B consists of all actions in A∗
2 and all mixtures between pairs of adjacent elements

in A∗
2. Hence, every pair of elements in set B can be ranked according to FOSD. Since u1(a1, a2) is strictly

increasing in a2, for every a1 ∈ A1 and v ∈ [u1(a1, a2), u1(a1, a
∗
2)], there exists a unique element β ∈ B

that satisfies u1(a1, β) = v.

Remark: Let us focus on the set of (u1, u2) that satisfies Assumptions 1, 2, and the first part of Assumption

3. I explain why the second part of Assumption 3 is satisfied for generic (u1, u2) that belongs to this set.

Suppose there exists a2 ∈ A2 such that there exists a unique λ ∈ [0, 1] such that a2 best replies to

λa∗1 + (1 − λ)a1. I consider three cases. First, suppose λ = 0. Then λa∗1 + (1 − λ)a1 is a pure action a1

and there exists a sequence {λ̃n}n∈N such that λ̃n > 0 and limn→+∞ λ̃n = 0. The upper-hemi-continuity

of best reply correspondences implies that any limit point of the best replies to {λ̃na∗1 + (1 − λ̃n)a1}n∈N,

denoted by ã2, is a best reply to λa∗1 + (1 − λ)a1. Since a2 only best replies to a1 and ã2 best replies to

some λa∗1 + (1 − λ)a1 with λ > 0, we know that a2 ̸= ã2. This contradicts the first part of Assumption 3

that player 2 has a unique best reply against each pure action of player 1’s. Similarly, λ ̸= 1.

Next, consider the case in which λ ∈ (0, 1). Let {λ̂n}n∈N and {λ̃n}n∈N denote two sequences such

that λ̂n < λ, limn→+∞ λ̂n = λ, λ̃n > λ, and limn→+∞ λ̃n = λ. The upper-hemi-continuity of best reply

correspondences implies that any limit of the best replies to λ̂na∗1 + (1 − λ̂n)a1, denoted by â2, and any

limit of the best replies to λ̃na∗1 + (1 − λ̃n)a1, denoted by ã2, are best replies to λa∗1 + (1 − λ)a1. Since

a2 only best replies to λa∗1 + (1 − λ)a1, we know that a2 ̸= ã2 and a2 ̸= â2. Since u2(a1, a2) has strictly

increasing differences, we know that ã2 ≻ a2 ≻ â2. Therefore, player 2 has three-strategy pure best replies

to mixed action λa∗1 + (1 − λ)a1. Depict player 2’s payoff from each of her pure actions as a function of

the probability that player 1 plays a∗1 (as opposed to a1), having three pure best replies to λa∗1 + (1− λ)a1

28



implies that three of these affine functions intersect at λ. This can only happen at degenerate (u1, u2).

B Proof of Theorem 1

Fix any equilibrium (σ1, σ2). Recall that at any h ∈ H(σ1, σ2), player 1 never takes actions other than a∗1

and a1. Hence, player 2’s action at every h ∈ H(σ1, σ2) belongs to B. By Lemma 2, any pair of elements

in B can be ranked according to FOSD. Proposition 2 implies that at every h ∈ H(σ1, σ2)\H∗, players take

actions (a1, a2), player 1’s continuation value equals his minmax value u1(a1, a2) = 0, and therefore, he

has no incentive to pay cost c > 0 to erase any action at any such h. Let Vk denote player 1’s continuation

value at hk∗ and let V ≡ supk∈N Vk. I show that (σ1, σ2) satisfies all the properties listed in Theorem 1.

Step 1: I show that V > 0. Suppose by way of contradiction that V = 0. Since the opportunistic type

can obtain a strictly positive payoff at any history hk∗ where player 2’s action is strictly greater than a2, by

playing a1 and not erasing it, V = 0 only if player 2 plays a2 at every h ∈ H∗. Since player 2 will also play

a2 at every h ∈ H(σ1, σ2)\H∗, the opportunistic type will have no intertemporal incentive and will play a1

at h0∗. By Bayes rule, player 2 will assign probability 1 to the honest type at history h1∗, which implies that

she will have a strict incentive to play a∗2 ̸= a2 at h1∗. This leads to a contradiction and implies that V > 0.

Step 2: I show that there exists t ∈ N such that (i) the opportunistic type plays a∗1 with positive probability

at hk∗ if and only if k < t, (ii) πk = 1 if and only if k > t, and (iii) βt+1 = a∗2 and Vt+1 = max{u1(a1, a∗2)−

c, (1− δ)u1(a1, a
∗
2)}. Since V > 0, fix any ε that satisfies

0 < ε < min
{V
2
,
(1− δ)(c− c)

δ

}
,

and any h ∈ H(σ1, σ2) that satisfies V (h) > V − ε. Using the same argument as in the proof of Proposition

2, we know that the opportunistic type plays a∗1 with zero probability at h, since it is strictly dominated by

playing a1 and then erasing it. The requirement on ε implies that V (h) > 0, and therefore, there exists

k ∈ N such that h = hk∗ . Let t ∈ N be the smallest integer k ∈ N such that the opportunistic type plays

a∗1 with zero probability at hk∗ . Such an integer t exists and by construction, satisfies the first requirement.

According to Bayes rule, t also satisfies the second requirement. When k = t+ 1, βk = a∗2 since player 2’s

posterior belief assigns probability 1 to the honest type at ht+1
∗ . The opportunistic type’s continuation value

at ht+1
∗ is max{u1(a1, a∗2)− c, (1− δ)u1(a1, a∗2)}. This is because playing a∗1 is not optimal for him at ht+1

∗

and that his payoff is max{u1(a1, a∗2)− c, (1− δ)u1(a1, a
∗
2)} by playing a1.
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Step 3: I show that for every k < t, the opportunistic type plays a1 with strictly positive probability at

hk∗ . Suppose by way of contradiction that the opportunistic type plays a∗1 with probability 1 at hk∗ for some

k < t. Then player 2 strictly prefers to play a∗2 at hk∗ since both the honest type and the opportunistic type

play a∗1 at hk∗ . The opportunistic type’s incentive to play a∗1 instead of a1 at hk∗ implies that

Vk = (1− δ)u1(a
∗
1, a

∗
2) + δVk+1 ≥ max

{
u1(a1, a

∗
2)− c, (1− δ)u1(a1, a

∗
2)
}
, (B.1)

where u1(a1, a
∗
2) − c is his continuation value when he plays a1 and then erases it (and does this in every

subsequent period), and (1− δ)u1(a1, a
∗
2) is his continuation value when he plays a1 and does not erase it.

Since c < c ≤ u1(a1, a
∗
2) − u1(a

∗
1, a

∗
2), we have u1(a∗1, a

∗
2) < u1(a1, a

∗
2) − c ≤ max

{
u1(a1, a

∗
2) −

c, (1− δ)u1(a1, a
∗
2)
}

. This together with (B.1) implies that

Vk+1 > Vk ≥ max
{
u1(a1, a

∗
2)− c, (1− δ)u1(a1, a

∗
2)
}
. (B.2)

I show that

Vt > ... > Vk+1 > Vk ≥ max
{
u1(a1, a

∗
2)− c, (1− δ)u1(a1, a

∗
2)
}
. (B.3)

For every s that satisfies t > s ≥ k+1, the construction of t in Step 2 implies that taking action a∗1 is optimal

at hs∗, which implies that Vs = (1 − δ)u1(a
∗
1, βs) + δVs+1. The rest of the proof is done by induction on

s. First, inequality (B.2) implies that Vk+1 > Vk ≥ max
{
u1(a1, a

∗
2)− c, (1− δ)u1(a1, a

∗
2)
}

. Suppose we

know that Vs > ... > Vk+1 > max
{
u1(a1, a

∗
2)− c, (1− δ)u1(a1, a

∗
2)
}

for some s ≤ t− 1, let us compare

Vs and Vs+1. Since Vs = (1− δ)u1(a
∗
1, βs) + δVs+1 and Vs > max

{
u1(a1, a

∗
2)− c, (1− δ)u1(a1, a

∗
2)
}
≥

u1(a1, a
∗
2)− c > u1(a

∗
1, a

∗
2) ≥ u1(a

∗
1, βs), we know that Vs+1 > Vs > u1(a

∗
1, βs). This establishes (B.3).

The construction of t in Step 2 also implies that playing a∗1 is not optimal for the opportunistic type at

ht∗, which implies that

Vt = max{u1(a1, βt)− c, (1− δ)u1(a1, βt)} ≤ max{u1(a1, a∗2)− c, (1− δ)u1(a1, a
∗
2)}, (B.4)

where the inequality comes from Assumption 1 that u1(a1, a2) is strictly increasing in a2 and a∗2 is greater

than βt. Inequalities (B.1) and (B.4) together imply that Vt ≤ Vk, which contradicts (B.3) that Vt > Vk.

This implies that the opportunistic type plays a∗1 with probability strictly less than 1 at every history.

Step 4: I show that for every k ≤ t, βk is strictly increasing in k in the sense of FOSD. Step 3 implies that

at every hk∗ with k ≤ t, either it is optimal for player 1 to play a1 and then erase it, or it is optimal for him to
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play a1 and then not erase it. In the first case, player 1’s continuation value is u1(a1, βk)− c. In the second

case, player 1’s continuation value is (1− δ)u1(a1, βk). This leads to the following formula for Vk:

Vk = max
{
u1(a1, βk)− c, (1− δ)u1(a1, βk)

}
for every k ≤ t. (B.5)

Since βk, βk−1 ∈ B, Lemma 2 implies that βk and βk−1 can be ranked according to FOSD. That is to say,

either βk ≻2 βk−1 or βk−1 ≿2 βk where ≻2 and ≿2 are the orders on A2 defined in Assumption 1.

Suppose by way of contradiction that βk−1 ≿2 βk for some 1 ≤ k ≤ t. Since u1(a1, a2) is strictly

increasing in a2, equation (B.5) implies that Vk is a strictly increasing function of βk. The hypothesis that

βk−1 ≿2 βk implies that Vk−1 ≥ Vk. Since k ≤ t, the definition of t implies that the opportunistic type

reaches hk∗ with positive probability. Hence, it is optimal for the opportunistic type to play a∗1 at h∗k−1, which

implies that Vk−1 = (1− δ)u1(a
∗
1, βk−1) + δVk. This together with Vk−1 ≥ Vk implies that

Vk−1 = (1− δ)u1(a
∗
1, βk−1) + δVk ≤ (1− δ)u1(a

∗
1, βk−1) + δVk−1,

or equivalently, Vk−1 ≤ u1(a
∗
1, βk−1). Since c < c ≤ u1(a1, βk−1)− u1(a

∗
1, βk−1), we know that

Vk−1 ≤ u1(a
∗
1, βk−1) < u1(a1, βk−1)− c. (B.6)

This contradicts Vk−1 = max
{
u1(a1, βk−1)− c, (1− δ)u1(a1, βk−1)

}
and implies that βk ≻2 βk−1.

Step 5: I examine the opportunistic type’s incentive to erase a1. According to (B.5), not erasing a1 is

preferred to erasing a1 if and only if (1− δ)u1(a1, βk) ≥ u1(a1, βk)− c, or equivalently, u1(a1, βk) ≤ c/δ.

Since player 2’s action at every on-path history belongs to B, which by Lemma 2 can be completely ranked

according to FOSD, we know that u1(a1, βk) ≤ c/δ is equivalent to βk being lower than some cutoff in the

sense of FOSD. The conclusion in Step 4 that βk is strictly increasing in k implies the existence of a cutoff

0 ≤ t0 ≤ t such that at hk∗ , the opportunistic type has a strict incentive to erase a1 if k > t0, has a strict

incentive not to erase a1 if k < t0, and might be indifferent between erasing and not erasing if k = t0.

Step 6: I show that πk is strictly increasing in k for every k ≤ t. Suppose by way of contradiction that

πk−1 ≥ πk for some k ≤ t. Let µ∗k denote the probability that player 2’s history is hk∗ conditional on player

1 being the opportunistic type. Applying Bayes Rule to player 1’s reputations at hk∗ and hk−1
∗ , we obtain

that
πk

1− πk
=
π(1− δ)δ

k

(1− π)µ∗k
≤ πk−1

1− πk−1
=
π(1− δ)δ

k−1

(1− π)µ∗k−1

,

31



which implies that

µ∗k/µ
∗
k−1 ≥ δ. (B.7)

Let p∗k denote the probability that the opportunistic type plays a∗1 at hk∗ . Let q∗k denote the probability that

the opportunistic type plays a1 and then erases it at hk∗ . By definition, q∗k ≤ 1 − p∗k. Applying the state

distribution lemma on page 2 of Online Appendix A, we obtain that

µ∗k = δ
(
µ∗k−1p

∗
k−1 + µ∗kq

∗
k

)
≤ δ

(
µ∗k−1p

∗
k−1 + µ∗k(1− p∗k)

)
,

or equivalently,
µ∗k
µ∗k−1

≤
δp∗k−1

1− δ(1− p∗k)
. (B.8)

Inequalities (B.7) and (B.8) together imply that

p∗k−1 ≥ (1− δ) + δp∗k. (B.9)

Due to the conclusion in Step 3 that p∗k < 1, the above inequality implies that p∗k−1 > p∗k. Let xk denote

the probability that player 2’s belief at hk∗ assigns to player 1’s current-period action being a∗1. By the law of

total probabilities, we have

xk = πk + p∗k(1− πk). (B.10)

Since p∗k−1 > p∗k, my hypothesis that πk−1 ≥ πk implies that xk−1 > xk. However, Assumption 1 requires

that u2(a1, a2) has strictly increasing differences. Recall my conclusion in Step 4 that player 2’s action βk is

strictly increasing in k in the sense of FOSD, we know that xk is weakly increasing in k, that is, xk−1 ≤ xk.

This contradicts my earlier conclusion that xk−1 > xk and implies that πk−1 < πk for every k ≤ t.

C Proof of Proposition 3

I start from defining some useful constants. Recall the definition of A∗
2 in (A.1) and that a∗2 is the highest

action that belongs to A∗
2. Let a′2 denote the second highest action in A∗

2. There exists x∗ ∈ (0, 1) such that

player 2 is indifferent between a′2 and a∗2 when player 1 plays the mixed action x∗a∗1 + (1 − x∗)a1. Let us

consider equation
π

1− π
=

1

(1− δ) + δp
· x

∗ − p

1− x∗
. (C.1)
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The RHS of (C.1) is strictly decreasing in p, which equals 0 when p = x∗. Hence, there exists p ∈ (0, x∗]

that solves (C.1) if and only if the RHS is strictly greater than π
1−π when p = 0. Let

δ1 ≡ 1− 1− π

2π
· x∗

1− x∗
.

By definition, when δ = δ1, the value of p ∈ (0, x∗] that solves (C.1) is strictly positive, which I denote by

p∗. Since the RHS of (C.1) is strictly increasing in δ, the value of p ∈ [0, x∗] that solves (C.1) is strictly

greater than p∗ for every δ > δ1.

Assumptions 2 and 4 together imply that u1(a1, a
∗
2)− c > u1(a

∗
1, a

∗
2) > u1(a1, a2) ≡ 0. Let δ2 ∈ (0, 1)

be defined via
1− δ2
δ2

c =
1

2

(
u1(a1, a

∗
2)− c

)
.

By definition, u1(a1, a
∗
2)−c > (1−δ)u1(a1, a∗2) for every δ > δ2. Let δ∗ ≡ max{δ1, δ2} and let λ∗ ≡ 1−δ∗.

By definition, if δ ≤ δ∗, then λ∗(1− δ)−1 − 1 ≤ 0, in which case t ≥ λ∗(1− δ)−1 − 1 is trivially satisfied

for every t ∈ N. Note that δ1, δ2, δ∗, λ∗, p∗ depend only on (u1, u2, c, π) but not on δ, δ, δ̂.

Recall the definitions of t0 and t in Theorem 1. For every t0 < k < t, the opportunistic type has an

incentive to play a1 and then erase it at hk∗ , which implies that Vk = u1(a1, βk)−c. He also has an incentive

to play a∗1 at hk∗ , which implies that Vk = (1− δ)u1(a
∗
1, βk) + δVk+1. Therefore,

u1(a1, βk)− c = (1− δ)u1(a
∗
1, βk) + δ(u1(a1, βk+1)− c). (C.2)

Since player 2’s mixed action at every history belongs to set B and a2 is the lowest element in B, equation

(C.2) implies that for every t0 < k < t, we have

Vk+1−Vk = u1(a1, βk+1)−u1(a1, βk) ≤ (1−δ)
(
u1(a1, βk+1)−c−u1(a∗1, βk)

)
≤ (1−δ)

(
u1(a1, a

∗
2)−c−u1(a∗1, a2)

)
,

where the first inequality uses Assumption 4 and the second inequality uses Assumption 1. Let ∆ ≡

u1(a1, a
∗
2)− c− u1(a

∗
1, a2). Assumptions 1 and 4 imply that ∆ > 0. I classify equilibria into three classes

and derive a lower bound on t for each class. Then I construct a lower bound that apply to all equilibria.

Class 1: Consider any equilibrium where the opportunistic type weakly prefers not to erase a1 at h0∗. Step 5

in the proof of Theorem 1 implies that u1(a1, β0) ≤ c/δ, so the opportunistic type’s continuation value at h0∗

is at most (1−δ)c
δ . From Theorem 1, his continuation value at ht+1

∗ is max{u1(a1, a∗2)−c, (1−δ)u1(a1, a∗2)},
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which equals u1(a1, a
∗
2)− c when δ > δ2. This together with Vk+1 − Vk ≤ ∆(1− δ) implies that

t+ 1 ≥
u1(a1, a

∗
2)− c− (1−δ)c

δ

∆(1− δ)
≥ u1(a1, a

∗
2)− c

2∆︸ ︷︷ ︸
≡λ1

(1− δ)−1 = λ1(1− δ)−1 for every δ > δ∗.

Class 2: Consider any equilibrium in which at h0∗, the opportunistic type has a strict incentive to erase a1

and player 2 takes action a∗2 with probability 0. Since a′2 is the second highest action in A∗
2 and u1(a1, a2) is

strictly increasing in a2, player 1’s continuation value at h0∗ is at most u1(a1, a
′
2)−c. Since the opportunistic

type’s continuation value at ht+1
∗ is at least u1(a1, a

∗
2)− c, we know that

t+ 1 ≥ u1(a1, a
∗
2)− u1(a1, a

′
2)

∆︸ ︷︷ ︸
≡λ2

(1− δ)−1 = λ2(1− δ)−1.

Class 3: Consider any equilibrium in which at h∗0, the opportunistic type has a strict incentive to erase

a1 and player 2 takes action a∗2 with strictly positive probability. Let p∗k denote the probability that the

opportunistic type plays a∗1 at hk∗ . The definition of t implies that p∗t = 0. Inequality (3.9) implies that

p∗k−1 − p∗k ≤ 1 − δ. Player 2’s incentive to take action a∗2 at h0∗ implies that she expects player 1 to take

action a∗1 at h0∗ with probability at least x∗. This together with Bayes rule implies that there exists x0 ≥ x∗

such that
π

1− π
=

1

(1− δ) + δp∗0
· x0 − p∗0
1− x0

, (C.3)

If δ > δ1, then δ > δ1 and the value of p∗0 that solves (C.3) is at least p∗, as defined earlier in this proof.

This together with p∗k−1 − p∗k ≤ 1− δ and p∗t = 0 implies that t ≥ p∗(1− δ)−1 ≥ p∗(1− δ)−1.

Let λ ≡ min{λ1, λ2, p∗}, which is independent of δ, δ, δ̂ since λ1, λ2, p∗ are all independent of δ, δ, δ̂.

Hence, for every δ ≤ δ∗, we have λ(1 − δ)−1 − 1 ≤ 0, so t ≥ λ(1 − δ)−1 − 1 for every t ∈ N. For every

δ > δ∗, as I have shown earlier, t+ 1 is at least λ(1− δ)−1 for all three classes of equilibria.

D Proof of Proposition 4

Since δ̂ = 1, I replace δ with δ. Suppose by way of contradiction that for every π > 0, there exists δ ∈ (0, 1)

and an equilibrium under (π, δ) such that player 1’s payoff is strictly more than (1 − δ)c/δ. Then, it must

be the case that the opportunistic type has a strict incentive to erase a1 after taking it at h0∗.

Recall that t denotes the maximal length of good record that the opportunistic type will have. From

Step 1 in the proof of Theorem 2, we know that there exists a constant ϕ > 0 such that t ≤ ϕ(1 − δ)−1 in
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every equilibrium. Recall that π0 is player 1’s reputation at history h0∗. Since the honest type reaches history

h0∗ with probability 1 − δ and the opportunistic type reaches history h0∗ with probability µ∗0, the following

equation is obtained from Bayes Rule:

π0
1− π0

=
π

1− π

1− δ

µ∗0
. (D.1)

The expression for µ∗0 in (3.7) as well as the conclusion in Theorem 1 that p∗0 < 1 together imply that

µ∗0 > 1− δ, and therefore, π0 < π.

Recall that xk ∈ [0, 1] denotes the probability player 2’s posterior assigns to player 1’s current-period

action being a∗1 after observing history hk∗ . Due to the conclusion in Theorem 1 that βk ≻2 βk−1 for every

k ≤ t, we know from Assumption 1 that xk ≥ xk−1. Applying equation (3.11) to both k and k − 1, we

obtain that
µ∗k
µ∗k−1

= δ
xk−1 − p∗k−1

xk − p∗k
· 1− xk
1− xk−1

≤ δ
xk−1 − p∗k−1

xk − p∗k
. (D.2)

This together with (3.8) implies that

δp∗k−1

1− δ(1− p∗k)
=

µ∗k
µ∗k−1

≤ δ
xk−1 − p∗k−1

xk − p∗k
. (D.3)

Taking the inverse on both sides of (D.3) and using the conclusion that xk ≥ xk−1, we obtain that

p∗k + (1− δ)(1− p∗k)

p∗k−1

≥
xk − p∗k

xk−1 − p∗k−1

≥
xk−1 − p∗k
xk−1 − p∗k−1

= 1 +
p∗k−1 − p∗k
xk−1 − p∗k−1

.

This further implies that
(1− δ)(1− p∗k)

p∗k−1

≥
p∗k−1 − p∗k
p∗k−1

+
p∗k−1 − p∗k
xk − p∗k−1

,

from which we obtain that

p∗k−1 − p∗k ≤ (1− δ)
xk − p∗k−1

xk
. (D.4)

Since u1(a1, β0) > c/δ > 0 and u1(a1, a2) ≡ 0, the probability that β0 assigns to actions strictly greater

than a2 is bounded above 0. Since a2 is a strict best reply to a1, there exists x∗ > 0 such that player 2 has a

strict incentive to play a2 against player 1’s mixed action xa∗1 + (1− x)a1 as long as x < x∗. This implies

that x0 ≥ x∗. Let

K ≡
{
k
∣∣k ∈ {0, 1, ..., t} and xk > xk−1

}
.

Since u2(a1, a2) has strictly increasing differences and βk is strictly increasing in k (Theorem 1), we know
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that xk ≥ xk−1 for every k ≤ t. The definition of K then implies that xk = xk−1 for every k /∈ K.

Recall from the proof of Lemma 2 that under the complete order ≿2, βk are mixtures between adjacent

elements in A∗
2, defined in (A.1). Therefore, player 1’s expected actions at hk∗ and hk−1

∗ must be the same

(i.e., xk = xk−1) as long as βk and βk−1 are non-trivial mixtures between the same pair of elements in

A∗
2. Since βk is strictly increasing in k in FOSD, we know that |K| ≤ |A∗

2| ≤ |A2|. Recall from (B.10)

that xt = πt + (1 − πt)p
∗
t , we know that (i) p∗t converges to xt as πt converges to 0 and (ii) there exists

p∗ ∈ (0, 1) such that p∗k < p∗ for every k /∈ K, and (iii) applying (B.10) to both k and k − 1, we obtain

πk−πk−1 = xk−xk−1−p∗k(1−πk)+p∗k−1(1−πk−1) = (p∗k−1−p∗k)(1−πk−1)−p∗k(πk−1−πk). (D.5)

This further implies that

πk − πk−1 =
1− πk−1

1− p∗k
· (p∗k−1 − p∗k) ≤

p∗k−1 − p∗k
1− p∗k

≤ (p∗k−1 − p∗k)(1− p∗)−1. (D.6)

The last inequality in (D.6) relies on p∗k−1− p∗k > 0, which is obtained from (i) πk > πk−1 (Theorem 1) and

(ii) the first part of (D.6) that πk − πk−1 =
1−πk−1

1−p∗k
· (p∗k−1 − p∗k) which is derived solely from (D.5).

Since x0 ≥ x∗, we know that for every ε > 0, there exists π > 0 such that p∗0 ≥ x∗−ε whenever π < π.

The definition of t implies that p∗t = 0. The gap between p∗0 and p∗t together with (D.4) and (D.6) leads to a

lower bound on t, which diverges to infinity as π → 0. Hence, for every ϕ > 0, there exists π > 0 such that

for every π < π, the lower bound on t implied by the speed with which p∗k decreases in k will be strictly

greater than 2ϕ(1 − δ)−1. Under such a π, the existence of an equilibrium where player 1’s payoff being

strictly greater than (1− δ)c/δ contradicts my earlier conclusion that t < ϕ(1− δ)−1.

E Proof of Proposition 5

I replace δ with δ. Let x∗∗ ∈ (0, 1) denote the smallest x ∈ (0, 1) such that a∗2 best replies to xa∗1+(1−x)a1.

Throughout the proof, I also assume that δ is large enough in the sense that it satisfies u1(a1, a
∗
2) − c >

(1− δ)u1(a1, a
∗
2), in which case Vt+1 = max{u1(a1, a∗2)− c, (1− δ)u1(a1, a

∗
2)} = u1(a1, a

∗
2)− c.

I provide a constructive proof to the following claim, which implies Proposition 5: For every η > 0,

there exists π > 0 such that for every π > π, there exists an equilibrium in which (i) the opportunistic type

has a strict incentive to erase a1 at h0∗, (ii) at every hk∗ with k < t, player 2 believes that player 1 will play

a∗1 with probability x∗∗, and (iii) player 2’s action at h0∗ assigns probability more than 1− η to a∗2.
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The law of total probabilities implies that xk = πk + (1− πk)p
∗
k. Recall from (D.1) and (3.7) that

π0
1− π0

=
π

1− π
· (1− δ(1− p∗0)). (E.1)

Equation (E.1) implies that fixing the value of π, π0 is strictly increasing in p∗0. It then implies that for every

ε > 0, there exists π > 0 such that when π > π and p∗0 = ε, we have π0 + (1 − π0)p
∗
0 ≥ x∗∗. When

x0 = x1 = ... = xt−1 = x∗∗, the conclusion in Theorem 1 that πk being strictly increasing in k implies

that pk is strictly decreasing in k for every k < t. Moreover, we know from (D.2) and (D.3) that when

xk−1 = xk = x∗∗,

δ
xk−1 − p∗k−1

xk − p∗k
= δ

x∗∗ − p∗k−1

x∗∗ − p∗k
=

µ∗k
µ∗k−1

=
δp∗k−1

1− δ(1− p∗k)
,

or equivalently,
x∗∗ − p∗k−1

x∗∗ − p∗k
=

p∗k−1

1− δ(1− p∗k)
.

After doing some algebra, we can obtain the following expression for p∗k−1 − p∗k, which is linear in 1− δ:

(
1 + δ

x∗∗ − p∗k
1− δ(1− p∗k)

)
(p∗k−1 − p∗k) = (1− δ)

(x∗∗ − p∗k)(1− p∗k−1)

1− δ(1− p∗k)
. (E.2)

Since p∗k is strictly decreasing in k for every k ≤ t, equation (E.2) implies that there exists ψ > 0 such that

for every ε > 0 small enough, p∗k−1 − p∗k ≥ ψ(1 − δ) for every k ≤ t when p∗0 = ε. Hence, when π is

large enough such that π0 + (1 − π0)ε ≥ x∗∗, there exists an equilibrium in which t ≤ ε
ψ(1−δ) . Since the

opportunistic type is indifferent between playing a∗1 and playing a1 and then erasing it at hk∗ , we have

u1(a1, βk+1)− u1(a1, βk) = (1− δ)
(
u1(a1, βk+1)− c− u1(a

∗
1, βk)

)
≤ (1− δ)(u− u− c).

Therefore, player 1’s equilibrium payoff u1(a1, β0) − c is at least Vt+1 − (1 − δ)(t + 1)(u − u − c)

where u and u are the highest value and the lowest value of player 1’s stage-game payoff u1(a1, a2). Since

Vt+1 = u1(a1, a
∗
2) − c and t ≤ ε

ψ(1−δ) , player 1’s equilibrium payoff is at least u1(a1, a
∗
2) − c − εu−u−cψ .

The claim in the beginning of this appendix is then established once we set η ≡ εu−u−cψ .

F Proof of Proposition 6

Suppose by way of contradiction that there exists an equilibrium in which the honest type erases a∗1 with

strictly positive probability at some history. Since the honest type plays a∗1 in every period, there exists

t ∈ N, which is the smallest integer k such that the honest type erases a∗1 with positive probability at hk∗ .
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Hence, it is optimal for the honest type not to erase any action until he reaches ht∗ in period t, after which

he erases a∗1 in every subsequent period. Under such a strategy, player 2’s history will remain at ht∗ after

reaching it. I denote this strategy by σ∗1 . Since βk+1 and βt belong to B, Lemma 2 implies that they can be

ranked according to FOSD. I consider two cases separately: βk+1 ≿2 βk and βk ≻2 βk+1.

First, consider the case in which βt+1 weakly FOSDs βt. Since the honest type chooses a∗1 in every

period, his continuation value at ht∗ is u1(a∗1, βt) − c if he follows strategy σ∗1 and is (1 − δ)u1(a
∗
1, βt) +

δ(u1(a
∗
1, βt+1)− c) if he does not erase a∗1 at ht∗ and erases a∗1 at ht+1

∗ . The latter is strictly greater than the

former when βt+1 ≿2 βt and c > 0. This contradicts the hypothesis that erasing a∗1 at ht∗ is optimal.

Next, consider the case in which βt strictly FOSDs βt+1. Since a∗2 is the highest action in B and

βt, βt+1 ∈ B, player 2 cannot play a∗2 for sure at ht+1
∗ . This implies that the opportunistic type must reach

ht+1
∗ with positive probability (which implies that he needs to play a∗1 at ht∗ with positive probability) and

moreover, he must play a1 with positive probability at ht+1
∗ . Consider the opportunistic type’s continuation

value at ht∗. His continuation value from playing a∗1 at ht∗ and playing a1 at ht+1
∗ is

(1− δ)u1(a
∗
1, βt) + δmax{u1(a1, βt+1)− c, (1− δ)u1(a1, βt+1)}, (F.1)

whereas his continuation value from playing a1 at ht∗ is at least

max{u1(a1, βt)− c, (1− δ)u1(a1, βt)}. (F.2)

Under the hypothesis that βt ≻2 βt+1 as well as Assumptions 1 and 4, (F.2) is strictly greater than (F.1). This

contradicts my earlier conclusion that the opportunistic type needs to play a∗1 at ht∗ with positive probability.
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