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Abstract: I analyze a reputation game between a patient player and a sequence of short-run players, who
have limited memories and cannot observe the exact sequence of the patient player’s actions. I focus on the
case in which every short-run player only observes the number of times that the patient player took each of
his actions in the last K periods. When players have monotone-supermodular payoffs, I show that the patient
player can approximately secure his commitment payoff in all equilibria as long as K is at least one. I also
show that the short-run players can approximately attain their highest feasible payoff in all equilibria if and
only if K is lower than some cutoff. Although a larger K enables more short-run players to punish the patient
player once he deviates from his commitment action, it weakens their incentives to execute the punishment.
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1 Introduction

Economic agents benefit from good reputations. This idea is formalized in the reputation literature pioneered

by Fudenberg and Levine (1989), who show that a patient player can secure a high payoff if he builds a

reputation in front of a sequence of short-run players. These reputation results assume that the short-run

players can observe either the full history of actions or a sufficiently long history of actions including the

exact sequence of actions. The intuition is that when the short-run players observe that the patient player has

taken an action for a long time, they will be convinced that he is likely to take that same action in the future.

In practice, people may not have long memories and may not know the exact sequence of other players’

actions. For example, many online marketplaces disclose in a salient place the number of positive and negative

reviews each merchant received in the last two weeks (e.g., the store-level ratings on TMall) or the last few

months (e.g., eBay and EachNet). The exact sequence with which these reviews were received is either not

disclosed, such as on eBay and EachNet (see Dellarocas 2006 and Tadelis 2016 for eBay and Cai, Jin, Liu

and Zhou 2014 for EachNet), or is very time-consuming for people to learn about such as on TMall.
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This paper takes a first step to analyze reputation effects when the short-run players do not have detailed

information about the patient player’s history. I study reputation models where each short-run player only

observes some summary statistics of the patient player’s last K actions but cannot observe the exact sequence

of these actions. This stands in contrast to the canonical reputation model of Fudenberg and Levine (1989) as

well as existing reputation models with limited memories such as Liu and Skrzypacz (2014) and Pei (2023),

all of which assume that the short-run players can observe the exact sequence of the patient player’s actions.

When the short-run players have short memories, it is unclear whether the patient player can still benefit

from building reputations. This is because the short-run players may not be convinced that the patient player

will sustain his reputation in the future if they can only observe his behavior in the last few periods.

Nevertheless, I show that in a natural class of games, the patient player can secure high returns from build-

ing reputations regardless of his opponents’ memory length K. This stands in contrast to existing reputation

results that require the short-run players to have long enough memories. I also show that the short-run players

can obtain their first-best payoff in all equilibria if and only if their memories are short enough. This stands

in contrast to the canonical reputation model of Fudenberg and Levine (1989) in which the short-run players

can observe the exact sequence of actions and there exist equilibria where they receive low payoffs.

I study an infinitely repeated game between a patient player and a sequence of short-run players. I assume

that players’ stage-game payoffs are monotone-supermodular in the sense that there exists a complete order

on each player’s action set such that (i) the patient player’s payoff decreases in his own action and increases

in his opponent’s action, and (ii) both players’ payoff functions have strictly increasing differences.

My assumption fits, for example, when the patient player’s action is a relationship-specific investment. To

fix ideas, consider the market for customized goods, which takes place on platforms such as eBay, EachNet,

and TMall. Each period, a buyer places an order (e.g., 100 units of some customized products). The seller

decides whether to customize his products according to the buyer’s detailed demands (action H) or to supply

standardized products (action L),1 and the buyer decides whether to renege on her earlier promise by returning

part of the order (action N ) or to keep the entire order (action T ). I model this as the product choice game:2

1Whether the seller supplies products that are customized to buyers’ demands has significant effects on buyers’ reviews in online
markets for customized goods. For example, one buyer wrote in their product review for customized shirts that “The colors printed
were too dull and did not match our vision nor did it match what was ordered.” and another buyer wrote “The printing was incon-
sistent, colors were not as they were online, printing was not fitted correctly on each shirt. Would not purchase again.” Similarly, on
platforms that sell customized furniture, one buyer wrote after posting a one-star review that “I ordered the color beige, and when the
box arrived, I double check to make sure that the color was beige, but when I open the box, the couch is more of a brown color.”

2My baseline model focuses on the case in which players move simultaneously, or equivalently, the buyer receives no information
about the seller’s current-period action before choosing her action. In Online Appendix I.1, I extend my results to the sequential-
move case where each buyer observes a noisy private signal about the seller’s current-period action before choosing her own action.
The motivation is that major Ecommerce platforms such as EachNet, TMall, and eBay only allow buyers to return the products and
obtain a partial refund within a short timeframe (e.g., in a few days). Although a buyer may eventually learn about the seller’s action
against her, she may only receive a noisy signal about the seller’s action against her before the return and refund deadline.
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with v ∈ (0, 1− c), c > 0, and x ∈ (0, 1).

Intuitively, producing customized products costs the seller more since he needs to finetune the production

process, where c is the cost difference. The buyer has less incentive to return products that are customized to

her needs. If the buyer returns part of the order, then the seller needs to give her a partial refund and then sell

the returned products on the spot market. Products that are customized to a particular buyer are valued less

by the market relative to the standardized ones. Hence, the seller recoups less value from selling customized

products on the spot market, with the difference denoted by v > 0. Hence, the seller’s net cost of choosing H

is c when the buyer chooses T , which is strictly less than his net cost c+ v when the buyer chooses N .

The patient player privately observes his type: He is either a commitment type who chooses his highest

action (in the example, action H) in every period, or a strategic type who maximizes his discounted average

payoff. The patient player’s reputation is the probability his opponents assign to the commitment type.

My baseline model assumes that each short-run player can only observe the number of times that the

patient player took each of his actions in the last K ∈ N periods but not the exact sequence of these K

actions. In order to be consistent with the existing literature on reputation games with limited memories, such

as Liu (2011), Liu and Skrzypacz (2014), and Levine (2021), I make a standard assumption that the short-run

players cannot directly observe calendar time, or equivalently, how long the game has lasted. They have a

prior belief about calendar time and update their beliefs via Bayes rule after observing their histories.

Theorem 1 shows that as long as K is at least 1, the patient player receives at least his commitment payoff

(in the example, 1 − c) in every Nash equilibrium, and that he can secure this payoff by taking his highest

action in every period. To the best of my knowledge, Theorem 1 is the first reputation result that allows for

arbitrary memory length, and in particular, it allows the short-run players to have arbitrarily short memories.

This aspect of my result stands in contrast to the existing reputation results which assume that the short-run

players have infinite memories (e.g., Fudenberg and Levine 1989) or long enough memories (e.g., Theorem

2 in Liu and Skrzypacz 2014). My result contributes to the reputation literature by showing that in a natural

class of games, the patient player can secure high returns from building reputations even when his opponents

do not have long memories and can only observe some summary statistics of his recent actions.

The challenge to prove Theorem 1 comes from the observation that the short-run players may have ar-

bitrarily short memories and cannot observe everything their predecessors observe. As a result, the standard

arguments in Fudenberg and Levine (1989,1992), Sorin (1999), and Gossner (2011) do not apply.

My proof establishes a no-back-loop property, that it is never optimal for the patient player to milk his
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reputation when it is strictly positive and later restore his reputation. Intuitively, since the patient player’s

payoff increases in the short-run players’ action but decreases in his own action, he has an incentive to restore

his reputation only if the short-run players take higher actions after he does that. Since the patient player’s

payoff is supermodular, he has a stronger incentive to take higher actions when the short-run players’ actions

are higher. Hence, if it is optimal for the patient player to restore his reputation when the short-run players

take a lower action, then it is not optimal for him to milk his reputation when the short-run players take a

higher action.

The no-back-loop property implies that in every equilibrium, there is at most one period over the infinite

horizon where the patient player took his highest action in all of the last K periods but will take a lower action

in the current period. Since the commitment type takes the highest action in every period, the short-run players

believe that the patient player will take the highest action with probability close to one after they observe him

taking the highest action in all of the last K periods. This provides the short-run players an incentive to play

a best reply against the highest action. Therefore, the patient player obtains approximately his commitment

payoff once he deviates to playing the highest action in every period and his equilibrium payoff must be

greater than his payoff under any deviation.

Next, I examine the short-run players’ welfare. This is not covered by Theorem 1, which only shows that

the patient player will obtain his commitment payoff if he builds a reputation. However, there might exist

other strategies that give the patient player weakly higher payoffs. As a result, it is unclear whether he will

build a reputation in equilibrium and whether the short-run players can attain a high welfare.

My next set of results establish an equivalence between (i) the short-run players’ memory length K being

lower than some cutoff, (ii) the patient player taking his highest action in almost all periods in all equilibria,

and (iii) the short-run players approximately obtaining their first-best welfare in all equilibria. I also show

that when K is below the cutoff, the patient player will take his highest action with probability close to one

except for the initial few periods and periods in the distant future that have negligible payoff consequences.

Take the product choice game example. The intuition is that an increase in K has two effects on the

patient player’s incentives. First, once he chooses L, more short-run players can observe it when K is larger,

in which case more of them have the ability to punish him. However, a larger K also makes it more difficult

to motivate the short-run players to execute the punishment. To see this, suppose that the short-run players

believe that the patient player will play L in periods K − 1, 2K − 1, ... and will play H in other periods. If a

short-run player observes that L was played once in the last K periods, then she knows that the patient player

is the strategic type. According to Bayes rule, she believes that the patient player will play L in the current

period with probability close to 1
K . When K is large, 1

K is small, so a short-run player who does not observe
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calendar time believes that it is unlikely that the patient player will play L in the current period, and thus has

no incentive to play N . If the short-run players play T when L occurred once in the last K periods, then the

patient player prefers playing L once every K periods to playing H in every period, making the short-run

players’ beliefs self-fulfilling. This leads to an equilibrium where the patient player chooses L periodically.

When K is small, I show that in every equilibrium, the patient player’s payoff is bounded below his

commitment payoff after he loses his reputation. Since Theorem 1 implies that the patient player can secure

his commitment payoff by taking the highest action in every period, he will do so in all equilibria.

My proof introduces new techniques that can characterize the common properties of the patient player’s

behavior in all equilibria. Some of my arguments require no assumption on players’ payoffs (e.g., Lemma

B.1, B.2 and B.3), which are portable to repeated games where players observe random samples of their

opponents’ past actions and repeated games where players use finite automaton strategies.

This paper contributes to the literature on reputations with limited memories, cooperation under limited

information, and the sustainability of reputations. In contrast to the existing reputation models with limited

memories such as Liu (2011), Liu and Skrzypacz (2014), and Pei (2023), I study reputation models in which

the short-run players cannot observe the exact sequence of actions.3 In contrast to the existing reputation

results that require long enough memories, I show that the patient player can secure high payoffs regardless of

his opponents’ memory. My results also shed light on the effects of memory length on the short-run players’

welfare which, to the best of my knowledge, has not been examined in the existing reputation literature.4

My paper is also related to the literature on sustaining cooperation when players have limited information

about the game’s history. This has been studied in repeated games with random matching by Kandori (1992),

Ellison (1994), Takahashi (2010), Heller and Mohlin (2018), and Clark, Fudenberg and Wolitzky (2021). Most

of these papers focus on the repeated prisoner’s dilemma when all players are patient and provide conditions

on the monitoring technology under which either a folk theorem holds or players obtain their minmax payoffs

in all equilibria.5 In contrast, I study repeated games between a patient player and a sequence of short-run

players with one-sided lack of commitment (e.g., product choice games) rather than the prisoner’s dilemma.

My results provide conditions under which players receive high payoffs in all equilibria.

Bhaskar and Thomas (2019) study a repeated complete information game between a patient player and
3Levine (2021) assumes that the short-run players have 1-period memory, that is K = 1, in which case whether they can observe

the exact sequence of the last K actions is irrelevant. In Jehiel and Samuelson (2012), the short-run players mistakenly believe that
the strategic-type of the patient player uses a stationary strategy. In contrast, the short-run players in my model understand that the
patient player’s behavior when he has a positive reputation can be different from his behavior after he has lost his reputation.

4Kaya and Roy (2022) study a repeated signaling game where the receivers’ payoffs depend on the sender’s type. They show that
longer memories encourage the low-quality sender to imitate the high-quality one. In contrast, the short-run players’ payoff depends
only on players’ actions in my model and longer memories undermine the patient player’s incentive to imitate the commitment type.

5For games with general payoffs, see Deb (2020), Deb, Sugaya and Wolitzky (2020), and Sugaya and Wolitzky (2020).
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a sequence of short-run players. They assume that the short-run players do not have any information about

actions that were taken more than K periods ago. They construct information structures under which players

can cooperate in some equilibria. By contrast, I study a repeated incomplete information game and provide

conditions under which the short-run players approximately attain their first-best payoff in all equilibria.

Ekmekci (2011) and Vong (2022) focus on games in which there is no complementarity in players’ actions

and construct rating systems under which there exists an equilibrium where the patient player exerts effort in

almost all periods. Although I do not explicitly study an information design problem, my results imply that

when players’ actions are complements, the short-run players can attain their highest feasible payoff in all

equilibria when they can only observe the summary statistics of the patient player’s recent actions.

My results also contribute to the literature on reputation sustainability. Theorem 2 focuses on a novel

notion of reputation sustainability, that whether the patient player will take his commitment action with dis-

counted frequency close to 1 in all equilibria. Compared to the criteria in Cripps, Mailath and Samuelson

(2004) which focuses on the patient player’s behavior and reputation as t → +∞, my notion of sustainability

is better suited for evaluating the short-run players’ welfare and social welfare.6 Pei (2020) and Ekmekci

and Maestri (2022) study interdependent value models and provide conditions under which the patient player

takes his commitment action in almost all periods in all equilibria. In contrast, I study a private value model

in which the short-run players cannot observe the exact sequence of actions, and therefore, cannot fine-tune

their punishments based on the details of the game’s history. The patient player has stronger incentives to

sustain his reputation since he will be punished at a larger set of histories after he loses his reputation.

2 Baseline Model

Time is indexed by t = 0, 1.... A long-lived player 1 interacts with a different player 2 in each period. After

each period, the game ends with probability 1 − δ with δ ∈ (0, 1), after which players’ stage-game payoffs

are normalized to 0. Player 1 is indifferent between receiving one unit of utility in the current period and in

the next period, so he discounts his future payoffs by δ. In period t, player 1 chooses at ∈ A and player 2t

chooses bt ∈ B simultaneously from finite sets A and B. My baseline model focuses on games where player

2’s action choice is binary, that is, |B| = 2.7 This is a primary focus of the reputation literature, including

Mailath and Samuelson (2001), Ekmekci (2011), Liu (2011), and Levine (2021). Players’ stage-game payoffs
6Ekmekci, Gossner and Wilson (2012) and Liu and Skrzypacz (2014) propose an alternative notion of reputation sustainability, that

the patient player can secure his commitment payoff at every history in every equilibrium, rather than just securing his commitment
payoff in period 0. Theorem 1 implies that in my model, reputation is sustainable under their notion as long as K ≥ 1.

7I discuss extensions of my theorems to games where |B| ≥ 3 in Section 4, which include but are not limited to the games studied
by Liu and Skrzypacz (2014) where player 2 has a unique best reply to every α ∈ ∆(A).
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are u1(at, bt) and u2(at, bt), which satisfy the following monotone-supermodularity assumption:

Assumption 1. There exist a complete order ≻A on A and a complete order ≻B on B such that first,

u1(a, b) is strictly increasing in b and is strictly decreasing in a, and second, both u1(a, b) and u2(a, b) have

strictly increasing differences in a and b.

The product choice game satisfies Assumption 1 once players’ actions are ranked according to H ≻A L

and T ≻B N . The requirements that (i) u1(a, b) strictly increases in b and strictly decreases in a and (ii)

u2(a, b) has strictly increasing differences, are standard in the literature and are also assumed in Ekmekci

(2011), Liu (2011), and Liu and Skrzypacz (2014). The assumption that u1(a, b) has strictly increasing

differences stands in contrast to those papers, which assume that u1(a, b) has weakly decreasing differences.

Before choosing at, player 1 observes all the past actions ht ≡ {as, bs}t−1
s=0 and his perfectly persistent

type ω ∈ {ωs, ωc}. Let ωc stand for a commitment type who plays his highest action a∗ ≡ maxA, or his

commitment action, in every period. Let ωs stand for a strategic type who maximizes his discounted average

payoff
∑∞

t=0(1 − δ)δtu1(at, bt). Let π0 ∈ (0, 1) be the prior probability of the commitment type. Let πt be

the probability that player 2t’s belief assigns to the commitment type, which I call player 1’s reputation.

Before choosing bt, player 2t only observes the number of times that player 1 took each of his actions in

the last min{t,K} periods, where K ∈ {1, 2, ...} is a parameter that measures the society’s memory length.

An implication is that player 2 does not know the order with which player 1 took his last K actions. For

example, if K = 2, then player 2 cannot distinguish between (a1, a2) = (a∗, a′) and (a1, a2) = (a′, a∗). This

is the modeling innovation relative to Liu (2011), Liu and Skrzypacz (2014), and Pei (2023), which assume

that the short-run players can perfectly observe the exact sequence of the patient player’s last K actions.

I also assume that player 2 cannot directly observe calendar time.8 As in Liu and Skrzypacz (2014), player

2 has a full support prior belief about calendar time and update their beliefs using Bayes rule after observing

their histories. The standard interpretation is that due to limited memories, it is hard for the short-run players

to know exactly how long the game has lasted, especially when the game has lasted for much longer relative to

their memories. Nevertheless, the short-run players who arrive before period K can perfectly infer calendar

time based on the history they observe. This is consistent with my formulation, since the first K players

observe fewer than K actions, so their posterior beliefs will assign probability 1 to the true calendar time.

What is a reasonable prior belief about calendar time? Since the game ends with probability 1 − δ after

each period, for every t ∈ {0, 1, ...}, the probability that player 2’s prior assigns to calendar time being t+ 1

8This is also assumed in Liu and Skrzypacz (2014), Section 2 in Acemoglu and Wolitzky (2014), Cripps and Thomas (2019),
Levine (2021), among many others. Liu (2011) and Heller and Mohlin (2018) focus on stationary equilibria where strategies are
required to be time-independent, which is equivalent to a model where the short-run players have an improper uniform prior.
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should equal δ times the probability her prior assigns to calendar time being t. The unique prior belief that

satisfies this restriction for every t is the one that assigns probability (1 − δ)δt to calendar time being t. Hu

(2020) provides a foundation for this exponential prior by constructing a distribution over entry processes.

The set of player 1’s histories is H1 ≡ {(as, bs)t−1
s=0 s.t. t ∈ N and (as, bs) ∈ A × B} with a typical

element denoted by ht. The set of player 2’s histories is H2 ≡ {(n1, ..., n|A|) ∈ N|A| s.t. n1 ≥ 0, ..., n|A| ≥

0 and n1 + ... + n|A| ≤ K}, where n1, ..., n|A| denote the number of times that player 1 played each of his

actions in the last K periods. The strategic type of player 1’s strategy is σ1 : H1 → ∆(A). Player 2’s strategy

is σ2 : H2 → ∆(B). Let Σi be the set of player i’s strategies, where i ∈ {1, 2}. Under my formulation,

player 2’s action depends only on the history she observes. For example, player 2t and player 2t+1 will take

the same (possibly mixed) action if they observe the same history. This is a standard requirement in reputation

models with limited memories, see for example Liu (2011), Liu and Skrzypacz (2014), and Levine (2021).

3 Main Results

Section 3.1 shows that the patient player will receive at least his commitment payoff in all equilibria regardless

of his opponent’s memory length. My proof uses a no-back-loop property that applies to all of the patient

player’s best replies in the repeated game. Section 3.2 shows that the short-run players can approximately

attain their highest feasible payoff in all equilibria and that the patient player will play a∗ in almost all periods

in all equilibria if and only if the short-run players’ memory length is lower than some cutoff.

3.1 Reputation Result for Arbitrary Memory Length

Let b∗ denote player 2’s lowest best reply to a∗. Let u1(a∗, b∗) be player 1’s commitment payoff. Let a ≡

minA denote player 1’s lowest action. Let b denote player 2’s lowest best reply to a. For every π0 ∈ (0, 1),

there exists δ(π0) ∈ (0, 1) such that for every δ > δ(π0), each of player 2’s best reply to mixed action

{
1− (1− δ)(1− π0)

π0

}
a∗ +

(1− δ)(1− π0)

π0
a

is no less than b∗. Such δ(π0) ∈ (0, 1) exists for every π0 ∈ (0, 1) since b∗ is the lowest best reply to a∗, the

value of (1−δ)(1−π0)
π0

converges to 0 as δ → 1, and best reply correspondences are upper-hemi-continuous.

Theorem 1. For any π0 ∈ (0, 1), δ > δ(π0), and K ≥ 1, player 1’s payoff in any Nash equilibrium is at

least

(1− δK)u1(a
∗, b) + δKu1(a

∗, b∗). (3.1)
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The payoff lower bound converges to u1(a
∗, b∗) as δ → 1. Therefore, Theorem 1 identifies a class of

games such that regardless of the short-run players’ memory length K,9 a patient player can secure at least

his commitment payoff u1(a∗, b∗) by building a reputation for playing a∗. As will become clear later in the

proof, at every history of every equilibrium, if the patient player deviates by playing a∗ in every subsequent

period, then his continuation value after K periods is at least u1(a∗, b∗). My result stands in contrast to

the repeated complete information game without any commitment type, in which there are equilibria where

players play (a, b) in every period and the patient player receives his minmax payoff u1(a, b).

To the best of my knowledge, Theorem 1 is the first reputation result in the literature that allows the short-

run players to have arbitrary memory length, and in particular, they may have arbitrarily short memories. This

aspect of my result stands in contrast to the existing reputation results which require the short-run players to

have infinite memories (e.g., Fudenberg and Levine 1989), or long enough memories (e.g., Theorem 2 in Liu

and Skrzypacz 2014),10 or infinite memories about some noisy signal that can statistically identify the patient

player’s action (e.g., Fudenberg and Levine 1992, Gossner 2011, Theorem 2 in Pei 2023).

Since the short-run players have limited memories and cannot observe everything their predecessors ob-

serve, the standard techniques to show reputation results such as the ones in Fudenberg and Levine (1989,

1992), Sorin (1999), and Gossner (2011) do not apply. To overcome these challenges, my proof uses an ob-

servation called the no-back-loop property, that it is never optimal for the patient player to milk his reputation

when it is strictly positive and later restore his reputation.11 I state this observation as a lemma, provide a

heuristic explanation, and use this result to show Theorem 1 by the end of this section.

Let H∗
1 ≡

{
(as, bs)

t−1
s=0 such that t ≥ K and (at−K , ..., at−1) = (a∗, ..., a∗)

}
be the set of player 1’s

histories where calendar time is at least K and his last K actions were a∗. Let H1(σ1, σ2) be the set of

histories that occur with positive probability under (σ1, σ2). Let U1(σ1, σ2) be player 1’s discounted average

payoff from (σ1, σ2). I say that strategy σ̂1 best replies to σ2 if σ̂1 ∈ argmaxσ1∈Σ1 U1(σ1, σ2).

No-Back-Loop Lemma. For every σ2 : H2 → ∆(B) and pure strategy σ̂1 : H1 → A that best replies

to σ2, there does not exist any ht ∈ H1(σ̂1, σ2)
⋂
H∗

1 such that when player 1 uses strategy σ̂1, he plays an

action that is not a∗ at ht and reaches another history that belongs to H1(σ̂1, σ2)
⋂
H∗

1 in the future.

My no-back-loop lemma rules out situations depicted in the left panel of Figure 1, that is, player 1’s best
9When K = +∞, one can use Fudenberg and Levine (1989)’s argument to show that player 1 can secure payoff approximately

u1(a
∗, b∗) in every equilibrium as δ → 1. My theorem focuses on the novel case in which K is finite.

10Theorem 2 in Liu and Skrzypacz (2014) shows that for every π0 > 0, there exists K̂ ∈ N such that the patient player can
approximately secure his commitment payoff in every equilibrium when K > K̂. That is, K needs to be large enough.

11My no-back-loop property is reminiscent of the bad news model in Board and Meyer-ter-Vehn (2013), in which the long-run
player has a stronger incentive to exert effort when he has a higher reputation. This implies that the high-reputation state is absorbing
in their model. Although there are similarities, my no-back-loop property does not imply that the high-reputation state is absorbing.
In fact, there exist equilibria in which player 1 has a strict incentive to play actions other than a∗ when his last K actions were a∗.
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(a′′, a∗, ..., a∗) (a∗, ..., a∗, a′)

(a∗, ..., a∗) (a∗, ..., a∗) (a∗, ..., a∗)

(a′′, a∗..., a∗) (a∗, ..., a∗, a′′)
a′a∗

Player 1 uses strategy σ̂1 that
violates the no-back-loop property

Player 1 uses Deviation A

a′

a∗

a∗

a∗

a′′

Player 1 uses Deviation B

Figure 1: The gray circle represents a history that belongs to H∗
1. The white circle represents a history where

player 1 is one-period-away from H∗
1. The dotted circle represents a history that is reached after player 1

plays a′ at the gray circle. The lined circles represent histories that are reached when player 1 plays σ̂1. The
cross-hatched circles represent histories where a′′ occurred once and a∗ occurred K − 1 times.

reply σ̂1 asks him to play a′( ̸= a∗) when his last K actions were a∗ (the gray circle) and after a finite number

of periods, returns to a history where his last K actions were a∗. This property applies to all of player 1’s best

replies in the repeated game under any discount factor, not just to player 1’s equilibrium strategies.

Due to two modeling differences, the reputation cycles that my lemma ruled out occur in all equilibria

in the reputation model of Liu and Skrzypacz (2014). First, they assume that u1 has strictly decreasing

differences while I assume that u1 has strictly increasing differences. Second, they assume that player 2 can

perfectly observe the exact sequence of player 1’s last K actions while I assume that player 2 cannot observe

the exact sequence of actions. In Online Appendices G and H, I discuss two alternative models which are only

one-step-away from both my baseline model and the model of Liu and Skrzypacz (2014).

My lemma does not follow from existing results on supermodular games, most of which focus on static

games. The intuition is that even when player 1’s stage-game payoff u1(a, b) has strictly increasing differ-

ences, it is not necessarily the case that when the game is played repeatedly, player 1 has a stronger incentive

to play higher actions at histories where player 2’s actions are higher. This is because player 1’s current-period

action affects future player 2’s observations, which in turn affects future player 2’s actions as well as player

1’s continuation value. I explain the ideas behind my proof. The detailed calculations are in Appendix A.

Proof Sketch: Since player 2 has no information about player 1’s action more than K periods ago, it is without

loss to focus on player 1’s pure-strategy best replies that depend only on his last K actions, including the order

of these K actions. Suppose by way of contradiction that there exists a pure strategy σ̂1 that best replies to σ2
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such that σ̂1 plays a′ ( ̸= a∗) at a history ht where (at−K , ..., at−1) = (a∗, ..., a∗), and after a finite number of

periods, reaches a history hs that satisfies (as−K , ..., as−1) = (a′′, a∗, ..., a∗) where a′′ ̸= a∗, and then plays

a∗ at hs after which all of the last K actions are a∗ again. Note that a′ and a′′ can be the same action.

I depict strategy σ̂1 in the left panel of Figure 1, where ht is represented by the gray circle and hs is

represented by the white circle. I propose two deviations for player 1 starting from the white circle:

• Deviation A: Plays a′ at the white circle, and then follows strategy σ̂1.

• Deviation B: Plays a′′ at the white circle, then plays a∗ for K − 1 consecutive periods after which he

will reach the white circle again, and then follows strategy σ̂1.

I depict these deviations in Figure 1. Next, I compare player 1’s continuation value at the white circle when

he uses σ̂1 to those under the two deviations. I argue that at least one of these deviations is strictly profitable.

1. Compared to σ̂1, Deviation A takes a lower-cost action a′ at the white circle, skips the gray circle, and

frontloads the payoffs along the dotted lines (i.e., the dotted, lined, and white circles). If player 1 prefers

σ̂1 to Deviation A, then his average payoff from the circles along the dotted lines (i.e., the payoff that

Deviation A frontloads) must be strictly lower than his stage-game payoff at the gray circle.

2. Compared to σ̂1, Deviation B takes a lower-cost action a′′ at the white circle, skips the gray circle, and

induces payoffs along the dashed lines in the next K − 1 periods (i.e., the cross-hatched circles). If

player 1 prefers σ̂1 to Deviation B, then his average payoff along the dashed lines must be strictly less

than a convex combination of his payoff at the gray circle and his average payoff along the dashed lines.

If σ̂1 is player 1’s best reply, then both Deviation A and Deviation B are unprofitable. Therefore, player 1’s

stage-game payoff at the gray circle must be strictly greater than his average payoff along the dashed lines.

If σ̂1 best replies to σ2, then player 1 prefers a′ to a∗ at the gray circle and prefers a∗ to a′ at the white

circle. No matter whether player 1 is currently at the gray circle or at the white circle, he will reach the gray

circle after playing a∗ and will reach the dotted circle after playing a′. Hence, the difference in player 1’s

incentives at the gray circle and at the white circle cannot be driven by his continuation value. This implies

that such a difference in incentives can only be driven by player 1’s stage-game payoff, which is affected by

player 2’s actions at the gray circle and at the white circle. Since u1(a, b) has strictly increasing differences

and a∗ ≻A a′, the Topkis Theorem implies that it cannot be the case that player 2’s mixed action at the gray

circle strictly FOSDs her mixed action at the white circle. Since |B| = 2, player 2’s action at the white circle

weakly FOSDs her action at the gray circle. Since player 2 cannot observe the order of player 1’s last K

actions, player 2’s action at every circle along the dashed line coincides with her action at the white circle.
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This leads to a contradiction since on the one hand, player 1’s stage-game payoff at the gray circle is

strictly greater than his average payoff along the dashed lines, and on the other hand, player 2’s action at the

white circle weakly FOSDs her action at the gray circle and player 1’s stage-game payoff is strictly increasing

in player 2’s action. This contradiction implies that at the white circle, either Deviation A or Deviation B

yields a strictly higher payoff for player 1 compared to strategy σ̂1. Therefore, σ̂1 cannot be a best reply.

In the remainder of this section, I use the no-back-loop lemma to show Theorem 1. Let Σ∗
1 denote the

set of player 1’s pure strategies that satisfy the no-back-loop property. For any Nash equilibrium (σ̃1, σ2), the

no-back-loop lemma implies that every pure strategy in the support of σ̃1 belongs to Σ∗
1.

Proof of Theorem 1: For every t ∈ N, let Et denote the event that player 1 is the strategic type and no action

other than a∗ was played from period max{0, t−K} to period t− 1. Fix any σ1 ∈ Σ∗
1 and σ2, let pt(σ1, σ2)

denote the ex ante probability of event Et when the strategic type of player 1 plays σ1 and player 2 plays

σ2. Since player 1 is the commitment type with probability π0, we know that pt(σ1, σ2) ≤ 1 − π0 for every

t ∈ N. Let N∗(σ1, σ2) ⊂ N denote the set of calendar times t such that pt(σ1, σ2) > 0 and t ≥ K. For every

t ∈ N∗(σ1, σ2), let qt(σ1, σ2) denote the probability that player 1 does not play a∗ in period t conditional on

event Et. The definition of Σ∗
1 implies that

∑
t∈N∗(σ1,σ2)

pt(σ1, σ2)qt(σ1, σ2) ≤ 1− π0.

Fix any arbitrary Nash equilibrium (σ̃1, σ2). For every σ1 ∈ Σ∗
1, let σ̃1(σ1) be the probability that σ̃1

assigns to σ1, which is well-defined since Σ∗
1 is a countable set. Recall that player 2’s prior belief assigns

probability (1 − δ)δt to the calendar time being t. According to Bayes rule, at any history after period

K where all of player 1’s last K actions were a∗, player 2 believes that player 1’s action is not a∗ with

probability ∑
σ1∈Σ∗

1
σ̃1(σ1)

∑
t∈N∗(σ1,σ2)

(1− δ)δtpt(σ1, σ2)qt(σ1, σ2)

π0
∑+∞

t=K(1− δ)δt +
∑

σ1∈Σ∗
1
σ̃1(σ1)

∑
t∈N∗(σ1,σ2)

(1− δ)δtpt(σ1, σ2)
. (3.2)

The denominator of (3.2) is at least π0δK . Since
∑

t∈N∗(σ1,σ2)
pt(σ1, σ2)qt(σ1, σ2) ≤ 1 − π0 for every

σ1 ∈ Σ∗
1, Σ∗

1 is a countable set, and t ≥ K for every t ∈ N∗(σ1, σ2), the numerator of (3.2) is no more than

(1 − δ)(1 − π0)δ
K . This suggests that (3.2) is no more than (1−δ)(1−π0)

π0
. The definition of δ(π0) together

with u2(a, b) having strictly increasing differences implies that when δ > δ(π0), actions strictly lower than

b∗ are not optimal for player 2 when player 1’s last K actions were a∗. Moreover, since b is player 2’s

lowest best reply to player 1’s lowest action a, actions strictly lower than b are never optimal for player 2.

Hence, in any Nash equilibrium, if player 1 plays a∗ in every period, his discounted average payoff is at least

(1− δK)u1(a
∗, b) + δKu1(a

∗, b∗). This is a lower bound for player 1’s equilibrium payoff.
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3.2 Equilibrium Behavior & The Short-Run Players’ Welfare

Although Theorem 1 shows that player 1 can secure his commitment payoff u1(a∗, b∗) if he plays a∗ in every

period, it does not imply that he will actually play a∗ in equilibrium since he may have other strategies that

lead to weakly higher payoffs. In addition, Theorem 1 also remains silent about the short-run players’ welfare.

The results in this section examine the patient player’s behavior and the short-run players’ welfare.

Since the game ends with probability 1 − δ after each period, the sum of the short-run players’ payoffs is

Eσ
[∑+∞

t=0 δ
tu2(at, bt)

]
, where Eσ[·] denotes the expectation induced by σ ≡ (σ1, σ2). I use the following

normalized sum of the short-run players’ payoffs, denoted by Uσ
2 , to measure their welfare:

Uσ
2 ≡ Eσ

[ +∞∑
t=0

(1− δ)δtu2(at, bt)
]
. (3.3)

By definition, Uσ
2 =

∑
(a,b)∈A×B F σ(a, b)u2(a, b) where

F σ(a, b) ≡ Eσ
[ +∞∑
t=0

(1− δ)δt1{at = a, bt = b}
]

(3.4)

is called the discounted frequency (or the occupation measure) of action profile (a, b). Hence, the short-run

players’ welfare depends on σ only through the discounted action frequencies {F σ(a, b)}(a,b)∈A×B .

Theorem 2. There exists a cutoff K ∈ N that depends only on (u1, u2) such that:

1. There exists a constant C ∈ R+ that is independent of δ such that for every 1 ≤ K < K, we have∑
b⪰b∗ F

σ(a∗, b) ≥ 1− (1− δ)C in every Nash equilibrium σ under K and δ.

2. There exists η > 0 such that for every K ≥ K, there exists δ ∈ (0, 1) such that for every δ > δ, there

exists a PBE with strategy profile σ such that
∑

b∈B F σ(a∗, b) ≤ 1− η.

The proof is in Appendix B, with an intuitive explanation provided by the end of this section. Theorem 2

implies that (i) player 1 plays a∗ and player 2’s action is at least b∗ in almost all periods in all Nash equilibria

when player 2’s memory K is lower than some cutoff K, and (ii) there exists at least one PBE in which player

1 plays a∗ with frequency bounded below 1 when K is above the cutoff. The presence of the commitment

type is necessary for the first part of this result, since in a repeated complete information game without any

commitment type, there exist equilibria where players play (a, b) in every period regardless of δ and K.

Although Theorem 2 focuses on player 1’s discounted action frequencies, it leads to a sharp prediction

on the dynamics of player 1’s behavior and reputation when K is small. My next result shows that when K
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is below the cutoff K, the strategic type of player 1 has a strictly positive reputation with probability close

to 1 after the initial few periods, after which he will play a∗ with probability close to 1 in every period until

calendar time t is so large that δt is close to 0. I state this as Corollary 1 with proof in Online Appendix C.

Corollary 1. Suppose K < K. For every ε > 0, there exist a constant Cε ∈ R+ and δ ∈ (0, 1) such that

for every δ > δ, every equilibrium under δ, and every t ∈ N that satisfies δt ∈ (ε, 1− ε), the probability that

ht ∈ H∗
1 is at least 1− (1− δ)Cε and player 1 plays a∗ with probability at least 1− (1− δ)Cε in period t.

Theorem 2 also implies that when K is below the cutoff K, the short-run players’ welfare is arbitrarily

close to u2(a
∗, b∗) in all Nash equilibria. When u2(a, b) is strictly increasing in a, u2(a∗, b∗) is the short-run

players’ highest feasible payoff. This is because u2(a
∗, b) > u2(a, b) for every a ̸= a∗ and b ∈ B, and

u2(a
∗, b∗) ≥ u2(a

∗, b) for every b ∈ B given that b∗ best replies to a∗. Theorem 3 provides a necessary and

sufficient condition under which the short-run players attain their highest feasible payoff in all equilibria.

Theorem 3. Suppose (u1, u2) satisfies Assumption 1 and u2(a, b) is strictly increasing in a.

1. There exists a constant C0 ∈ R+ that is independent of δ such that for every 1 ≤ K < K, we have

Uσ
2 ≥ u2(a

∗, b∗)− C0(1− δ) in every Nash equilibrium σ under K and δ.

2. There exists ξ > 0 such that for every K ≥ K, there exists δ ∈ (0, 1) such that for every δ > δ, there

exists a PBE with strategy profile σ such that Uσ
2 < u2(a

∗, b∗)− ξ.

The proof of Theorem 3 follows from that of Theorem 2, which I omit in order to avoid repetition.

Theorem 3 implies that the short-run players obtain their highest feasible payoff in all equilibria when K is

below the cutoff K but their payoffs are bounded below first best in some equilibria when K is above the

cutoff. Therefore, longer memories, modeled as a larger K, may lower the short-run players’ welfare.

Two natural questions follow from Theorems 2 and 3. First, how to compute the cutoff K from the

primitives u1 and u2? Second, how large can η be? My proof of Theorems 2 and 3 sheds light on these

questions as well. To preview the answers, I say that a∗ is player 1’s optimal pure commitment action if

u1(a
∗, b∗) > max

a̸=a∗
max

b∈BR2(a)
u1(a, b). (3.5)

If (u1, u2) violates (3.5), then K = 1 and η can be as large as 1 for every K ≥ 1. That is, the frequency

with which player 1 plays a∗ is 0 in some PBE no matter how small K is.

The interesting case is the one in which (u1, u2) satisfies (3.5), that is, a∗ is player 1’s optimal pure

commitment action. The cutoff K is the smallest integer K̂ ∈ N such that b∗ best replies to the mixed action
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K̂−1

K̂
a∗ + 1

K̂
a′ for some a′ ̸= a∗. Moreover, η can be as large as m

K , where m ∈ {1, 2, ...,K} is such that b∗

best replies to the mixed action K−m
K a∗ + m

K a′ for some a′ ̸= a∗. As K → +∞, η converges to η∗ where

η∗ is the largest η̃ such that b∗ best replies to (1− η̃)a∗ + η̃a′ for some a′ ̸= a∗. In the product choice game,

players’ payoffs satisfy (3.5) since H is player 1’s highest action and committing to play H results in a strictly

higher payoff for player 1 relative to committing to play L. The above algorithm implies that K =
⌈

1
1−x

⌉
.

However, due to integer constraints, it is not necessarily the case that the short-run players’ worst equilib-

rium payoff decreases in K. Nevertheless, as I explained earlier that when K → +∞, the lowest frequency

with which player 1 plays a∗ converges to η∗ where η∗ is the largest η̃ such that b∗ best replies to (1−η̃)a∗+η̃a′

for some a′ ̸= a∗. Hence, there exists a uniform bound u′ < u2(a
∗, b∗) such that for every K ≥ K, there

exists an equilibrium where the short-run players’ welfare is no more than u′. In contrast, when K is below

K, the short-run players’ welfare is arbitrarily close to u2(a
∗, b∗) in all equilibria.

Mechanism Behind Theorems 2 and 3: I use the product choice game to explain the mechanism behind

Theorems 2 and 3. Intuitively, a longer memory has two effects on the patient player’s reputational incentives.

An obvious effect is that when K is larger, each of the patient player’s actions is observed by more short-run

players, so that he can be punished by more people after he plays L. This encourages him to play H .

However, there is another countervailing effect, which is that a larger K makes it more difficult to motivate

the short-run players to execute the punishment. To the best of my knowledge, this effect has not been

discussed in the existing reputation literature. I explain this novel effect using a thought experiment.

Suppose that the short-run players believe that the strategic type of player 1 will play L in periods K −

1, 2K − 1, 3K − 1, ... and will play H in other periods. After they observe that L was played once in the last

K periods, their posterior belief assigns probability close to 1
K to L being played in the current period. Hence,

the short-run players have an incentive to play T at such histories only when x ≤ K−1
K , or equivalently when

K ≥ 1
1−x . If this is the case, then player 1 prefers playing L once every K periods to playing H in every

period, making the short-run players’ beliefs self-fulfilling. If this is not the case (i.e., the short-run players

prefer to play N after observing one L in the last K periods), then playing L once every K periods gives

player 1 a strictly lower payoff compared to playing H in every period, so that in equilibrium, the short-run

players cannot entertain the belief that the strategic type of player 1 will play L once every K periods.

Using similar ideas, one can also show that for every m ∈ {1, 2, ...,K − 1} and a′ ̸= a∗ such that b∗ best

replies to K−m
K a∗ + m

K a′, there exists an equilibrium where in every K consecutive periods, player 1 plays a′

in m periods and plays a∗ in K−m periods, and player 2 plays b∗ when she observes a′ being played at most

m times and a∗ being played at least K −m times in the last K periods.
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Comparison with Fudenberg and Levine (1989): When K < K, my results lead to sharp predictions

not only on the patient player’s equilibrium payoff, but also on his equilibrium behaviors as well as on the

short-run players’ welfare. This aspect of my results stands in contrast to most of the existing results in the

reputation literature, including those in Fudenberg and Levine (1989), that focus exclusively on the patient

player’s payoff but do not lead to sharp predictions on the short-run players’ welfare and players’ behaviors.

For example, in Fudenberg and Levine (1989)’s reputation model where the full history is publicly ob-

served, Li and Pei (2021) characterize the action frequencies that can arise in equilibrium and find that a wide

range of behaviors are plausible. In the product choice game of the introduction, the discounted frequency

with which the patient player plays H can be anything between x(1−c−v)
1−xc−v and 1 and the short-run players’

equilibrium payoff can be anything between their highest feasible payoff 1 and their minmax value 0.

According to Theorem 2, when the short-run players have short memories and cannot observe the exact

sequence of player 1’s actions, the only equilibria that survive are those where player 1 plays a∗ in almost

all periods. It implies that in Fudenberg and Levine (1989)’s model, equilibria where the short-run players

obtain a low payoff rely on strategies that depend either on events that happened in the distant past or on the

fine details of the game’s history. In Online Appendix D, I compare the predictions on player 1’s discounted

action frequency in Fudenberg and Levine (1989)’s model to those in my model under any arbitrary K ∈ N.

Proof Sketch: The idea behind the proof for the second part is contained in the thought experiment, with

details in Appendix B.2. The main challenge is in the proof for the first part. This is because characterizing all

equilibria in a repeated game is not tractable and given that player 2s are Bayesian, their expectation of player

1’s current-period action may not be close to player 1’s action frequency in the last K periods. This suggests

that ruling out the type of equilibria in the thought experiment is insufficient to show that a∗ will be played

with frequency close to 1 in all equilibria. I explain the ideas behind my proof with details in Appendix B.1.

Starting from period K, players’ incentives depend only on player 1’s last K actions. Therefore, I treat

every sequence of player 1’s actions with length K as a state with S ≡ AK the set of states. In order to show

that player 1 plays a∗ in almost all periods, I only need to show that there exists a constant C > 0 such that

the discounted frequency of state s∗ ≡ (a∗, ..., a∗) is at least 1− (1− δ)C in every Nash equilibrium.

For any subset of states S′ ⊂ S, let I(S′) be the probability that the state moves from S\S′ to S′, which

I call the inflow to S′, and let O(S′) be the probability that the state moves from S′ to S\S′, which I call the

outflow from S′. I show that the difference between the inflow to S′ and the outflow from S′ must be small:

|I(S′)−O(S′)| ≤ 1− δ

δ
. (3.6)
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Fix any equilibrium (σ1, σ2), I argue that the inflow to {s∗} and the outflow from {s∗} must be no more

than 2(1−δ)
δ . To see why, let S′ ⊂ S be the set of states such that s′ ∈ S′ if and only if it is optimal for player

1 to reach state s∗ from s′ in finite time. The no-back-loop lemma implies that either player 1 has no incentive

to play actions other than a∗ at s∗ or player 1 never returns to s∗ after playing actions other than a∗ at s∗,

which is the case only if he never reaches states in S′ after leaving s∗. In the first case, the outflow from {s∗}

is 0, so the inflow from {s∗} is no more than 1−δ
δ . In the second case, the inflow to S′ is 0, so the outflow from

S′ is no more than 1−δ
δ . The definition of S′ implies that the inflow to {s∗} is no more than the outflow from

S′, which in turn implies that both the inflow to {s∗} and the outflow from {s∗} are no more than 2(1−δ)
δ .

Let Sk be the set of states such that k of the last K actions were not a∗. By definition, S0 = {s∗}. I show

that for every k ∈ {1, 2, ...,K}, if the probability that the state moves from Sk−1 to Sk and from Sk to Sk−1

are both bounded above by some linear function of 1 − δ, then the probability that the state belongs to Sk

must also be bounded above by some linear function of 1− δ. The previous step implies that the probability

that the state moves from S0 to S1 and from S1 to S0 are low. This implies that states in S1 occur with low

probability, which further implies that the probability that the state moves from S1 to S2 is low. Inequality

(3.6) then implies that the probability that the state moves from S2 to S1 is low. Iterate this argument, one can

obtain that the probability of states other than s∗ is bounded above by a linear function of 1− δ.

4 Concluding Remarks

I analyze reputation games where the short-run players have limited memories and cannot observe the exact

sequence of actions. I show that the patient player receives at least his commitment payoff in all Nash equi-

libria regardless of the short-run players’ memory length. I also show that the patient player will play his

commitment action in almost all periods in all equilibria if and only if the short-run players’ memory length

is lower than some cutoff. I conclude by discussing my modeling assumptions and several extensions.

Games with |B| ≥ 3: In contrast to games where |B| = 2, one can no longer rank any pair of player 2’s

mixed actions via FOSD when |B| ≥ 3. For example, when B = {b1, b2, b3} with b1 ≻B b2 ≻B b3, mixed

actions 1
2b1 + 1

2b3 and b2 cannot be ranked via FOSD. The proof of the no-back-loop lemma sketched in

Section 3 breaks down since player 2’s action at the gray circle does not strictly FOSD her action at the white

circle cannot imply that her action at the white circle weakly FOSDs her action at the gray circle.

Let

B∗ ≡
{
β ∈ ∆(B)

∣∣ there exists α ∈ ∆(A) s.t. β best replies to α
}

(4.1)
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be the set of player 2’s mixed-strategy best replies. The issue I identified does not arise under Assumption 2.

Assumption 2. For every β, β′ ∈ B∗, either β ⪰FOSD β′ or β′ ⪰FOSD β or both.

Assumption 2 is trivially satisfied in games where |B| = 2. When |B| ≥ 3, Assumption 2 is satisfied in

the games studied by Liu and Skrzypacz (2014), where player 2 has a unique best reply to every α ∈ ∆(A).

Under their assumption, all actions in B∗ are pure, so any pair of them can be ranked according to FOSD. A

more general sufficient condition for Assumption 2 is characterized by Quah and Strulovici (2012).

I restate the no-back-loop lemma for games that satisfy Assumptions 1 and 2: For every σ2 : H2 → B∗

and pure strategy σ̂1 : H1 → A that best replies to σ2, there is no ht ∈ H1(σ̂1, σ2)
⋂
H∗

1 such that strategy

σ̂1 plays an action that is not a∗ at ht and reaches a history in H1(σ̂1, σ2)
⋂
H∗

1 in the future.

My proof in Appendix A covers this case. The intuition is that as long as player 2’s action at every history

belongs to B∗, her action at any pair of histories can be ranked via FOSD, and the proof of the no-back-loop

lemma in the two-action case can be directly applied to this more general case.

Prior Belief about Calendar Time: My no-back-loop lemma requires no assumption on the prior belief

about calendar time. My theorems extend to settings where player 2 has an improper uniform prior belief.

Next, I explain how to extend these theorems to settings where player 1’s discount factor differs from the

game’s continuation probability. Suppose player 1 discounts future payoffs for two reasons (i) he is indifferent

between receiving one unit of utility in period t and receiving δ̂ unit of utility in period t−1, and (ii) the game

continues with probability δ after each period. In this model, player 1 discounts future payoffs by δ ≡ δ · δ̂

and player 2’s prior belief assigns probability (1− δ)δ
t

to the calendar time being t ∈ N.

The statement of Theorem 1 remains the same. The statements of Theorems 2 and 3 need to be modified

in order to take into account the difference between the game’s continuation probability δ and player 1’s

discount factor δ, which can be done by replacing δ, F σ(a, b), and Uσ
2 with δ,

F
σ
(a, b) ≡ Eσ

[ +∞∑
t=0

(1− δ)δ
t
1{at = a, bt = b}

]
, (4.2)

and

U
σ
2 ≡ Eσ

[ +∞∑
t=0

(1− δ)δ
t
u2(at, bt)

]
=

∑
(a,b)∈A×B

F
σ
(a, b)u2(a, b). (4.3)

Imperfect Monitoring: I study two extensions that allow for imperfect monitoring. First, I assume that

there is some noisy signal ãt ∈ A about at such that ãt = at with probability 1 − ε, and ãt is drawn

according to some arbitrary distribution α ∈ ∆(A) with probability ε. Player 1 observes the entire history

18



ht = {as, bs, ãs}t−1
s=0. Player 2t only observes the number of times that each signal realization occurred in

the last min{t,K} periods. My baseline model considers a special case in which ε = 0. In Online Appendix

E, I establish a version of my no-back-loop lemma which holds for all α and all small enough ε. This new

no-back-loop lemma can be applied to extend my theorems to settings where ε is small but positive.

Second, I study a model where the short-run players learn from coarse summary statistics, Following

Acemoglu, Makhdoum, Malekian and Ozdaglar (2022), I assume that there exists a partition A ≡ A1∪...∪An

such that player 2t only observes the number of times that player 1’s actions in the last min{t,K} periods

belong to each partition element. My baseline model corresponds to the finest partition of A.

Since u1(a, b) is strictly decreasing in a, the strategic-type of player 1 will never choose action a ∈ Ai if

there exists a′ ∈ Ai such that a ≻A a′. Hence, analyzing the game under an n-partition {A1, ..., An} of A is

equivalent to analyzing a game where player 1 chooses his action from set {minA1, ...,minAn}.

In Online Appendix F, I use this simple observation to show that for any K ∈ N, if there exists a partition

of A under which player 1 plays a∗ with frequency close to one in all equilibria, then player 1 plays a∗ with

frequency close to one in all equilibria under partition A = {a∗}
⋃(

A\{a∗}
)

. Hence, if the objective is

to maximize the short-run players’ welfare in the worst equilibrium, then it is optimal to disclose only the

number of times that the patient player took the commitment action a∗ in the last K periods. I also show that

coarsening the summary statistics cannot improve the short-run players’ welfare when |A| = 2. However, it

may improve welfare when |A| ≥ 3 and K is intermediate such that (i) b∗ does not best reply to K−1
K a∗+ 1

K a,

and (ii) b∗ is a strict best reply to K−1
K a∗+ 1

K a′ for some a′ /∈ {a∗, a}. The intuition is that by pooling actions

other than a∗, the short-run players believe that the patient player’s action is a whenever his action is not a∗,

which provides them a stronger incentive to punish after the patient player loses his reputation.

Observing the Exact Sequence of Actions: My baseline model focuses on the case where the short-run

players cannot observe the exact sequence of actions. My theorems extend to the case where every short-run

player observes the exact sequence of the last K actions with some small but positive probability. The proof

of this robustness result is similar to the one under noisy information, which I have discussed earlier.

In Online Appendix G, I study the other extreme case where player 2 can perfectly observe the exact

sequence of player 1’s last K actions. In the product choice game of the introduction, I show that when K

is large enough,12 there exist equilibria in which players’ payoffs are strictly bounded below u1(a
∗, b∗) and

u2(a
∗, b∗). This suggests that observing the exact sequence of actions can lead to bad equilibrium outcomes.13

12I need K to be large enough since whether the exact sequence of actions can be observed is irrelevant when K = 1.
13This stands in contrast to repeated Bayesian games where all players are arbitrarily patient, in which Renault, Solan and Vieille

(2013) show that it is sufficient for the patient uninformed player to keep track of the informed player’s action frequency.
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For some intuition, consider the case in which K = 2. Allowing player 2 to observe the exact sequence

of actions opens up the possibility that (i) player 1 has a stronger incentive to play L at (H,H) than at (L,H)

since player 2 plays T with lower probability at (H,H), and (ii) player 1 has an incentive to play H at (L,H)

since he will receive a low payoff at (H,L), which will be reached after he plays L at (L,H). Player 1’s

incentive to milk his reputation and then rebuild it provides player 2 a rationale to play N at the clean history.

Such a possibility is ruled out when player 2 cannot observe the exact sequence since as long as player

2 plays T with higher probability at (L,H), she will also play T with higher probability at (H,L). As a

result, whenever player 1 has a stronger incentive to play L at (H,H) relative to (H,L), she will have a strict

incentive to play L at (L,H). This is because her payoff at (H,L) is greater than her payoff at (H,H).

Bhaskar and Thomas (2019) show that in a repeated trust game with complete information and finite

memory, the patient player will shirk in all purifiable equilibria when his opponents can observe the exact

sequence of his actions. Their result is driven by the lack-of incentives implied by their purifiability require-

ment. To see why, suppose K = 2. Since player 2’s action does not depend on player 1’s action 3 periods

ago, player 1 has the same incentive at histories (H,H) and (L,H), which implies that player 2’s action does

not depend on player 1’s action 2 periods ago in any purifiable equilibrium. Iterate this argument, one can

obtain that player 2’s action cannot depend on player 1’s history in any purifiable equilibrium. Compared to

the lack-of incentives to take costly actions in their model, player 1’s incentive to take the highest action when

he is one-step away from the clean history is necessary for any low-payoff equilibrium in my model.

Monotone-Submodular Payoffs: Online Appendix H examines a model where the short-run players cannot

observe the exact sequence of the patient player’s actions, u1(a, b) is strictly increasing in b and is strictly

decreasing in a, u2(a, b) has strictly increasing differences, but u1(a, b) has weakly decreasing differences.

This model is only one-step-away from both my baseline model and the model of Liu and Skrzypacz (2014).

Due to the challenges in constructing equilibria, I focus on a submodular product choice game. I show

that when δ is large enough, (i) the no-back-loop lemma fails, that is, there exists a best reply of the patient

player under which he milks his reputation when it is strictly positive and later restores his reputation, and (ii)

if in addition, that the prior probability of commitment type π0 is not too large, there exist equilibria where

player 1’s payoff is bounded below his commitment payoff when u1(a, b) is sufficiently submodular.

Sequential-Move Stage Games: I consider two instances in which players move sequentially in the stage

game. First, suppose player 1 moves before player 2. If player 2 can perfectly observe player 1’s current-

period action, then player 1 will face no lack-of-commitment problem and he can secure payoff u1(a∗, b∗)
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Figure 2: Sequential-Move Product Choice Game with Supermodular Payoffs

by playing a∗ in every period. If player 2 observes a noisy private signal yt ∼ F (·|at) about player 1’s

current-period action at before choosing her own action bt, then my no-back-loop lemma and my theorems

extend as long as the distribution of private signal yt has full support and is noisy enough. Online Appendix

I.1 establishes the no-back-loop lemma in this setting. The proofs of the theorems follow from the same steps.

Online Appendix I.2 studies an extension where player 1 observes player 2’s current-period action before

choosing his own action. I focus on the sequential-move product choice game in Figure 2 where v ∈ (0, 1−c),

c > 0, and x ∈ (0, 1). With probability π0 ∈ (0, 1), player 1 is a commitment type who plays H at every

history. Focusing on the case in which K = 1, I use the techniques developed in the proof of Theorem 2 to

fully characterize player 1’s equilibrium payoff set as δ → 1. My result implies a necessary and sufficient

condition under which the patient player can secure his commitment payoff 1− c in all equilibria and unveils

how the patient player’s equilibrium payoff set depends on his reputation. In that appendix, I also discuss the

economics behind the comparison between the simultaneous-move case and the sequential-move case.

Observing Previous Short-Run Players’ Actions: My baseline model assumes that player 2 cannot ob-

serve previous short-run players’ actions. This is a standard assumption in reputation models with limited

memories, which is also assumed in Liu (2011), Liu and Skrzypacz (2014), Levine (2021), and so on.

An exception is Pei (2023), which shows that there exist equilibria in which player 1 receives his minmax

value as long as each player 2 (i) can observe at most a bounded number of player 1’s past actions and (ii) can

perfectly observe the action profile in the period before. The intuition is that player 2’s ability to observe her

predecessors’ actions enables her to imitate her predecessors and her imitation behavior can be rationalized

as long as she can only observe a bounded number of the patient player’s actions.

The second requirement for Pei (2023)’s result is violated in the current model not only because player 2

cannot observe her predecessors’ actions, but also because when K ≥ 2, she cannot observe which actions

were taken in the period before. As a result, when player 2 observes the summary statistics of player 1’s last

K actions and the summary statistics of player 2’s last M actions with K,M ≥ 2, the bad equilibria in Pei
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(2023) break down and characterizing the set of equilibrium payoffs, to the best of my knowledge, remains

an open question.

A Proof of the No-Back-Loop Lemma

I establish the no-back-loop lemma when B is a finite set and (u1, u2) satisfies Assumptions 1 and 2. For

every t ≥ K, player 1’s continuation value and incentive in period t depend only on (at−K , ..., at−1). A

pure strategy σ̂1 is canonical if it depends only on (at−K , ..., at−1). For every (σ1, σ2) and ht ∈ H1, let

H1(σ1, σ2|ht) be the set of histories hs such that (i) hs ≻ ht and (ii) hs occurs with positive probability when

the game starts from history ht and players use strategies (σ1, σ2). If σ̂1 is canonical, then H1(σ̂1, σ2|ht) =

H1(σ̂1, σ
′
2|ht) for every σ2, σ

′
2, and ht. Since player 2’s action depends only on player 1’s actions in the last

K periods, for every σ2, there exists a canonical pure strategy σ̂1 that best replies to σ2. Therefore, as long

as there exists a pure strategy that best replies to σ2 and violates the no-back-loop property, there also exists a

canonical pure strategy the best replies to σ2 and violates the no-back-loop property.

Fix σ2 : H2 → B∗. Suppose by way of contradiction that there exists a canonical pure strategy σ̂1 that best

replies to σ2 such that there exist two histories ht, hs ∈ H∗
1

⋂
H1(σ̂1, σ2) that satisfy hs ∈ H1(σ̂1, σ2|ht),

and σ̂1(h
t) = a′ for some a′ ̸= a∗. Without loss of generality, let hs be the first history in H∗

1 that succeeds

ht when player 1 behaves according to σ̂1. Let hs−1 ≡ (a0, ..., as−2) ∈ H1(σ̂1, σ2|ht). Since hs is the first

history in H∗
1 that succeeds ht, it must be the case that hs−1 /∈ H∗

1, so (as−K−1, ..., as−2) = (a′′, a∗, ..., a∗)

for some a′′ ̸= a∗. Let β∗ and V ∗ denote player 2’s action and player 1’s continuation value at histories that

belong to H∗
1. Let β′ and V ′ denote player 2’s action and player 1’s continuation value when exactly one of

player 1’s last K actions was a′ and the other K − 1 actions were a∗. Let β′′ and V ′′ denote player 2’s action

and player 1’s continuation value when exactly one of player 1’s last K actions was a′′ and the other K − 1

actions were a∗. Since σ̂1 is player 1’s best reply, he prefers a∗ to a′ at history (a′′, a∗, ..., a∗), or equivalently,

(1− δ)u1(a
∗, β′′) + δV ∗ ≥ (1− δ)u1(a

′, β′′) + δV ′, (A.1)

and he prefers a′ to a∗ at history (a∗, ..., a∗), or equivalently,

(1− δ)u1(a
∗, β∗) + δV ∗ ≤ (1− δ)u1(a

′, β∗) + δV ′. (A.2)

Since player 1’s stage-game payoff function is strictly supermodular, and β∗ and β′′ can be ranked according
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to FOSD under Assumption 2, inequalities (A.1) and (A.2) imply that β∗ ⪯FOSD β′′. Let

U ≡
∑s−2

τ=t+1 δ
τ−tu1(σ̂1(h

τ ), σ2(h
τ ))∑s−2

τ=t+1 δ
τ−t

(A.3)

be player 1’s discounted average payoff from period t+ 1 to period s− 2 when the period-t history is ht and

players play according to (σ̂1, σ2). Since the strategic type’s incentive depends only on his actions in the last

K periods, when (as−K−1, ..., as−2) = (a′′, a∗, ..., a∗), the following strategy is optimal for him:

• Strategy ∗: Play a∗ in period s − 1, play a′ in period s, play σ̂1(h
τ ) in period τ + (s − t) for every

τ ∈ {t+ 1, ..., s− 2}, and play the same action that he has played s− t periods ago afterwards.

Since Strategy ∗ is optimal for player 1, it must yield a weakly greater payoff compared to any of the following

two deviations starting from a period s− 1 history where (as−K−1, ..., as−2) = (a′′, a∗, ..., a∗):

• Deviation A: Play a′ in period s− 1, σ̂1(hτ ) in period τ + (s− t− 1) for every τ ∈ {t+1, ..., s− 2},

and play the same action that he has played s− t− 1 periods ago in every period after 2s− t− 2.

• Deviation B: Play a′′ in period s− 1, play a∗ from period s to s+K− 2, and play the same action that

he has played K periods ago in every period after s+K − 1.

Player 1 prefers Strategy ∗ to Deviation A, which implies that

(1− δ)u1(a
′, β′′) + (δ − δs−t−2)U

1− δs−t−2
≤ (1− δ)u1(a

∗, β′′) + (1− δ)δu1(a
′, β∗) + (δ2 − δs−t−1)U

1− δs−t−1

This leads to the following upper bound on U :

(δ − δs−t−2)U ≤ (1− δs−t−2)u1(a
∗, β′′) + δ(1− δs−t−2)u1(a

′, β∗)− (1− δs−t−1)u1(a
′, β′′). (A.4)

Player 1 prefers Strategy ∗ to Deviation B, which implies that

(1− δ)u1(a
′′, β′′) + (δ − δK)u1(a

∗, β′′)

1− δK
≤ (1− δ)u1(a

∗, β′′) + (1− δ)δu1(a
′, β∗) + (δ2 − δs−t−1)U

1− δs−t−1
.

(A.5)

This leads to a lower bound on U . The left-hand-side of (A.5) equals

u1(a
∗, β′′) +

1− δ

1− δK

{
u1(a

′′, β′′)− u1(a
∗, β′′)

}
︸ ︷︷ ︸

>0, since a′′≺a∗ and u1 is decreasing in a

,
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and inequality (A.4) implies that the right-hand-side of (A.5) is no more than

u1(a
∗, β′′) + δ

{
u1(a

′, β∗)− u1(a
′, β′′)

}
︸ ︷︷ ︸

≤0, since β′′⪰β∗ and u1 is increasing in b

.

Since u1(a, b) is strictly increasing in b and is strictly decreasing in a, a∗ ≻ a′′, and β′′ ⪰ β∗, inequality (A.5)

cannot be true. This leads to a contradiction and implies the no-back-loop lemma.

B Proof of Theorem 2

B.1 Proof of Statement 1

I define a state as a sequence of player 1’s actions with length K, that is, (at−K , ..., at−1). Let S ≡ AK

be the set of states with a typical element denoted by s ∈ S. Let s∗ ≡ (a∗, ..., a∗). Fix a strategy profile

σ ≡ (σ1, σ2). For every s ∈ S, let µ(s) be the probability that the current-period state is s conditional on the

event that player 1 is the strategic type and calendar time is at least K. For every pair of states s, s′ ∈ S, let

Q(s → s′) be the probability that the state in the next period is s′ conditional on the state in the current period

is s, player 1 is the strategic type, and calendar time is at least K. Let p(s) be the probability that the state is s

conditional on calendar time being K and player 1 is the strategic type. The goal is to show that µ(s∗) is close

to 1 in all equilibria. I state three lemmas which apply to all strategy profiles and all stage-game payoffs.

Lemma B.1. For every strategy profile and every s′ ∈ S, we have

µ(s′) = (1− δ)p(s′) + δ
∑
s∈S

µ(s)Q(s → s′). (B.1)

Proof. For every t ∈ N, let pt(s) be the probability that the state is s in period K + t conditional on player 1

being the strategic type, and let qt(s → s′) be the probability that the state in period t+K+1 is s′ conditional

on the state being s in period t + K and player 1 being the strategic type. By definition, p0(s) = p(s) and

pt+1(s) =
∑

s′∈S pt(s
′)Q(s′ → s). According to Bayes rule, we have

µ(s) =
+∞∑
t=0

(1− δ)δtpt(s) and Q(s → s′) =

∑+∞
t=0 (1− δ)δtpt(s)qt(s → s′)∑+∞

t=0 (1− δ)δtpt(s)
.
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This implies that

∑
s∈S

µ(s)Q(s → s′) =
∑
s∈S

+∞∑
t=0

(1−δ)δtpt(s)qt(s → s′) =

+∞∑
t=0

(1−δ)δt
∑
s∈S

pt(s)qt(s → s′) =

+∞∑
t=0

(1−δ)δtpt+1(s
′)

1

δ

{
µ(s′)− (1− δ)p(s′)

}
=

1

δ

{ +∞∑
t=0

(1− δ)δtpt(s
′)− (1− δ)p(s′)

}
=

+∞∑
t=0

(1− δ)δtpt+1(s
′).

These two equations together imply (B.1).

For any non-empty subset of states S′ ⊂ S, let

I(S′) ≡
∑
s′∈S′

∑
s/∈S′

µ(s)Q(s → s′) (B.2)

be the inflow to S′ from states that do not belong to S′, and let

O(S′) ≡
∑
s′∈S′

∑
s/∈S′

µ(s′)Q(s′ → s) (B.3)

be the outflow from S′ to states that do not belong to S′. By definition,

∑
s′∈S′

µ(s′) =
∑
s′∈S′

µ(s′)
( ∑

s∈S′

Q(s′ → s) +
∑
s/∈S′

Q(s′ → s)
)

︸ ︷︷ ︸
=1

=
∑
s′∈S′

∑
s∈S′

µ(s′)Q(s′ → s)+
∑
s′∈S′

∑
s/∈S′

µ(s′)Q(s′ → s)︸ ︷︷ ︸
≡O(S′)

.

For any S′ ⊂ S, by summing up the two sides of equation (B.1) for all s′ ∈ S′, one can obtain that

∑
s′∈S′

∑
s∈S′

µ(s′)Q(s′ → s) +
∑
s′∈S′

∑
s/∈S′

µ(s)Q(s → s′)︸ ︷︷ ︸
≡I(S′)

=
∑
s′∈S′

µ(s′) +
∑
s′∈S′

1− δ

δ

{
µ(s′)− p(s′)

}
.

These equations imply that I(S′) = O(S′) +
∑

s′∈S′
1−δ
δ

{
µ(s′) − p(s′)

}
. Since µ and p are probability

measures on S, we have |
∑

s′∈S′(µ(s′)− p(s′))| ≤ 1. This leads to the following lemma:

Lemma B.2. For every non-empty subset S′ ⊂ S, we have:

|I(S′)−O(S′)| =
∣∣∣ ∑
s′∈S′

1− δ

δ

(
µ(s′)− p(s′)

)∣∣∣ ≤ 1− δ

δ
. (B.4)

I partition the set of states according to S ≡ S0 ∪ ... ∪ SK so that Sk is the set of states where k of the
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player 1’s last K actions were not a∗. By definition, S0 = {s∗}. I further partition every Sk ≡
⋃J(k)

j=1 Sj,k

according to player 2’s information structure, that is, two states belong to the same partition element Sj,k if

and only if player 2 distinguish between these two states. For every state that belongs to Sk, exactly one of

the following two statements is true, depending on whether player 1’s action K periods ago was a∗:

1. The state in the next period belongs to Sk−1 or Sk, depending on player 1’s current-period action.

2. The state in the next period belongs to Sk or Sk+1, depending on player 1’s current-period action.

Therefore, I partition each Sj,k into S∗
j,k and S′

j,k such that for every s ∈ Sj,k, s ∈ S∗
j,k if and only if player

1’s action K periods ago was a∗, and s ∈ S′
j,k otherwise. For any S′, S′′ ⊂ S with S′ ∩ S′′ = ∅, let

Q(S′ → S′′) ≡
∑
s′∈S′

∑
s′′∈S′′

µ(s′)Q(s′ → s′′) (B.5)

be the expected flow from S′ to S′′. According to Bayes rule, upon observing a state that belongs to Sj,k,

player 2 believes that player 1’s action is a∗ with probability

Q(Sj,k → Sk−1) +
∑

s∈S∗
j,k

∑
s′∈Sj,k

µ(s)Q(s → s′), (B.6)

and is not a∗ with probability Q(Sj,k → Sk+1) +
∑

s∈S′
j,k

∑
s′∈Sk

µ(s)Q(s → s′). The next lemma shows

that as long as both Q(Sk−1 → Sj,k) and Q(Sj,k → Sk−1) are bounded above by a linear function of 1− δ,

either
∑

s∈Sj,k
µ(s) is also bounded above by some linear function of 1− δ, or player 2 believes that player 1

will play a∗ with probability strictly less than K−1
K upon observing that the current state belongs to Sk,j .

Lemma B.3. For every z ∈ R+, there exist y ∈ R+ and δ ∈ (0, 1) such that when δ > δ, for every

strategy profile and every Sj,k with k ≥ 1. If max{Q(Sj,k → Sk−1),Q(Sk−1 → Sj,k)} ≤ z(1 − δ), then

either ∑
s∈Sj,k

µ(s) ≤ y(1− δ) (B.7)

or
Q(Sj,k → Sk−1) +

∑
s∈S∗

j,k

∑
s′∈Sj,k

µ(s)Q(s → s′)

Q(Sj,k → Sk+1) +
∑

s∈S′
j,k

∑
s′∈Sk

µ(s)Q(s → s′)
< K − 1. (B.8)

Proof. Since Q(Sj,k → Sk−1) = Q(S′
j,k → Sk−1), Q(Sj,k → Sk+1) = Q(S∗

j,k → Sk+1), and under the
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hypothesis that Q(Sj,k → Sk−1) ≤ z(1− δ) and Q(Sk−1 → Sj,k) ≤ z(1− δ), we have:

∑
s∈S∗

j,k

∑
s′∈Sj,k

µ(s)Q(s → s′)

︸ ︷︷ ︸
=
∑

s∈S∗
j,k

µ(s)−Q(S∗
j,k→Sk+1)

+Q(Sj,k → Sk−1)︸ ︷︷ ︸
≤z(1−δ)

≤
∑

s∈S∗
j,k

µ(s)−Q(S∗
j,k → Sk+1) + z(1− δ),

∑
s∈S′

j,k

∑
s′∈Sk

µ(s)Q(s → s′)

︸ ︷︷ ︸
=
∑

s∈S′
j,k

µ(s)−Q(S′
j,k→Sk−1)

+Q(Sj,k → Sk+1)︸ ︷︷ ︸
=Q(S∗

j,k→Sk+1)

≥
∑

s∈S′
j,k

µ(s) +Q(S∗
j,k → Sk+1)− z(1− δ).

Suppose there exists no such y ∈ R+, that is,
∑

s∈Sj,k
µ(s)

z(1−δ) can be arbitrarily large as δ → 1. Since the sum

of
∑

s∈S∗
j,k

µ(s) − Q(S∗
j,k → Sk+1) + z(1 − δ) and

∑
s∈S′

j,k
µ(s) + Q(S∗

j,k → Sk+1) − z(1 − δ) equals∑
s∈Sj,k

µ(s), we know that when δ is close to 1, (B.8) is implied by:

∑
s∈S∗

j,k
µ(s)−Q(S∗

j,k → Sk+1)∑
s∈S′

j,k
µ(s) +Q(S∗

j,k → Sk+1)
< K − 1,

or equivalently, ∑
s∈S∗

j,k

µ(s) < (K − 1)
∑

s∈S′
j,k

µ(s) +KQ(S∗
j,k → Sk+1). (B.9)

I derive a lower bound for Q(S∗
j,k → Sk+1). Since O(Sj,k) = Q(S∗

j,k → Sk+1) + Q(S′
j,k → Sk−1) +

Q(Sj,k → Sk\Sj,k), under the hypothesis that max{Q(Sj,k → Sk−1),Q(Sk−1 → Sj,k)} ≤ z(1− δ),

Q(S∗
j,k → Sk+1) = O(Sj,k)−Q(S′

j,k → Sk−1)−Q(Sj,k → Sk\Sj,k) ≥ O(Sj,k)−Q(Sj,k → Sk\Sj,k)−z(1−δ).

According to Lemma B.2, we have Q(S∗
j,k → Sk+1) ≥ I(Sj,k) −Q(Sj,k → Sk\Sj,k) − (1−δ)(1+zδ)

δ . Since

at every s ∈ S∗
j,k, the state in the next period belongs to Sk+1 if player 1 does not play a∗ at s, and belongs

to Sj,k if player 1 plays a∗ at s, we have Q(S∗
j,k → Sk\Sj,k) = 0. This implies that Q(Sj,k → Sk\Sj,k) =
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Q(S′
j,k → Sk\Sj,k). Since I(Sj,k) = I(S∗

j,k) + I(S′
j,k)−Q(S∗

j,k → S′
j,k)−Q(S′

j,k → S∗
j,k),

Q(S∗
j,k → Sk+1) ≥ I(Sj,k)−Q(Sj,k → Sk\Sj,k)−

(1− δ)(1 + zδ)

δ

= I(S∗
j,k) + I(S′

j,k)−Q(S∗
j,k → S′

j,k)−Q(S′
j,k → S∗

j,k)−Q(S′
j,k → Sk\Sj,k)−

(1− δ)(1 + zδ)

δ

≥ I(S∗
j,k)−Q(S∗

j,k → S′
j,k) +O(S′

j,k)−Q(S′
j,k → Sk\Sj,k)−Q(S′

j,k → S∗
j,k)︸ ︷︷ ︸

≥0

−(1− δ)(2 + zδ)

δ

≥ I(S∗
j,k)−Q(S∗

j,k → S′
j,k)−

(1− δ)(2 + zδ)

δ

Since Q(S∗
j,k → S′

j,k) ≤ O(S∗
j,k) and Q(S∗

j,k → S′
j,k) ≤ I(S′

j,k),

Q(S∗
j,k → S′

j,k) ≤
1

K
O(S∗

j,k) +
K − 1

K
I(S′

j,k) ≤
1

K
I(S∗

j,k) +
K − 1

K
O(S′

j,k) +
1− δ

δ
.

This together with the lower bound on Q(S∗
j,k → Sk+1) that we derived earlier implies that:

Q(S∗
j,k → Sk+1) ≥

K − 1

K

(
I(S∗

j,k)−O(S′
j,k)

)
− (1− δ)(3 + zδ)

δ
.

Since O(S′
j,k) = Q(S′

j,k → Sk\Sj,k)+Q(S′
j,k → S∗

j,k)+Q(S′
j,k → Sk−1), and Q(S′

j,k → Sk−1) is assumed

to be less than z(1− δ), we know that

Q(S∗
j,k → Sk+1) ≥

K − 1

K

(
I(S∗

j,k)−Q(S′
j,k → Sk\Sj,k)−Q(S′

j,k → S∗
j,k)

)
− (1− δ)(3 + 2zδ)

δ
.

Hence, when δ is close to 1, inequality (B.9) is implied by

∑
s∈S∗

j,k

µ(s) < (K − 1)
{ ∑

s∈S′
j,k

µ(s)−Q(S′
j,k → Sk\Sj,k)

}
+ (K − 1)

{
I(S∗

j,k)−Q(S′
j,k → S∗

j,k)
}
. (B.10)

I say that a sequence of states {s1, ..., sj} ⊂ Sj,k form a connected sequence if for every i ∈ {1, 2, ..., i−

1}, there exists ai ∈ A such that the state in the next period is si+1 when the state in the current period is si

and player 1 takes action ai. A useful observation is that for every s ∈ Sj,k, there exists a unique state s′ in

Sj,k such that playing some a ∈ A in state s′ leads to state s. Using this observation, we construct for any

s1 ∈ S′
j,k, a finite sequence of states {s1, ..., sm} ⊂ Sj,k with length m at least one such that (i) for every

i ∈ {1, 2, ...,m − 1}, there exists an action ai ∈ A such that playing ai in state si leads to state si+1 in the
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next period, (ii) if m ≥ 2, then {s2, ..., sm} ⊂ S∗
j,k, and (iii) no matter which action player 1 takes in state

sm, the state in the next period does not belong to S∗
j,k, or equivalently, there exists an action a ∈ A such that

taking action a at state sm leads to a state that belongs to S′
j,k. Lemma B.1 implies that

µ(s2) ≤ µ(s1)Q(s1 → s2) +Q(S\Sj,k → {s2}) +
1− δ

δ

= µ(s1)−Q({s1} → Sk\Sj,k) +Q(S\Sj,k → {s2}) +
1− δ

δ
, (B.11)

and for every i ≥ 2, we have:

µ(si+1) ≤ µ(si)Q(si → si+1) +Q(S\Sj,k → {si+1}) +
1− δ

δ

= µ(si) +Q(S\Sj,k → {si+1}) +
1− δ

δ
. (B.12)

Iteratively apply (B.12) and (B.11) for every i ≥ 2, we obtain:

µ(si) ≤ µ(s1) +Q(S\Sj,k → {s2, ..., si})−Q({s1} → Sk\Sj,k) +
(1− δ)(i− 1)

δ
. (B.13)

Summing up inequality (B.13) for i ∈ {2, ...,m}, we obtain:

m∑
i=2

µ(si) ≤ (m− 1)
{
µ(s1) +Q(Sc

j,k → {s2, ..., sm})−Q({s1} → Sk\Sj,k)
}
+

m(m− 1)(1− δ)

2δ

= (m− 1)
{
µ(s1)−Q({s1} → Sk\Sj,k)︸ ︷︷ ︸

≥− 1−δ
δ

}

+(m− 1)
{
Q(S\S∗

j,k → {s2, ..., sm})−Q(S′
j,k → {s2, ..., sm})︸ ︷︷ ︸

≥0

}
+

m(m− 1)(1− δ)

2δ

≤ (K − 1)
{
µ(s1)−Q({s1} → Sk\Sj,k)

}
+(K − 1)

{
Q(S\S∗

j,k → {s2, ..., sm})−Q(S′
j,k → {s2, ..., sm})

}
+
{m(m− 1)(1− δ)

2δ
+

K(1− δ)

δ

}
.

One can obtain (B.10) by summing up the above equation for every s1 ∈ S′
j,k and taking δ → 1. This

is because the left-hand-side of this sum equals
∑

s∈S∗
j,k

µ(s). Therefore, after ignoring the last term that

vanishes to 0 as δ → 1, the additive property of the operator Q implies that the right-hand-side equals

(K − 1)
{ ∑

s∈S′
j,k

µ(s)−Q(S′
j,k → Sk\Sj,k)

}
+ (K − 1)

{
I(S∗

j,k)−Q(S′
j,k → S∗

j,k)
}
.
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This establishes inequality (B.10) and leads to the conclusion of Lemma B.3

The next two steps make use of players’ incentive constraints. First, I use Lemma B.2 and the no-back-

loop lemma to show that both the inflow to S0 ≡ {s∗} and the outflow from S0 are negligible as δ → 1.

Lemma B.4. For every δ and in every Nash equilibrium under δ, O(S0) ≤ 2(1−δ)
δ and I(S0) ≤ 1−δ

δ .

Proof. Let S′ denote a subset of states such that s ∈ S′ if and only if (i) s ̸= s∗, and (ii) there exists a best

reply σ̂1 such that s∗ is reached within a finite number of periods when the initial state is s. The no-back-loop

lemma implies that at least one of the two statements is true:

1. Player 1 has no incentive to play actions other than a∗ at s∗.

2. Player 1 has an incentive to play actions other than a∗ at s∗, and as long as player 1 plays any such best

reply, the state never reaches S′ when the initial state is s∗.

In the first case, O({s∗}) = 0, and Lemma B.2 implies that I({s∗}) ≤ 1−δ
δ . In the second case, the definition

of S′ implies that I(S′) = 0. According to Lemma B.2, O(S′) ≤ 1−δ
δ . The definition of S′ implies that

I({s∗}) ≤ O(S′), so I({s∗}) ≤ 1−δ
δ . According to Lemma B.2, O({s∗}) ≤ 2(1−δ)

δ .

Lemma B.4 implies that the inflow to S0 and the outflow from S0 are both negligible. Lemma B.3 implies

that for every Sj,1, either the occupation measure of states in Sj,1 is negligible, or player 2 has no incentive to

play b∗ at Sj,1. The next lemma shows that it cannot be the case that states in S1 have significant occupation

measure yet player 2 has no incentive to play b∗ at Sj,1. This conclusion generalizes to every Sj,k, provided

that the flow from Sk−1 to Sj,k and that from Sj,k to Sk−1 are both negligible. Iteratively apply Lemma B.3

and Lemma B.5, all states except for s∗ (i.e., the unique state in S0) have negligible occupation measure.

Lemma B.5. Suppose u2 is such that b∗ does not best reply to K−1
K a∗+ 1

K a′ for every a′ ̸= a∗. For every

y > 0, there exist z > 0 and δ ∈ (0, 1) such that for every δ > δ, every Nash equilibrium under δ, and every

k ∈ {1, 2, ...,K}. If max{Q(Sk−1 → Sk),Q(Sk → Sk−1)} < y(1− δ), then
∑

s∈Sk
µ(s) ≤ z(1− δ).

The proof can be found by the end of this section. The intuition is that when both Q(Sk−1 → Sk)

and Q(Sk → Sk−1) are negligible, Q(Sk−1 → Sj,k) and Q(Sj,k → Sk−1) are also negligible for every j.

Suppose by way of contradiction that
∑

s∈Sk
µ(s) is bounded away from 0, then Lemma B.3 implies that at

every Sj,k where states in Sj,k occur with occupation measure bounded above 0, player 2 has no incentive

to play b∗ at Sj,k. Since the flow from Sk to Sk−1 is negligible, the flow from Sk to Sk+1 must be bounded

above 0. Lemma B.2 then implies that the flow from Sk+1 to Sk is also bounded above 0. This implies that in
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equilibrium, player 1 will take the most costly action a∗ at some states in Sk+1 in order to reach states in Sj,k

where player 2 has no incentive to play b∗, i.e., player 1’s payoff is bounded below u1(a
∗, b∗) in states that

belong to Sj,k. This is suboptimal for player 1 since he can secure payoff u1(a∗, b∗) by playing a∗ in every

period, which implies that for every k ≥ 1,
∑

s∈Sk
µ(s) ≈ 0 in all equilibria.

Proof. Suppose by way of contradiction that for every y > 0 and δ ∈ (0, 1), there exist δ > δ, an equilibrium

under δ, and k ≥ 1, such that in this equilibrium, max{Q(Sk−1 → Sj,k),Q(Sk → Sk−1)} < y(1 − δ)

but
∑

s∈Sk
µ(s) > z(1 − δ). Pick a large enough z, Lemma B.3 implies that for every Sj,k ⊂ Sk, either∑

s∈Sj,k
µ(s) < z

2K
(1 − δ), or player 2 has a strict incentive not to play a∗ at Sj,k. The hypothesis that∑

s∈Sk
µ(s) > z(1 − δ) implies that there exists at least one partition element Sj,k such that player 2 has a

strict incentive not to play a∗ at Sj,k. Let S′
k be the union of such partition elements.

I start from deriving an upper bound on the ratio between
∑

s∈S′
k
µ(s) and Q(S′

k → Sk−1). Let V (s)

be player 1’s continuation value in state s and let V ≡ maxs∈S V (s). Let v be player 1’s lowest stage-

game payoff. Let v′ ≡ maxa∈A,b≺b∗ u1(a, b) and v∗ ≡ u1(a
∗, b∗). Assumptions 1 and inequality (3.5)

together imply that v∗ > v′ > v. Since player 1 can reach any state within K periods, we have V (s) ≥

(1 − δK)v + δKV for every s ∈ S. Theorem 1 suggests that player 1’s continuation value at s∗ is at least

u1(a
∗, b∗). Therefore, V ≥ v∗. Let M be the largest integer m such that

(1− δm)v′ + δmV ≥ (1− δK)v + δKV . (B.14)

Applying the L’Hospital Rule, (B.14) implies that when δ is close to 1, we have M ≤ K V−v

V−v′
. Therefore,

for any t ∈ N and s ∈ S′
k, and under any pure-strategy best reply of player 1, if the state is s in period t,

then there exists τ ∈ {t + 1, ..., t +M} such that when player 1 uses this pure-strategy best reply, the state

in period τ does not belong to S′
k. Therefore,

∑
s∈S′

k
µ(s)

O(S′
k)

≤ 1−δM

δM (1−δ)
. When δ → 1, the RHS of the above

inequality converges to M , which implies that

∑
s∈S′

k

µ(s) ≤ K · V − v

V − v′
· O(S′

k). (B.15)

Since
∑

s∈Sk\S′
k
µ(s) is bounded above by some linear function of 1− δ, it must be the case that Q(Sk−1 →

S′
k) ≥

∑
s∈S′

k
µ(s)

2M . This implies that there exists s ∈ Sk+1 and a canonical pure best reply σ̂1 such that:

1. the state in the next period, denoted by s′, belongs to S′
k, and the state belongs to S′

k for m periods,

2. the state returns to Sk+1 after these m periods, returns to s after a finite number of periods, and the state
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never reaches ∪k−1
n=0Sn when play starts from s.

By definition, player 1 plays a∗ in state s under σ̂1 and σ̂1 induces a cycle of states. Moreover, it is without

loss of generality to focus on best replies that induce a cycle where each state occurs at most once.

I show that m ≤ K−1. Suppose by way of contradiction that m ≥ K, namely, after reaching state s′, the

state belongs to S′
k for at least K periods under player 1’s pure-strategy best reply σ̂1. Recall the definition

of a minimal connected sequence. Every minimal connected sequence contains either one state (if k = K) or

K states in category k. Therefore, the category k state after K periods is also s′. As a result, there exists a

best-reply of player 1 such that under this best reply and starting from state s′, the state remains in category k

forever. Due to the hypothesis that player 2 has no incentive to play b∗ when the state belongs to S′
k, player 1’s

continuation value under such a best reply is at most v′, which is strictly less than his guaranteed continuation

value (1− δK)v + δKv∗. This contradicts the conclusion of Theorem 1.

Given that m ≤ K − 1, let us consider an alternative strategy of player 1 under which he plays an action

other than a∗ in state s, then follows strategy σ̂1. Starting from state s, this strategy and σ̂1 lead to the same

state after m+ 1 periods. This strategy leads to a strictly higher payoff since the stage-game payoff at state s

is strictly greater, and the payoffs after the first period are weakly greater. This contradicts the hypothesis that

σ̂1 is player 1’s best reply to player 2’s equilibrium strategy.

In summary, Lemma B.4 implies that max{Q(S0 → S1),Q(S1 → S0)} ≤ 2(1−δ)
δ . Lemma B.3 and

Lemma B.5 together imply that
∑

s∈S1
µ(s) is bounded from above by a linear function of 1 − δ given that

max{I(S0),O(S0)} ≤ 2(1−δ)
δ , which then implies that Q(S1 → S2) and Q(S2 → S1) are also bounded from

above by a linear function of 1−δ. Iteratively apply this argument, we obtain that for every k ∈ {1, 2, ...,K},∑
s∈Sk

µ(s) is bounded from above by a linear function of 1− δ.

B.2 Constructing Equilibria where a∗ Occurs with Low Frequency

Case 1: I consider the case where (u1, u2) satisfies (3.5) but K ≥ K. Since K ≥ K, b∗ best replies to
K−1
K a∗ + 1

K a′ for some a′ ̸= a∗. Inequality (3.5) implies that every best reply to a′ is strictly lower than

b∗. Hence, K ≥ 2 and there exists α ∈ (0, K−1
K ) such that {b∗, b′} ⊂ BR2(αa

∗ + (1 − α)a′) for some

b′ ≺B b∗. Let b′′ be player 2’s lowest best reply to a′. Since u2(a, b) has strictly increasing differences, we

know that b′′ ⪯B b′ ≺B b∗. Let H∗∗
1 be the set of histories such that player 2 observes at most one a′ and does

not observe any action other than a∗ and a′, which will contain the set of histories that occur with positive

probability. Player 2’s belief is derived from Bayes rule at every history that belongs to H∗∗
1 . For player 2’s

belief at histories that occur with zero probability,
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1. If player 2t observes two or more a′ and observes no action other than a∗ and a′, then she believes that

(at−2, at−1) = (a′, a′).

2. If player 2 observes a′′ /∈ {a∗, a′}, then she believes that the action in the period before is a′′.

Then I describe player 1’s equilibrium strategy. At every history that belongs to H∗∗
1 , player 1 plays a′ in

period t if t = K − 1 or t ≥ K and (amin{0,t−K+1}, ...at−1) = (a∗, ..., a∗). Player 1 plays a∗ in period t at

other histories that belong to H∗∗
1 . Histories that do not belong to H∗∗

1 occur with zero probability, at which

player 1’s behavior is given by:

1. Player 1 plays a∗ if (at−2, at−1) ̸= (a′, a′) and the last min{K, t} actions are either a∗ or a′.

2. Player 1 plays a∗ with probability α and plays a′ with probability 1 − α if (at−2, at−1) = (a′, a′) and

actions in the last min{K, t} periods are either a∗ or a′.

3. Player 1 plays a′ in period t if actions other than a∗ and a′ occurred in period t− 1.

Player 2 plays b∗ at every history that belongs to H∗∗
1 . At every history that (i) does not belong to H∗∗

1 ,

and (ii) actions other than a∗ and a′ do not occur in the last K periods, player 2 plays b∗ with probability β

and plays b′ with probability 1− β, where

βu1(a
′, b∗) + (1− β)u1(a

′, b′) = (1− δK−1)
(
βu1(a

∗, b∗) + (1− β)u1(a
∗, b′)

)

+δK−1 u1(a
′, b∗) + (δ + δ2 + ...+ δK−1)u1(a

∗, b∗)

1 + δ + ...+ δK−1︸ ︷︷ ︸
≡VK

. (B.16)

Since u1(a
′, b∗) > u1(a

∗, b∗) > u1(a
′, b′) > u1(a

∗, b′), β is strictly between 0 and 1. At every history that

does not belong to H∗∗
1 and actions other than a∗ and a′ occurred in the last K periods, player 2 plays b′′.

Player 2’s incentive constraint at every history that occurs with zero probability is satisfied under her

belief since (i) she mixes between b∗ and b′ whenever she believes that player 1 plays αa∗ + (1 − α)a′, and

(ii) she plays b′′ whenever she believes that player 1 plays a′. At histories that occur with positive probability,

player 2 believes that a′ is played with probability 1 − π0 and a∗ is played with probability π0 in period 0,

so she plays a best reply to this mixed action. From period 1 to K − 1, player 2 believes that a∗ is played

by both types, so she plays her best reply b∗. After period K, player 2’s belief assigns probability 1 to the

commitment type upon observing any history where player 1’s last K actions were a∗, and therefore, she has

a strict incentive to play b∗. For player 2’s incentive constraints at histories where a′ occurred only once, she
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believes that (at−K , ..., at−1) = (a′, a∗, ..., a∗) with probability

δK−1

1 + δ + ...+ δK−1
(B.17)

and (at−K , ..., at−1) ̸= (a′, a∗, ..., a∗) with complementary probability. When δ → 1, expression (B.17) is

less than but converges to 1
K . Since player 1 plays a′ when (at−K , ..., at−1) = (a′, a∗, ..., a∗) and plays a∗

at other histories where a′ occurred once, player 2 believes that player 1’s current period action is a′ with

probability less than 1
K and is a∗ with probability more than K−1

K . Hence, there exists δ ∈ (0, 1) such that

when δ > δ, player 2s have a strict incentive to play b∗ if a′ occurred only once in the last K periods.

I verify player 1’s incentive constraint: (i) he has no incentive to reach any history that occurs with zero

probability starting from any history that occurs with positive probability, and (ii) he has an incentive to play

a′ when (at−2, at−1) = (a′, a′) or when at−1 /∈ {a′, a∗}. When (at−2, at−1) = (a′, a′), player 1 is indifferent

between playing a′ and a∗ in period t.

Next, I show that player 1 has no incentive to play a′ at every history that belongs to H∗∗
1 where

(at−K+1, ..., at−1) ̸= (a∗, ..., a∗).

For every m ∈ {1, 2, ...,K}, let sm be the state where at−m = a′ and all actions that belong to {at−K , .., at−1}\{at−m}

are a∗. Let Vm player 1’s continuation value in state sm. For every m ∈ {1, 2, ...,K − 1}, player 1 prefers a∗

to a′ in state sm if

Vm > (1− δ)u1(a
′, b∗) + δ(1− δK−m)u1(a

∗, β) + (δK−m+1 − δK)u1(a
∗, b∗) + δKVK . (B.18)

Since

Vm = (1− δ)K−mu1(a
∗, b∗) + δK−mVK for every 1 ≤ m ≤ K,

we have:

(1− δ)(1− δK−m)u1(a
∗, b∗) + δ(1− δK−m)

(
u1(a

∗, b∗)− u1(a
∗, β)

)
−(1− δ)u1(a

′, b∗) + δK−m(1− δm)Vk − (δK−m+1 − δK)u1(a
∗, b∗) > 0. (B.19)

Dividing the above expression by 1 − δ, and then taking the limit where δ → 1, we obtain that inequality

(B.19) is true when δ is close to 1 if

(K −m)
(
u1(a

∗, b∗)− u1(a
∗, β)

)
+mVK − (m− 1)u1(a

∗, b∗)− u1(a
′, b∗) > 0,
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or equivalently,

(K −m)︸ ︷︷ ︸
≥1

(1− β)
(
u1(a

∗, b∗)− u1(a
∗, b′)

)
> (m− 1)

(
u1(a

∗, b∗)− VK

)
︸ ︷︷ ︸

<0

+
(
u1(a

′, b∗)− VK

)
. (B.20)

When δ is close to 1,

VK ≈ 1

K
u1(a

′, b∗) +
K − 1

K
u1(a

∗, b∗),

and therefore,

1− β =
u1(a

′, b∗)− VK

u1(a′, b∗)− u1(a′, b′)
≈ K − 1

K
· u1(a

′, b∗)− u1(a
∗, b∗)

u1(a′, b∗)− u1(a′, b′)
>

K − 1

K
· u1(a

′, b∗)− u1(a
∗, b∗)

u1(a∗, b∗)− u1(a∗, b′)
,

where the last inequality follows from u1(a, b) having strictly increasing differences. This implies that

(1− β)
(
u1(a

∗, b∗)− u1(a
∗, b′)

)
> u1(a

′, b∗)− VK ≈ K − 1

K

(
u1(a

′, b∗)− u1(a
∗, b∗)

)
.

Inequality (B.20) is true when δ is close to 1 since K−m ≥ 1 and u1(a
′, b∗)−VK converges to K−1

K (u1(a
′, b∗)−

u1(a
∗, b∗)) as δ → 1.

Next, I show that player 1 has no incentive to play actions other than a′ and a∗ at every history that

belongs to H∗∗
1 . It is straightforward to show that he has no incentive to play any action that does not belong

to {a∗, a′, a}, since playing a leads to a strictly higher stage-game payoff for player 1 while not lowering his

continuation value. Hence, I only need to show that when a′ ̸= a, player 1 has no incentive to play a at any

history that belongs to H∗∗
1 . This is because his payoff at any history that occurs with positive probability is

bounded from below by V1 ≈ 1
Ku1(a

′, b∗)+ K−1
K u1(a

∗, b∗) > u1(a
∗, b∗). Inequality (3.5) implies that player

1’s stage-game payoff is strictly less than u1(a
∗, b∗) when player 2’s action is strictly lower than b∗. Since

player 2 plays b′′ when actions other than a∗ and a′ occurred in the last K periods, player 1’s continuation

value when he plays a is at most:

(1− δ)u1(a, b
∗) + (δ − δ2)u1(a

′, b′) + (δ2 − δK+1)u1(a
∗, b′) + δK+1VK

Since V1 < V2 < ... < VK , it is sufficient to show that

V1 = (1−δK−1)u1(a
∗, b∗)+δK−1VK > (1−δ)u1(a, b

∗)+(δ−δ2)u1(a
′, b′)+(δ2−δK+1)u1(a

∗, b′)+δK+1VK .
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or equivalently,

(1−δK−1)u1(a
∗, b∗)+(δK−1−δK+1)VK−(1−δ)u1(a, b

∗)−(δ−δ2)u1(a
′, b′)−(δ2−δK+1)u1(a

∗, b′) > 0.

Dividing the left-hand-side of the above inequality by 1 − δ and then taking the δ → 1 limit, we know that

the above inequality is true when δ is close to 1 if

(K − 1)u1(a
∗, b∗) + 2VK ≥ u1(a, b

∗) + u1(a
′, b′) + (K − 1)u1(a

∗, b′). (B.21)

Since u1 has strictly increasing differences, we have:

u1(a, b
∗) < u1(a

′, b∗)− u1(a
′, b′) + u1(a, b

′) ≤ u1(a
′, b∗)− u1(a

′, b′) + u1(a
∗, b∗)

< u1(a
∗, b∗) + u1(a

′, b′)− u1(a
∗, b′)− u1(a

′, b′) + u1(a
∗, b∗) = 2u1(a

∗, b∗)− u1(a
∗, b′).

So the right-hand-side of (B.21) is bounded from above by 2u1(a
∗, b∗)+(K−2)u1(a

∗, b′)+u1(a
′, b′), which

is strictly less than (K + 1)u1(a
∗, b∗). Since VK > u1(a

∗, b∗), the left-hand-side of (B.21) is strictly greater

than (K + 1)u1(a
∗, b∗). This establishes inequality (B.21).

In the last step, I show that if any action other than a∗ and a′ occurred in period t − 1, player 1 has an

incentive to play a′ in period t. Since at−1 /∈ {a∗, a′}, player 2’s actions from period t to period t+K−1 are

b′′ regardless of player 1’s behavior in those periods, and moreover, player 2 has an incentive to play actions

greater than b′′ in period s(≥ t + K) only if player 1 has played a∗ at least K − 1 times and a′ at least

once after the last time they played actions other than a∗ and a′. Since VK > VK−1 > ... > V1, player 1’s

continuation value in period t is bounded from above by:

(1− δ)u1(a
′, b′′) + (δ − δK)u1(a

∗, b′′) + δKVK .

This upper bound is attained when player 1 plays a′ in period t and plays a∗ in the next K − 1 periods, after

which play reaches state sK and player 1’s continuation value is VK . This verifies his incentive to play a′

when his previous period action was neither a∗ nor a′.

Case 2: I consider the case where (u1, u2) violates (3.5). Then there exist a′ ̸= a∗ and b′ (notice that b′

may equal b∗) such that b′ best replies to a′ and u1(a
′, b′) ≥ maxa∈Amaxb∈BR2(a) u1(a, b). By definition,

u1(a
′, b′) ≥ u1(a

∗, b∗). I construct equilibria where the rational-type of player 1 plays a′ in every period and
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for every t ≥ 1, player 2t plays b∗ if a∗ was played in each of the last K periods and plays b′ if the former

is not the case and no action except for a∗ and a′ appeared in the last min{t,K} periods. The rest of the

construction considers two subcases separately.

If a′ is player 1’s lowest action, then at every history that occurs with positive probability, player 1 plays

a′ and player 2 plays b′. Obviously, player 1 has no incentive to play actions other than a′ at any history and

player 2’s strategy is also optimal given her belief, which verifies that this is an equilibrium.

If a′ is not player 1’s lowest action, then let a′′ be player 1’s lowest action. By definition, there exists

ϕ ∈ (0, 1) such that b′ as well as an action strictly lower than b′, denoted by b′′, are both best replies to

α ≡ ϕa′ + (1− ϕ)a′′. Upon observing any history that occurs with zero probability, if there exists any action

that is neither a′ nor a∗, player 2 believes that it occurred in the period before. At every history that occurs

with zero probability, player 1 plays a′ if at−1 ∈ {a∗, a′} and plays α if at−1 /∈ {a∗, a′}. Since player 2

assigns probability 1 to at−1 /∈ {a′, a∗} when she observes at least one action that is not a′ and a∗, she has an

incentive to mix between b′ and b′′, where his probability of playing b′ is denoted by β and is given by

βu1(a
′′, b′) + (1− β)u1(a

′′, b′′) = (1− δK)
(
βu1(a

′, b′) + (1− β)u1(a
′, b′′)

)
+ δKu1(a

′, b′). (B.22)

This implies that at a history where at−1 /∈ {a∗, a′}, player 1 is indifferent between playing a′ and a′′, and

given that u1(a∗, b∗) ≤ u1(a
′, b′), he strictly prefers a′′ to any action that is not a′ or a′′. What remains to be

verified is that at a history where the last K actions were a′, player 1 has no incentive to play actions other

than a′. First, playing a∗ is suboptimal given that u1(a∗, b∗) ≤ u1(a
′, b′) and playing actions other than a∗

and a′ is strictly dominated by playing a′′. Hence, I only need to verify that player 1 has no incentive to play

a′′. Player 1’s payoff when he plays a′′ at history (at−K , ..., at−1) = (a′, ..., a′) is

(1− δ)u1(a
′′, b′) + δ(1− δK)

(
βu1(a

′, b′) + (1− β)u1(a
′, b′′)

)
+ δK+1u1(a

′, b′), (B.23)

which by the definition of β in (B.22) as well as the assumption that u1 has strictly increasing differences,

implies that (B.23) is strictly smaller than u1(a
′, b′). This verifies that player 1 has no incentive to deviate.
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[16] Ely, Jeffrey and Juuso Välimäki (2003) “Bad Reputation,” Quarterly Journal of Economics, 118, 785-
814.

[17] Fudenberg, Drew and David Levine (1989) “Reputation and Equilibrium Selection in Games with a
Patient Player,” Econometrica, 57, 759-778.

[18] Fudenberg, Drew and David Levine (1992) “Maintaining a Reputation when Strategies are Imperfectly
Observed,” Review of Economic Studies, 59, 561-579.

[19] Fudenberg, Drew and Jean Tirole (1991) “Perfect Bayesian Equilibrium and Sequential Equilibrium,”
Journal of Economic Theory, 53, 236-260.

38



[20] Gossner, Olivier (2011) “Simple Bounds on the Value of a Reputation,” Econometrica, 79, 1627-1641.

[21] Heller, Yuval and Erik Mohlin (2018) “Observations on Cooperation,” Review of Economic Studies, 88,
1892-1935.

[22] Hu, Ju (2020) “On the Existence of the Ex Post Symmetric Random Entry Model,” Journal of Mathe-
matical Economics, 90, 42-47.

[23] Jehiel, Philippe and Larry Samuelson (2012) “Reputation with Analogical Reasoning,” Quarterly Jour-
nal of Economics, 127(4), 1927-1970.

[24] Kandori, Michihiro (1992) “Social Norms and Community Enforcement,” Review of Economic Studies,
59, 63-80.

[25] Kaya, Ayça and Santanu Roy (2022) “Market Screening with Limited Records,” Games and Economic
Behavior, 132, 106-132.

[26] Levine, David (2021) “The Reputation Trap,” Econometrica, 89, 2659-2678.

[27] Li, Yingkai and Harry Pei (2021) “Equilibrium Behaviors in Repeated Games,” Journal of Economic
Theory, 193, 105222.

[28] Liu, Qingmin (2011) “Information Acquisition and Reputation Dynamics,” Review of Economic Studies,
78, 1400-1425.

[29] Liu, Qingmin and Andrzej Skrzypacz (2014) “Limited Records and Reputation Bubbles,” Journal of
Economic Theory 151, 2-29.

[30] Mailath, George and Larry Samuelson (2001) “Who Wants a Good Reputation?” Review of Economic
Studies, 68, 415-441.

[31] Pei, Harry (2020) “Reputation Effects under Interdependent Values,” Econometrica, 88(5), 2175-2202.

[32] Pei, Harry (2023) “Reputation Building under Observational Learning,” Review of Economic Studies,
90(3), 1441-1469.

[33] Quah, John and Bruno Strulovici (2012) “Aggregating the Single Crossing Property,” Econometrica, 80,
2333-2348.
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