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Online Appendix C: Proof of Corollary 1

Recall that S ≡ AK and s∗ ∈ S is the state where all of player 1’s actions in the last K periods were a∗.

For every Nash equilibrium σ ≡ (σ1, σ2), let S′(σ) ⊂ S be such that s ∈ S′(σ) if and only if (i) s ̸= s∗,

and (ii) there exists a pure strategy σ̂1 that best replies to σ2 such that s∗ is reached within a finite number

of periods when the initial state is s and player 1 uses strategy σ̂1. Let S′′(σ) ≡ S
∖(

{s∗} ∪ S′(σ)
)

.

Recall the definitions of inflow I(·) and outflow O(·) in equations (B.2) and (B.3) in the main text. Since

player 1’s equilibrium strategy σ1 must satisfy the no-back-loop property, we have I(S′(σ)) = O(S′′(σ)) =

0. Statement 1 of Theorem 2 implies that there exists a constant C ∈ R+ such that µ(s∗) ≥ 1 − C(1 − δ)

for every equilibrium under discount factor δ. Therefore,
∑

s∈S′(σ) µ(s) +
∑

s∈S′′(σ) µ(s) ≤ C(1 − δ).

Recall that p(s) is the probability that the state is s conditional on calendar time being K and player 1 is the

strategic type. Since O(S′′(σ)) = 0, we have

∑
s∈S′′(σ)

p(s) ≤
∑

s∈S′′(σ)

µ(s) ≤ C(1− δ)

Lemma B.2 in the main text implies that:

∣∣∣I(S′′(σ))−O(S′′(σ))
∣∣∣ = 1− δ

δ

∣∣∣ ∑
s∈S′′(σ)

(
µ(s)− p(s)

)∣∣∣ ≤ C(1− δ)2

δ
. (1)

This together with O(S′′(σ)) = 0 implies that I(S′′(σ)) ≤ C(1−δ)2

δ . For every t ≥ K and S′ ⊂ S, let

qt(S
′) be the probability that the state in period t belongs to S′ conditional on player 1 being the strategic

type. Since I(S′(σ)) = O(S′′(σ)) = 0,

(1− δt−K)qt(S
′(σ)) + δt−Kqt(S

′′(σ)) ≤
∑
s ̸=s∗

µ(s) ≤ C(1− δ). (2)
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Suppose t ∈ N is such that δt ∈ (ε, 1 − ε), and δ is above some cutoff such that δt−K ∈ (
√
ε, 1 −

√
ε),

inequality (2) implies that

qt(S
′(σ)) + qt(S

′′(σ)) ≤ max
{C(1− δ)

1− δt−K
,
C(1− δ)

δt−K

}
≤ C√

ε
(1− δ),

which implies that qt({s∗}) ≥ 1− C√
ε
(1− δ). Let rt be the probability with which the strategic-type player

1 does not play a∗ in period t conditional on the period t state is s∗. Inequality (1) implies that:

(1− δ)δt−K
(
1− qt(S

′(σ))− qt(S
′′(σ))

)
︸ ︷︷ ︸

=qt({s∗})

rt ≤ I(S′′(σ)) ≤ C(1− δ)2

δ
. (3)

Dividing both sides of inequality (3) by 1− δ, using the conclusion that qt({s∗}) ≥ 1− C√
ε
(1− δ), as well

as the hypothesis that δ ≥
√
ε, we obtain:

rt ≤
C√
εδ

· 1

1− C√
ε
(1− δ)

· (1− δ) ≤ C

ε
· 1

1− C√
ε
(1−

√
ε)︸ ︷︷ ︸

≡Cε

·(1− δ).

This yields the desired conclusion.

Online Appendix D: Patient Player’s Equilibrium Behavior

This appendix compares the predictions on the patient player’s action frequencies in my baseline model and

the canonical reputation model of Fudenberg and Levine (1989).

Recall that in Fudenberg and Levine (1989), every short-run player observes the entire sequence of the

patient player’s past actions. In games where players’ payoffs satisfy Assumption 1 as well as a generic

assumption that neither player is indifferent between any pairs of pure action profiles (which implies that

each player has a unique best reply to any of his opponent’s pure action, and that player 1 has a unique

optimal pure commitment action), Li and Pei (2021) show that the frequency with which player 1 plays a∗

in equilibrium can be anything between G∗(u1, u2) and 1, where G∗(u1, u2) is defined as the value of the

following constrained optimization problem:.

G∗(u1, u2) ≡ min
(α1,α2,b1,b2,q)∈∆(A)×∆(A)×B×B×[0,1]

{
qα1(a

∗) + (1− q)α2(a
∗)
}
, (4)
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subject to b1 ∈ argmaxb∈B u2(α1, b), b2 ∈ argmaxb∈B u2(α2, b), and

qu1(α1, b1) + (1− q)u1(α2, b2) ≥ u1(a
∗, b∗). (5)

For an interpretation of the linear program that defines G∗(u1, u2), consider an optimization problem faced

by a planner who chooses a distribution over action profiles in order to minimize the expected probability

of a∗ subject to the constraints that (i) each action profile in the support of this distribution satisfies player

2’s myopic incentive constraint, and (ii) player 1’s expected payoff from this distribution is no less than his

commitment payoff u1(a∗, b∗). I show that for any stage-game where G∗(u1, u2) > 0, which is the case if

and only if

u1(a
∗, b∗) > max

a̸=a∗
max

b∈BR2(a)
u1(a, b), (6)

the discounted frequency with which player 1 plays a∗ in my model is strictly bounded above G∗(u1, u2)

regardless of the value of K.

Proposition. Suppose (u1, u2) satisfies Assumptions 1 and 2, and there do not exist a pair of action

profiles (a, b), (a′, b′) ∈ A×B and i ∈ {1, 2} such that ui(a, b) = ui(a
′, b′).

1. If (u1, u2) violates (6), then G∗(u1, u2) = 0 and the minimal frequency with which player 1 plays a∗

is 0 both in my model and in Fudenberg and Levine (1989)’s model.

2. If (u1, u2) satisfies (6), then there exists ψ > 0 such that for every K ∈ N, there exists δ ∈ (0, 1) such

that for every δ > δ, and in every equilibrium σ under δ, we have:

∑
b∈B

F σ(a∗, b)︸ ︷︷ ︸
the discounted frequency of a∗ under σ

> G∗(u1, u2) + ψ. (7)

Proof. In the case where a∗ is not player 1’s optimal pure commitment action, by definition,G∗(u1, u2) = 0

and the proof of Theorem 2 in Appendix B implies that the lowest frequency with which player 1 plays a∗

in my model is also 0. This establishes the first statement of the proposition.

In what follows, I focus on the case where a∗ is player 1’s optimal pure commitment action. According

to the definition of G∗(u1, u2), it is without loss of generality to focus on (α1, b1) and (α2, b2) such that

u1(α1, b1) ≥ u1(a
∗, b∗) ≥ u1(α2, b2). When players’ stage-game payoffs satisfy Assumption 1, every

(α1, α2, b1, b2, q) that solves the constrained optimization problem must satisfy:

1. b1 = b∗,
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2. α1 is a nontrivially mixed action that assigns positive probability to a∗,

3. u1(α1, b1) > u1(a
∗, b∗) > u1(α2, b2) and constraint (5) is binding.

This is because:

1. The first requirement is implied by a∗ being player 1’s optimal pure commitment action.

2. The second requirement is implied by Proposition 1 in Li and Pei (2021).

3. Since u1(a, b) is strictly decreasing in a, requirement 2 implies that u1(α1, b1) > u1(a
∗, b∗). Suppose

by way of contradiction that u1(a∗, b∗) = u1(α2, b2), then the fact that a∗ being player 1’s optimal

pure commitment action implies that α2 assigns positive probability to a∗ (this is because otherwise,

actions lower than a∗ can also induce player 2 to play b∗, in which case committing to this lower action

gives player 1 a strictly higher payoff compared to committing to a∗). Consider another solution

(α′
1, α

′
2, b

′
1, b

′
2, q

′) where (α′
1, b

′
1) = (α1, b1), α′

2 assigns probability 1 to player 1’s lowest action, b′2

best replies to α′
2, and q′ is chosen such that constraint (5) binds. Compared to (α1, α2, b1, b2, q),

(α′
1, α

′
2, b

′
1, b

′
2, q

′) increases the value of (4) without violating any constraint, which contradicts the

optimality of (α1, α2, b1, b2, q).

4. Suppose by way of contradiction that constraint (5) is not binding. Consider two cases separately.

First, suppose α1(a
∗) > α2(a

∗). One can decrease q to make (5) binding, which increases the

value of (4). This is a contradiction. Second, suppose α1(a
∗) ≤ α2(a

∗). Consider another solution

(α′
1, α

′
2, b

′
1, b

′
2, q

′) where (α′
1, b

′
1) = (α1, b1), α′

2 assigns probability 1 to player 1’s lowest action, b′2

best replies to α′
2, and q′ is chosen such that constraint (5) binds. Compared to (α1, α2, b1, b2, q),

(α′
1, α

′
2, b

′
1, b

′
2, q

′) increases the value of (4) without violating any constraint. This contradicts the

optimality of (α1, α2, b1, b2, q) in the program that defines G(u1, u2).

Let S ≡ AK . Let us partition the entire set of states S according to player 2’s information structure

S ≡ ∪N
j=1Sj , where N ∈ N can be computed from K and the number of actions in A. Recall the definition

of µ ∈ ∆(S). Let µ(Sj) ≡
∑

s∈Sj
µ(s). Let αj ∈ ∆(A) be player 1’s expected action conditional on Sj

and βj ∈ ∆(B) be player 2’s action at Sj . We have

∣∣∣∑
b∈B

F σ(a∗, b)−
N∑
j=1

µ(Sj)αj(a
∗)
∣∣∣ ≤ 1− δK . (8)
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and

(1− δK) max
(a,b)∈A×B

u1(a, b) + δK
N∑
j=1

µ(Sj)u1(αj , βj) ≥
+∞∑
t=0

(1− δ)δtu1(at, bt). (9)

Suppose by way of contradiction that for every δ ∈ (0, 1), there exist δ > δ and an equilibrium σ under

δ such that
∑

b∈B F
σ(a∗, b) < G∗(u1, u2) + ε. When δ is close to 1, there exists an element of player

2’s information partition Sj ∈ {S1, ..., SN} such that (i) µ(Sj) is bounded away from 0, (ii) βj assigns

probability close to 1 to b∗ and αj is close to one of the optimal solutions to (4), i.e., the probability αj

assigns to a∗ is bounded away from 1.

First, I show that Sj cannot be the partition element that contains the history where all of the last K

actions were a∗. This is because the probability αj assigns to a∗ is bounded away from 1, which implies

that if Sj contains the history where all of the last K actions were a∗, it must be the case that O(Sj) ≥

µ(Sj)(1 − αj(a
∗)). Since (u1, u2) satisfies Assumptions 1 and 2, Lemma 3.4 in the main text implies

that O(Sj) ≤ 2(1−δ)
δ if Sj contains the history where all of the last K actions were a∗. This leads to a

contradiction.

Next, for every a ∈ A, let Kj(a) be the number of times action a occurred in histories that belong to Sj .

Suppose player 1 deviates and plays action a for Kj(a) times every K periods for every a ∈ A. Under this

deviation, player 1’s discounted average payoff is close to

1

K

∑
a∈A

Kj(a)u1(a, βj) ≈
1

K

∑
a∈A

Kj(a)u1(a, b
∗). (10)

When δ is close to 1, (10) is bounded away from u1(a
∗, b∗) since Kj(a

∗) ≤ K − 1 and u1(a, b) is strictly

decreasing in a. Hence, for every ε > 0, there exists δ ∈ (0, 1) such that when δ > δ, player 1’s equilibrium

payoff is at least 1
K

∑
a∈AKj(a)u1(a, b

∗)− ε. According to (9), we have

(1− δ)K max
(a,b)∈A×B

u1(a, b) + δK
N∑
j=1

µ(Sj)u1(αj , βj) ≥
1

K

∑
a∈A

Kj(a)u1(a, b
∗)− ε.

Since constraint (5) must be binding in the optimal solution, there is no equilibrium where the frequency of

a∗ is close to G∗(u1, u2) when δ is close to 1. Hence, there exists η > 0 and δ ∈ (0, 1) such that for every

δ > δ and every Nash equilibrium σ under δ, we have
∑

b∈B F
σ(a∗, b) > G∗(u1, u2) + η.
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Online Appendix E: Learning from Noisy Signals

I study settings where the short-run players can only observe the summary statistics of some noisy signal

about the patient player’s action. Let ãt ∈ A be a signal of player 1’s action at such that ãt = at with

probability 1 − ε, and ãt is drawn according to α ∈ ∆(A) with probability ε. Player 1 observes the entire

history ht = {as, bs, ãs}t−1
s=0. Player 2t only observes the number of times that each signal realization

occurred in the last min{t,K} periods.

I show that a version of my no-back-loop lemma holds for all small enough ε. For every t ≥ K,

player 1’s incentive in period t depends on his history only through (ãt−K , ..., ãt−1). Let S ≡ AK be the

set of signal vectors of length K with a typical element denoted by s ∈ S, which I call a state. Without

loss of generality, I focus on player 1’s strategies that are measurable with respect to the state, that is,

σ1 : S → ∆(A). I say that a pure strategy σ̂1 : S → A induces an ε-back-loop if there exist a subset of

states {s0, ..., sM} ⊂ S such that s0 = sM = (a∗, ..., a∗) and for every i ∈ {0, 1, ...,M − 1}, if player 1

plays σ̂1(si) in state si, then it reaches state si+1 in the next period with probability more than 1− ε.

Proposition. There exists ε > 0 such that for every α ∈ ∆(A) and σ2 : H2 → ∆(B), if a pure strategy

σ̂1 best replies to σ2, then σ̂1 does not induce any ε-back-loop.1

The proof can be found by the end of this section. After establishing this general no-back-loop lemma

for all small ε, one can use the same argument to show Theorem 1, namely, player 1 can approximately

secure payoff u1(a∗, b∗) in all equilibria when δ is close enough to 1 and ε is small enough. This is because

conditional on observing (ãt−K , ..., ãt−1) = (a∗, ..., a∗), the probability that player 2 assigns to player

1 playing a∗ in the current period is close to 1. This implies that player 2’s action is at least b∗, and

therefore, player 1’s payoff is approximately u1(a∗, b∗) when he plays a∗ in every period. Theorems 2

and 3 can also be extended to environments where ε is small, i.e., the same cutoff K applies as long as ε

is small enough. Intuitively, this is because when ε is small, the occupation measure of states other than

(ãt−K , ..., ãt−1) = (a∗, ..., a∗) is close to 0 since one can show that (i) when K is below the cutoff, the

probability that other states being generated by player 1’s deliberate behavior is close to 0, and (ii) when ε

is close to 0, the probability that other states being generated by noise in player 2’s signal is also close to 0.

Proof. Let S ≡ AK with a typical element denoted by s ∈ S. As in the proof of the no-back-loop lemma in

Appendix A, it is without loss of generality to focus on player 1’s strategies that depend only on the signal

realizations in the last K periods. Therefore, I write player 1’s strategy as σ1 : S → ∆(A).

1If player 2 has three or more actions and u2 satisfies Assumption 2, then this conclusion holds for all σ2 : H2 → B∗.
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Suppose by way of contradiction that there exists σ2 and a pure strategy σ̂1 : S → A that best replies to

σ2 such that σ̂1 induces an ε-back-loop. Let σ̂1(at−K , .., at−1) be player 1’s action under σ̂1 conditional on

the last K signal realizations. Then there exist two signal realizations a′, a′′ ̸= a∗ such that σ̂1(a∗, ..., a∗) =

a′ and after player 1 plays a′ at (a∗, ..., a∗) and uses strategy σ̂1, he will reach (a′′, a∗, ..., a∗) after a finite

number of periods and σ̂1(a′′, a∗, ..., a∗) = a∗. Let β∗ ∈ ∆(B) be player 2’s action when all of the last K

signal realizations were a∗ and let β′′ ∈ ∆(B) be player 2’s action when player 1’s lastK signal realizations

were (a′′, a∗, ..., a∗). By definition, a′ is optimal for player 1 at (a∗, ..., a∗) and a∗ is optimal for player 1 at

(a′′, a∗, ..., a∗). Therefore, we have

(1− δ)u1(a
∗, β′′) + δ(1− ε)V (a∗, a∗, ..., a∗, a∗) + δεEã∼α[V (a∗, ..., a∗, ã)]. (11)

≥ (1− δ)u1(a
′, β′′) + δ(1− ε)V (a∗, a∗, ..., a∗, a′) + δεEã∼α[V (a∗, ..., a∗, ã)],

and

(1− δ)u1(a
∗, β∗) + δ(1− ε)V (a∗, a∗, ..., a∗, a∗) + +δεEã∼α[V (a∗, ..., a∗, ã)] (12)

≤ (1− δ)u1(a
′, β∗) + δ(1− ε)V (a∗, a∗, ..., a∗, a′) + δεEã∼α[V (a∗, ..., a∗, ã)].

Assumption 1 implies that β∗ cannot strictly FOSD β′′. Assumption 2 implies that β′′ weakly FOSDs β∗.

In what follows, I compare player 1’s discounted average payoff starting from history (a′′, a∗, ..., a∗) under

strategy σ̂1 to his discounted average payoffs under the following two deviations. For simplicity, I use t∗ to

denote the calendar time that the deviation starts and use t to denote a generic calendar time.

1. Plays a′ at history (a′′, a∗, ..., a∗) and then follows σ̂1

2. Plays a′′ at history (a′′, a∗, ..., a∗), and then

• Plays a∗ in period t if t∗ + 1 ≤ t ≤ t∗ +K − 1 and ãs = as for every s ∈ {t∗, ..., t− 1}.

• Follows strategy σ̂1 otherwise.

Recall the definition of U in equation (A.3) of Appendix A. Since the state space is finite, for every η > 0,

there exists ε > 0 such that for every α ∈ ∆(A) and ε < ε, player 1’s discounted average payoff from

strategy σ̂1 belongs to an η-neighbourhood of

(1− δ)u1(a
∗, β′′) + (1− δ)δu1(a

′, β∗) + (δ2 − δM−1)U

1− δM−1
, (13)
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his discounted average payoff from the first deviation belongs to an η-neighbourhood of

(1− δ)u1(a
′, β′′) + (δ − δM−2)U

1− δM−2
, (14)

and his discounted average payoff from the second deviation belongs to an η-neighbourhood of

(1− δ)u1(a
′′, β′′) + (δ − δK)u1(a

∗, β′′)

1− δK
(15)

where M is the length of the back loop induced by σ̂1. Since σ̂1 best replies to σ2, the value of (13) must be

weakly greater than the maximum of (14) and (15) plus 2η. Therefore,

u1(a
∗, β′′) +

1− δ

1− δK

{
u1(a

′′, β′′)− u1(a
∗, β′′)

}
︸ ︷︷ ︸

>0, since a′′≺a∗ and u1 is decreasing in a

−2η ≤ U

≤ u1(a
∗, β′′) + δ

{
u1(a

′, β∗)− u1(a
′, β′′)

}
︸ ︷︷ ︸

≤0, since β′′⪰β∗ and u1 is increasing in b

+2η. (16)

The left-hand-side of (16) is strictly greater than u1(a∗, β′′) while the right-hand-side of (16) is strictly

smaller than u1(a∗, β′′). Therefore, (16) is false for η small enough. When u1 satisfies Assumption 1 in the

main text, the following expression is bounded away from 0:

min
a′,a′′ ̸=a∗,β′′⪰FOSDβ∗

1

4

{
δ(u1(a

′, β′′)− u1(a
′, β∗)) +

1− δ

1− δK
(u1(a

′′, β′′)− u1(a
∗, β′′)

}
(17)

Pick a small enough ε > 0 such that η is strictly less than (17), I can obtain that any pure strategy that

induces an ε-back-loop cannot best reply to any of player 2’s strategies in which she plays actions in B∗ at

every history that occurs with positive probability.

Online Appendix F: Learning from Coarse Summary Statistics

This appendix studies an extension where the short-run players can only learn from coarse summary statis-

tics. Formally, let A1 ∪ ... ∪An be a partition of A. For every t ∈ N, player 2t only observes the number of

times that player 1’s last min{t,K} actions belong to each partition element.

Since there exists a complete order ≻A on A and u1(a, b) is strictly decreasing in a, for every partition

element Ai, the strategic-type of player 1 will never choose action a ∈ Ai if there exists a′ ∈ Ai such that

a ≻A a′. Hence, analyzing the game under an n-partition {A1, ..., An} of A is equivalent to analyzing a
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game where player 1 chooses his action from set {minA1, ...,minAn}.

When players’ stage-game payoffs satisfy Assumption 1 and inequality (6), player 2 has no incentive to

play b∗ unless player 1 plays a∗ with positive probability. When the prior probability of commitment type π0

is small enough such that player 2 has no incentive to play b∗ when player 1 plays a∗ with probability no more

than π0, the strategic-type player 1 has no incentive to play a∗ and player 2 has no incentive to play b∗ unless

the partition element that contains a∗ is a singleton. If we partition A according to A = {a∗}
⋃(

A\{a∗}
)

,

then player 2 may receive a higher welfare under some intermediate K. Intuitively, such a partition helps

player 1 to credibly commit not to take any action other than his commitment action a∗ and his lowest-cost

action a ≡ minA. This provides player 2 a stronger incentive to punish player 1 after the latter loses his

reputation, since player 2 knew that player 1 will take his lowest action as long as he does not take the

highest action. This credible threat of punishment motivates player 1 to play a∗ in every period.

Proposition. Suppose players’ stage-game payoffs (u1, u2) satisfy Assumptions 1 and 2,

1. If the partition element that contains a∗ is not a singleton, then the discounted frequency with which

the strategic-type of player 1 plays a∗ is 0 in all Nash equilibria.

2. If the partition element that contains a∗ is a singleton (without loss of generality, letA1 ≡ {a∗}), then

when δ > δ(π0), the strategic-type player 1’s payoff is at least (1 − δK)u1(a
∗, b) + δKu1(a

∗, b∗) in

every Nash equilibrium. Furthermore, there exists an integer K ∈ N such that

(i) There exists C ∈ R+ that is independent of δ such that for every 1 ≤ K < K, we have

F σ(a∗, b∗) ≥ 1− (1− δ)C for every Nash equilibrium σ under K and δ.

(ii) There exists η > 0 such that for every K ≥ K, there exists δ ∈ (0, 1) such that for every δ > δ,

there exists a PBE such that
∑

b∈B F
σ(a∗, b) ≤ 1− η.

The proof of this proposition follows directly from that of Theorems 1 and 2 in the main text, which I

omit in order to avoid repetition. The way to compute the cutoff K is similar to that in the baseline model.

If inequality (6) is violated, then K = 1 and there exists an equilibrium in which the strategic type plays a∗

with zero frequency. If inequality (6) is satisfied, then K is the smallest K such that b∗ best replies to the

mixed action K−1
K a∗ + 1

K minj∈{2,...,n}{minAj}.

Online Appendix G: Observing the Exact Sequence of Actions

This appendix studies a model in which players’ stage-game payoffs satisfy Assumption 1 but player 2 can

perfectly observe the exact sequence of player 1’s last K actions. The main result is stated as follows:
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Proposition. Suppose (u1, u2) satisfies Assumption 1 and inequality (6), and that for every t ∈ N,

player 2t can observe player 1’s last min{t,K} actions including the exact sequence of these actions.

1. For every K ≥ 1, there exists δ ∈ (0, 1) such that when δ > δ, there exists a PBE where player 1

obtains payoff u1(a∗, b∗) and player 2 obtains payoff u2(a∗, b∗).

2. In the following supermodular product choice game,

- T N

H 1, 1 −cN , x

L 1 + cT ,−x 0, 0

with cN > cT > 0 and x ∈ (0, 1),

there exist K ∈ N, π ∈ (0, 1), and η > 0 such that when π0 ∈ (0, π) and K ≥ K,2 for every δ large

enough,3 there exists a PBE where player 1’s payoff is no more than u1(a∗, b∗) − η and player 2’s

payoff is no more than u2(a∗, b∗)− η.

Proof of Statement 1: For any (u1, u2) that satisfies Assumption 1 and inequality (6), I construct an

equilibrium in which (a∗, b∗) occurs with probability 1 at every on-path history. Since a∗ is player 1’s

optimal pure commitment action and u1(a, b) is strictly increasing in b and is strictly decreasing in a, player

2’s best reply to any a ̸= a∗ is strictly smaller than b∗. Let a′ be player 1’s lowest action and let b′ be player

2’s lowest best reply to a′. Since best reply correspondences are upper-hemi-continuous, when δ is close

enough to 1, there exist λ ∈ (0, 1) and β ∈ ∆(B) such that

1. b∗ ≻FOSD β ≻FOSD b′,

2. β best replies to the mixed action λa∗ + (1− λ)a′,

3. u1(a′, β) = (1− δ)u1(a
∗, β) + δu1(a

∗, b∗).

This is because when (u1, u2) satisfies Assumption 1 and a∗ is player 1’s optimal pure commitment action,

we have u1(a′, b∗) > u1(a
∗, b∗) > u1(a

′, b′).

Consider the following PBE. At every history ht such that either t = 0 or t ≥ 1 and at−1 = a∗,

player 1 plays a∗ and player 2 plays b∗. At every history with t ≥ 1, at−1 ̸= a∗, and at−k ̸= a∗ for

every k ∈ {1, 2, ...,K}, then player 1 plays the mixed action λa∗ + (1 − δ)a′ and player 2 plays β. At
2The requirement that π0 being small enough is necessary for the existence of a low-payoff equilibrium. This is because when

π0 is large enough, player 2 has a strict incentive to play T upon observing (H, ...,H) given that the commitment type plays H in
every period, in which case player 1 can secure his commitment payoff by playing H in every period.

3As in Liu and Skrzypacz (2014), reputation cycles can occur only if δ is large enough. This is because restoring reputation
requires player 1 to play the strictly dominated action H . Hence, he has no incentive to restore his reputation when δ is low.
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any other history, player 1 plays a′ and player 2 plays b′. Since player 1 takes action a∗ in period 0, player

1’s action is a∗ and player 2’s action is b∗ at every on-path history. Player 2’s action at every history is

her myopic best reply, so her incentive constraints are satisfied. At any history, player 1 strictly prefers a′

to any action that is neither a∗ nor a′ since player 2 treats any action that is not a∗ as a′ and a′ leads to

a strictly higher stage-game payoff compared to any other action. Player 1 is indifferent between a∗ and

a′ at any history where t ≥ 1, at−1 ̸= a∗, and at−k ̸= a∗ for every k ∈ {1, 2, ...,K} since u1(a′, β) =

(1 − δ)u1(a
∗, β) + δu1(a

∗, b∗). Player 1 strictly prefers a∗ to a′ when t = 0 or when t ≥ 1 and at−1 =

a∗ since u1(a′, β) = (1 − δ)u1(a
∗, β) + δu1(a

∗, b∗) and u1 having strictly increasing differences imply

that u1(a∗, b∗) > (1 − δ)u1(a
′, b∗) + δu1(a

′, β), and the right-hand-side is an upper bound on player 1’s

discounted average payoff after he plays any action that is not a∗. This verifies players’ incentive constraints.

Proof of Statement 2: I construct for K large enough, a PBE in which (i) player 1 induces a back loop in

equilibrium, (ii) player 1’s equilibrium payoff is bounded away from his commitment payoff u1(a∗, b∗), and

(iii) the frequency with which player 1 plays his commitment action a∗ being bounded below 1. Consider a

strategy profile such that for every t ≥ K,

1. When (at−K , ..., at−1) = (H,H, ...,H), the strategic-type player 1 plays H with probability y ∈

(0, x) and player 2t plays T with probability βH ∈ (0, 1).

2. When (at−K , ..., at−1) = (L,L, ..., L), the strategic-type player 1 plays H with probability x and

player 2t plays T with probability βL ∈ (0, 1).

3. When (at−K , ..., at−1) ∈
{
(L, ..., L,H), (L, ..., L,H,H), ..., (L,H, ...,H)

}
, the strategic-type player

1 plays H and player 2t plays T .

4. At all other histories, the strategic-type player 1 plays L and player 2t plays N .

When t = 0, the player 2 plays T with probability βL and the strategic-type player 1 plays H with proba-

bility x−π0
1−π0

. For every t ∈ {1, 2, ...,K − 1}, players behave as if actions before period 0 were L.

I pin down βH and βL using player 1’s incentive constraints. I show that when π0 is small, there exists

y ∈ (0, x) under which player 2t is indifferent between T and N when (at−K , ..., at−1) = (H,H, ...,H).

Player 1’s indifference at (at−K , ..., at−1) = (H,H, ...,H) implies that:

V (H,H, ...,H) = βH(1 + cN )− cN = (1− δ)βH(1 + cT ) + δKβL(1 + cT ). (18)
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Player 1’s indifference at (at−K , ..., at−1) = (L,L, ..., L) implies that:

V (L,L, ..., L) = rL(1 + cT ) = (1− δ)
{
βL(1 + cN )− cN

}
+ (δ− δK) + δK

{
βH(1 + cN )− cN

}
. (19)

Solving this system of linear equations, I obtain:

βL

{(1 + ...+ δ2K−1)(1 + cN )(1 + cT )− (1 + cT )
2

(1 + cN )− (1− δ)(1 + cT )
− (1 + cN )

}

= −cN + δ(1 + ...+ δK−2) +
δKcN (1 + cT )

(1 + cN )− (1− δ)(1 + cT )

and

βH =
δK(1 + cT )

(1 + cN )− (1− δ)(1 + cT )
βL +

cN
(1 + cN )− (1− δ)(1 + cT )

.

Since both βL and βH are continuous functions of δ ∈ [0, 1], as δ → 1, βL and βH converge to

β∗L =
cN (cT − cN ) + (K − 1)(1 + cN )

2K(1 + cN )(1 + cT )− (1 + cT )2 − (1 + cN )2
, (20)

β∗H =
2KcN (1 + cT ) + (K − 1)(1 + cT )− cN (cN + cT + 2)

2K(1 + cN )(1 + cT )− (1 + cT )2 − (1 + cN )2
. (21)

If cN > cT > 0, there exists K ∈ N such that when K > K, both β∗H and β∗L are strictly between 0 and 1.

Given the strategic-type player 1’s equilibrium behavior, he plays L from period 0 toK−1 with positive

probability. Hence, there exists p > 0 independent of δ such that conditional on player 1 being the strategic

type and t ≥ K, the probability that (at−K , ..., at−1) = (H, ...,H) is more than p. Hence, when π0 is small

enough, there exists y ∈ (0, x) such that when the strategic-type of player 1 plays H with probability y

when (at−K , ..., at−1) = (H, ...,H), player 2t’s belief assigns probability x to at = H and hence, has an

incentive to mix between T and N . Since it is optimal for the strategic-type player 1 to play L from period

0 to K − 1, β∗H is bounded away from 1 as δ → 1, and

V (L,L, ..., L) ≤ (1− δK) + δKV (H, ...,H) = (1− δK) + δK
(
βH(1 + cN )− cN

)
,

the strategic-type player 1’s continuation value in period 0 is bounded away from 1 even as δ → 1, and the

discounted frequency with which he plays H is also bounded away from 1.
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Online Appendix H: Monotone-Submodular Payoffs

I relax the assumption that u1(a, b) has strictly increasing differences while maintaining all other assump-

tions in my baseline model. I focus on the following submodular product choice game:

seller \ consumer Trust No Trust

High Effort 1, 1 −cN , x

Low Effort 1 + cT ,−x 0, 0

with cT ≥ cN > 0 and x ∈ (0, 1).

where the weakly decreasing difference condition translates into cT ≥ cN .

Proposition. In the product choice game where u1(a, b) has weakly decreasing differences.

1. For every K ≥ 1 and cT ≥ cN > 0, there exists δ ∈ (0, 1) such that for every δ > δ, there exist σ2

and a pure strategy σ̂1 that best replies to σ2 such that the no-back-loop property fails under (σ̂1, σ2).

2. Suppose cT is large enough such that 1 + cT > K(1 + cN ). There exist δ ∈ (0, 1), π0 > 0, and

η > 0 such that for every δ > δ and π0 < π0, there exists a PBE where player 1’s payoff is lower

than u1(a∗, b∗)− η and the discounted frequency with which he plays a∗ is no more than 1− η.

Proof. For every k ∈ {0, ..,K}, let βk be player 2’s mixed action when k of the last K actions were L.

Player 2’s strategy σ2 is characterized by (β0, ..., βK) and her behavior in the first K periods. The latter

is irrelevant for the proof of the first statement but is relevant for the proof of the second statement. I use

u1(a, β) to denote player 1’s stage-game payoff when his action is a and player 2 plays T with probability

β.

Proof of Statement 1: I show that for every u1(a, b) that has weakly decreasing differences, there exist a

strategy for player 2, σ2, as well as a pure strategy for player 1, σ̂1, such that σ̂1 best replies to σ2 and σ̂1

induces a back loop. I consider two cases separately, depending on the relative magnitude of cT and cN .

First, I consider the case in which cT ≥ K(1+ cN ). Let σ2 be such that β0 = 1 and β1 = ... = βK = 0.

In the first step, I show that at history (H,H, ...,H), it is optimal for player 1 to play L since his discounted

average payoff from doing so is at least

u1(L, β0) + (δ + ...+ δK)u1(H,β1)

1 + δ + ...+ δK
(22)

which is attained if he plays L and then plays H in the next K periods. For every δ ∈ (0, 1), the value of

(22) is strictly greater than 1+cT−KcN
K+1 . Player 1’s payoff from playing H at (H,H, ...,H) is 1. Since
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cT ≥ K(1 + cN ), we have 1+cT−KcN
K+1 ≥ 1, which implies that the value of (22) is strictly greater

than 1. In the second step, I show that at any state (at−K , ..., at−1) ̸= (H,H, ...,H), it is optimal for

player 1 to return to state (H, ...,H) in finite time. This is because player 1’s stage-game payoff when

(at−K , ..., at−1) ̸= (H,H, ...,H) is at most 0, which is strictly less than his payoff when he plays H at

(H,H, ...,H). Hence when δ is large enough, player 1 has an incentive to return to (H, ...,H) in finite time

at every (at−K , ..., at−1) ̸= (H,H, ...,H). This implies that player 1 has a pure-strategy best reply to σ2

that violates the no-back-loop property.

Next, I consider the case in which cT < K(1 + cN ). Let σ2 be such that βk = 0 for every k > 1 and

β0, β1 satisfy

(δ + ...+ δK)(β0 − β1)(1 + cN ) = β0cT + (1− β0)cN . (23)

When cT < (K+1)cN and δ is close to 1, there exist 0 < β1 < β0 < 1 that satisfy (23). It is weakly optimal

for player 1 to play L at (H, ...,H). This is because player 1’s discounted average payoff is u1(H,β0) if he

plays H at (H, ...,H), and his discounted average payoff is

u1(L, β0) + (δ + ...+ δK)u1(H,β1)

1 + δ + ...+ δK
(24)

if he plays L at (H, ...,H) and then plays H for K consecutive periods. The value of (24) equals u1(H,β0)

under (23), which verifies player 1’s incentive to play L at (H, ...,H). Using the same argument as in the

first case, when δ is large enough, player 1 has an incentive to return to either (H, ...,H) or histories where

only one of the last K actions were L in finite time. What remains to be verified is that player 1 has an

incentive to play H at histories where only one of the last K actions was L. Since β2 = ... = βK = 0,

player 1’s incentive constraint is the tightest when L occurred K periods ago. At history (L,H, ...,H),

player 1’s discounted average payoff from playing H is

u1(H,β1) + δu1(L, β0) + (δ2 + ...+ δK)u1(H,β1)

1 + δ + ...+ δK
, (25)

and his discounted average payoff from playing L and then playing H for K − 1 consecutive periods is

u1(L, β1) + (δ + ...+ δK−1)u1(H,β1)

1 + δ + ...+ δK−1
. (26)

The value of (25) is greater than (26) if and only if

(δ + ...+ δK)(β0 − β1)(1 + cT ) ≥ β1cT + (1− β1)cN . (27)
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Since cT ≥ cN and β1 < β0, we know that β1cT + (1− β1)cN ≤ β0cT + (1− β0)cN . Moreover,

(δ + ...+ δK)(β0 − β1)(1 + cN ) ≤ (δ + ...+ δK)(β0 − β1)(1 + cT ).

Therefore, inequality (23) implies (27), which verifies that playing L at (H, ...,H) and then playing H for

K consecutive periods is player 1’s best reply to σ2, and such a best reply induces a back loop.

Proof of Statement 2: I consider three cases separately. First, I study the case in which K = 1. Next, I

study the case in which K ≥ 2 and x ≤ 1/2. Then, I study the case in which K ≥ 2, x > 1/2, and cT is

large enough relative to cN in the sense that 1 + cT > K(1 + cN ).

Case 1: K = 1 In period 0, player 1 plays L and player 20 plays N . For every t ≥ 1, (i) if at−1 = L,

player 1 mixes betweenH and L and player 2t playsN , and (ii) if at−1 = H , player 1 plays L and player 2t

plays T with probability cN
δ(1+cT ) . Under this strategy profile, player 1’s continuation value satisfies V (L) =

(1− δ)u1(L,N)+ δV (L) and V (H) = (1− δ) cN
δ(1+cT )u1(L, T )+ (1− δ)(1− cN

δ(1+cT ))u1(L,N)+ δV (L),

which implies that V (L) = 0 and V (H) = 1−δ
δ cN . Player 1 is indifferent betweenH and Lwhen at−1 = L

since (1 − δ)u1(L,N) + δV (L) = (1 − δ)u1(H,N) + δV (H). Player 1 prefers L to H when at−1 = H

since cT ≥ cN > 0 and player 2 plays T with higher probability when at−1 = H . Player 2 has an

incentive to play N when at−1 = L since π0
δ(1−π0)−π0

≤ 1
2 . I claim that there exists a mixing probability of

player 1 at at−1 = L that makes player 2 indifferent between T and N when at−1 = H . This is because

the commitment type plays H at (H, ...,H) and the strategic type plays L at (H, ...,H), such a mixing

probability exists as long as π0 is not too large.

Case 2: K ≥ 2 and x ≤ 1/2 From period 0 to K − 1, player 2 plays T in period 0 as well as at histories

where L has never occurred before, and she plays N otherwise. From period 0 to K − 1, player 1 plays H

on the equilibrium path and plays L at histories where L has occurred at least once before.

Starting from period K, the strategic type of player 1 mixes between K + 1 pure strategies, indexed by

k ∈ {0, 1, ...,K}, such that strategy with index k is described as follows:

• Player 1 plays L at any history where H has occurred weakly more than k times in the last K periods.

At any history where H occurred strictly fewer than k times in the last K periods, player 1 plays H

if (at−K , ..., at−1) = (L,L, ..., L,H, ...,H), i.e., all L occurred before H in the last K periods, and

plays L otherwise.

Under each of these pure strategies, player 1 plays L from period K to 2K − 1. Starting from period 2K,
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• If player 1 follows strategy 0, then he plays L in every period, and remains in state (L,L, .., L).

• If player 1 follows strategy k ∈ {1, 2, ...,K}, then he plays H for k periods, plays L for K periods,

plays H for k periods, and so on.

Note that only strategy K violates the no-back-loop property. The probabilities with which player 1 play

these strategies are pinned down by player 2’s indifference conditions: Player 2 is indifferent between T

and N at all histories after period K except for history (L, ..., L). Player 2 being indifferent between T and

N at history (H, ...,H) together with the probability of commitment type π0 pins down the probability of

strategy K, since conditional on player 1 being the strategic type, (H, ...,H) occurs on the equilibrium path

after period 2K only if player 1 uses strategy K, and he plays L at (H, ...,H) under that strategy. Player

2 being indifferent between T and N at histories where L occurred once and the probability of strategy K

pins down the probability of strategy K − 1, since the probability of H at those histories is strictly greater

than 1/2 under strategy K, the probability of H at those histories is close to 0 under strategy K − 1, and

x < 1/2.... Iterate this procedure K times, we obtain the probabilities of strategy K to strategy 1. Notice

that the probabilities of strategy 1 to K, which are pinned down by player 2’s indifference conditions, are

decreasing in π0 and converge to 0 as π0 → 0. Hence, for π0 small enough, the probability of strategy 0 is

large enough so that player 2 has a strict incentive to play N at (L, .., L).

Since player 2 has a strict incentive to play N at (L, ..., L), we have βK = 0. I use player 1’s in-

difference conditions to pin down (β0, ..., βK), i.e., the probabilities with which player 2 plays T after

period K. If player 1 mixes between these K + 1 strategies, then his payoff starting from (L, ..., L) is 0

no matter which strategy he uses, and moreover, he is indifferent between H and L at histories (L, ..., L),

(L, ..., L,H),...,(L,H, ...,H). Player 1 being indifferent between strategy 0 and strategy 1 implies that

0 = u1(H,βK) +
K∑
j=1

u1(L, βK−1). (28)

For every k ≥ 1, player 1 being indifferent between strategy 0 and strategy k implies that

0 =

k−1∑
j=0

δju1(H,βK−j) +

K∑
j=k

δju1(H,βK−k) +

K+k∑
j=K+1

δju1(H,βj−k). (29)

Instead of solving (28) and (29), I solve the following auxiliary system of linear equations:

cN = Ku1(L, β
∗
K−1), (30)
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cN = (K − k)u1(L, β
∗
K−k−1) +

K−1∑
j=K−k

(
u1(L, β

∗
j ) + u1(H,β

∗
j )
)

for every k ∈ {1, ...,K − 1}. (31)

Later I show that as δ → 1, the unique solution of (30) and (31) is the unique limit point of the solution to (28)

and (29). It is easy to see that linear system (30) and (31) has a unique solution (β∗K−1, ..., β
∗
0). Comparing

(30) to (31) when k = 1, and comparing (31) when k = j to k = j + 1 for every j ∈ {1, 2, ...,K − 2}, we

obtain

β∗K−j−1 − β∗K−j =
cN − (1 + cN )βK−j

(1 + cT )(K − j)
for every j ∈ {1, 2, ...,K − 1}, (32)

from which we obtain that β∗K−j−1 − β∗K−j > 0 if and only if cN − (1 + cN )β∗K−j > 0, or equivalently

u1(H,β
∗
K−j) < 0. I show that β∗K−1 < β∗K−2 < ... < β∗1 < β∗0 < 1 by showing that all of them are strictly

smaller than cN
1+cN

. First, (30) implies that β∗K−1 = cN
K(1+cT ) , and given that cT ≥ cN and K ≥ 2, we have

cN
K(1+cT ) <

cN
1+cN

. Suppose by way of contradiction that there exists k such that β∗k ≥ cN
1+cN

. Without loss of

generality, let k be the largest k̃ ∈ N such that β∗
k̃
≥ cN

1+cN
. Then it must be the case that β∗k+1 ∈ (0, cN

1+cN
)

and

β∗k+1 +
cN − (1 + cN )βk+1

(1 + cT )(k + 1)
≥ cN

1 + cN
. (33)

Since the LHS of (33) is linear in β∗k+1, it is either maximized when β∗k+1 = 0, in which case its value is
cN

(k+1)(1+cT ) , or maximized when β∗k+1 =
cN

1+cN
, in which case its value is cN

1+cN
. Since cN

(k+1)(1+cT ) <
cN

1+cN
,

we know that whenever β∗k+1 <
cN

1+cN
, it must be the case that β∗k <

cN
1+cN

. Equation (32) then implies that

0 < β∗K−1 < β∗K−2 < ... < β∗1 < β∗0 <
cN

1+cN
.

As δ → 1, (β0, ..., βK−1) that solves (28) and (29) converges to (β∗0 , ...β
∗
K−1). First, βK−1 converges

to β∗K−1 as δ → 1. This is because β∗K−1 and βK−1 are pinned down by (30) and (28), respectively, and all

the linear coefficients in (28) converge to those in (30) as δ → 1. Plugging in the values of β∗K−1 and βK−1

into equations (31) and (29) when k = 1, they become linear equations of β∗K−2 and βK−2, which pin down

the values of β∗K−2 and βK−2. Since all the linear coefficients in (29) converge to those in (31) as δ → 1,

βK−2 converges to β∗K−2... Iterate this procedure, we obtain that (β0, ..., βK−1) converges to (β∗0 , ...β
∗
K−1)

as δ → 1. Hence, 0 < βK−1 < βK−2 < ... < β1 < β0 <
cN

1+cN
for every δ close enough to 1.

Player 1’s incentive constraints are satisfied since the construction of β0, ..., βK implies that player 1

is indifferent between strategies 0 to K, and that he is indifferent between H and L at histories where in

the last K periods, there is at least one L and every H occurred after all the L. Furthermore, β0 < cN
1+cN

implies that player 1 strictly prefers these strategies to playing H in every period. At every history where

L occurred at least once and some H occurred before some L, player 1’s incentive to play H is weaker

compared to a history where the number of L is the same but all H occurred after L. This is because βk is
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strictly decreasing in k and playing H at the latter history lowers the index of future histories in FOSD.

Case 3: K ≥ 2, x > 1/2, and 1 + cT > K(1 + cN ) From period 0 to K − 1, player 2 plays T in period

0 as well as at histories where L has never occurred before, and she plays N otherwise. From period 0 to

K − 1, player 1 plays H on the equilibrium path and plays L at histories where L has occurred at least once

before. After period K, player 2 plays N unless the history is (H,H, ...,H), that is β1 = ... = βK = 0 and

β0 ∈ (0, 1). Starting from period K, player 1 mixes between the following two pure strategies:

Strategy 1: Plays L in every subsequent period.

Strategy 2: Plays L at (H,H, ...,H), plays H at (L, ..., L), at other histories, plays L if his action

one period ago was L, and plays H if his action one period ago was H .

The probability with which he uses these two strategies are pinned down by player 2’s indifference condition:

Player 2 is indifferent between T and N upon observing all of player 1’s last K actions being H . Since

the commitment type plays H at (H, ...,H) and the strategic type plays L at (H, ...,H), such a probability

exists as long as π0 is not too large, and the probability of the first strategy converges to 1 as π0 → 0. A

useful observation is that given player 2’s strategy, starting from periodK, player 1’s incentive at any history

ht with at−1 = L coincides with his incentive at history (L, ..., L). This is because β1 = ... = βK = 0, i.e.,

player 2 plays T with positive probability only if all of player 1’s last K actions were H .

I use player 1’s indifference condition at history (L, ..., L) to pin down β0. Player 1’s payoff if he plays

L in every period is 0 and player 1’s payoff if he follows his equilibrium strategy is

u1(H, 0)(1 + δ + ...+ δK−1) + u1(L, β0)δ
K

1 + δ + ...+ δK
.

If player 1 is indifferent, then the above payoff is 0, which yields

β0 =
(1 + δ + ...+ δK−1)cN

(1 + cT )δK
< 1, (34)

where strict inequality comes from the requirement that player 1’s equilibrium payoff being bounded away

from u1(a
∗, b∗). Another constraint is that player 1 has an incentive to play L at history (H, ...,H), which

yields:
u1(L, β0) + (δ + ...+ δK)u1(H, 0)

1 + δ + ...+ δK
≥ u1(H,β0). (35)
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In order to satisfy both (34) and (35) for all δ close to 1, we need

KcN
1 + cT

< min
{
1,

cN
(K + 1)(1 + cN )− (1 + cT )

}
,

which is the case if and only if 1 + cT > K(1 + cN ). Player 2’s incentive constraint is satisfied since (i) at

every history before period K, player 1’s action is H with probability 1 so player 2 has an incentive to play

T , (ii) player 2 has an incentive to play N at (L, ..., L) when π0 is small enough since the probability that

player 1 plays L in every period is large enough, (iii) player 2 has an incentive to mix between T and N due

to the construction of player 1’s mixing probabilities, and (iv) player 2 has an incentive to play N at every

history after period K with both H and L is implied by x > 1/2, since when δ is close to 1, player 2 assigns

probability close to 1/2 to player 1’s last period action being L after observing any such history.

Online Appendix I: Sequential-Move Stage Games

In Online Appendix I.1, I extend the no-back-loop lemma to the case where player 2 can observe a noisy

private signal about player 1’s current-period action before choosing her action. In Online Appendix I.2, I

consider the case in which player 1 can observe player 2’s current-period action before choosing his action.

Focusing on the case in which K = 1, I fully characterize the patient player’s equilibrium payoff set.

Online Appendix I.1: Noisy Private Signal about Player 1’s Current-Period Action

This appendix extends the no-back-loop lemma when player 2t observes a noisy private signal yt ∼ F (·|at)

about at before choosing bt. In this setting, player 2’s action distribution depends not only on the summary

statistics of player 1’s last K actions but also on player 1’s action in the current period. Let β∗(a) ∈ ∆(B)

denote player 2’s action distribution when the history belongs to H∗
1 and player 1’s current-period action is

a. Let β′(a) ∈ ∆(B) denote player 2’s action distribution when player 1’s current-period action is a and

there is one a′ in the last K periods and the rest of the last K actions are a∗. Let β′′(a) ∈ ∆(B) denote

player 2’s action distribution when player 1’s current-period action is a and there is one a′′ in the last K

periods and the rest of the last K actions are a∗. In order to capture that the private signal about player 1’s

current-period action is noisy, I assume that there exists η > 0 such that F (y|a) > η for every y ∈ Y and

a ∈ A. I show that for every η > 0, there exists ε > 0 such that the no-back-loop lemma holds for every

distribution over private signals that satisfies ||F (·|a)− F (·|a′)||TV ≤ ε for every a, a′ ∈ A.

Without loss of generality, I normalize player 1’s stage-game payoff such that it always belongs to
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the interval [0, 1]. Under this normalization, for every a0, a1, a2 ∈ A, ||F (·|a) − F (·|a′)||TV ≤ ε for

every a, a′ ∈ A implies that for every a0, a1, a2 ∈ A, we have |u1(a0, β∗(a1)) − u1(a0, β
∗(a2))| ≤ ε,

|u1(a0, β′(a1))− u1(a0, β
′(a2))| ≤ ε and |u1(a0, β′′(a1))− u1(a0, β

′′(a2))| ≤ ε.

Suppose by way of contradiction that there exists β : H → B∗ and a pure-strategy best reply σ̂ to β such

that σ̂ induces a back loop. Following the notation and the definitions in Appendix A, player 1’s incentive

to play a∗ at (a′′, a∗, ..., a∗) and to play a′ at (a∗, ..., a∗) imply that

u1(a
′, β∗(a′))− u1(a

∗, β∗(a∗)) ≥ δ(V ∗ − V ′)

1− δ
≥ u1(a

′, β′′(a′))− u1(a
∗, β′′(a∗)). (36)

Let x ≡ s− t− 1. Player 1 prefers Strategy ∗ to Deviation A, which implies that:

(δ − δx−1)U + (1− δx)u1(a
′, β′′(a′)) ≤ (1− δx−1)u1(a

∗, β′′(a∗)) + (δ − δx)u1(a
′, β∗(a′)). (37)

Player 1 prefers Strategy ∗ to Deviation B, which implies that:

u1(a
∗, β′′(a∗)) +

1− δ

1− δK

{
u1(a

′′, β′′(a′′))− u1(a
∗, β′′(a∗))

}
︸ ︷︷ ︸

strictly greater than some ∆ > 0 when ε is small

≤ 1− δ

1− δx
u1(a

∗, β′′(a∗)) +
(1− δ)δ

1− δx
u1(a

′, β∗(a′)) +
δ2 − δx

1− δx
U. (38)

Focusing on the case in which ε is small, inequalities (37) and (38) together imply that

u1(a
′, β∗(a′))− u1(a

′, β′′(a′)) ≥ ∆, (39)

for some ∆ > 0, and inequality (36) implies that

{
u1(a

′, β∗(a′))− u1(a
′, β′′(a′))

}
−
{
u1(a

∗, β∗(a′))− u1(a
∗, β′′(a′))

}
≥ −2ε. (40)

I show that when (u1, u2) satisfies Assumptions 1 and 2 in the main text, η > 0, and ε is small, β∗(a′)

and β′′(a′) can be ranked according to FOSD. Assumption 2 implies that for every α ∈ ∆(A), there exist

at most 2 pure-strategy best replies to α. If b and b′ are both pure-strategy best replies to α, then any action

that is strictly between b and b′ does not best reply to any of player 1’s mixed actions. Let

B∗ ≡
{
b ∈ B

∣∣∣ there exists α ∈ ∆(A) such that b best replies to α
}
. (41)

20



T

P2

N

(
1−c
1

)H
P1

L(
1
−x

) (
v
0

)L

P1
H(−c

x

)
Figure 1: Sequential-Move Supermodular Product Choice Game

For any prior belief about player 1’s current-period action α ∈ ∆(A), when ε is small relative to η, the

likelihood ratio F (y|a)
F (y|a′) is close to 1 for every a, a′ ∈ A and y ∈ Y . Hence, if player 2 has a unique best

reply b ∈ B to α, then she has a strict incentive to play b after observing any private signal y. If player 2 has

two best replies b, b′ ∈ B to α, then regardless of the private signal she observes, either she strictly prefers

to play b, or strictly prefers to play b′, or is indifferent between b and b′. Therefore, β∗(a′) is either a Dirac

measure on some b ∈ B∗, or assigns positive probability to two adjacent elements in B∗. The same applies

to β′′(a′). Therefore, β∗(a′) and β′′(a′) can be ranked according to FOSD.

Sine u1(a, b) is strictly increasing in b, (39) implies that β∗(a′) strictly FOSDs β′′(a′) and that ||β∗(a′)−

β′′(a′)||TV ≥ ∆. Since u1(a, b) has strictly increasing differences, the conclusion I just obtained implies

that the LHS of inequality (40) is less than something proportional to −∆. This leads to a contradiction

when ε is small relative to ∆, which implies that player 1’s best reply cannot induce any back loop.

Online Appendix I.2: Player 1 Observing Player 2’s Current-Period Action

I study a repeated sequential-move supermodular product choice game depicted in Figure 1 with v ∈ (0, 1−

c), c > 0, and x ∈ (0, 1). With probability π0 ∈ (0, 1), player 1 is a commitment type who plays H at every

history, and with complementary probability, he is a strategic type who maximizes his discounted average

payoff. Player 1’s commitment payoff is 1− c and his minmax value is v.

I focus on the case in which player 2 only observes player 1’s action in the period before, that is, K = 1.

Let ∆ ≡ c
1−v . Let

π∗ ≡ x2(1− v − c)

1− v − cx
=
x2(1−∆)

1−∆x
.

Let

u(π0) ≡ min
{
v +

π0(1− x)(1− v)

x(x− π0)
, 1
}
.

One can verify that first, π∗ < x, second, u(π0) = 1− c if and only if π0 ≥ π∗, and third, u(π0) = v when
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π0 = 0. I characterize the set of payoffs player 1 can attain in equilibrium as δ → 1.

Proposition. Fix any π0 ∈ (0, 1).

1. For every u ∈ [u(π0), 1− c] and ε > 0, there exists δ∗ ∈ (0, 1) such that for every δ > δ∗, there exists

a PBE in which player 1’s payoff is within an ε-neighbourhood of u.

2. For every u /∈ [u(π0), 1− c] and ε > 0, there exists δ∗ ∈ (0, 1) such that for every δ > δ∗, there is no

Nash equilibrium in which player 1’s payoff is within an ε-neighbourhood of u.

This proposition characterizes the patient player’s limiting equilibrium payoff set in a sequential-move

reputation game with limited memories. It shows that any payoff between u(π0) and the commitment payoff

1 − c can be attained in a PBE as δ → 1 and any payoff which does not belong to that interval cannot be

attained in any Nash equilibrium when player 1 is sufficiently patient.4

It characterizes the patient player’s value from having a good reputation by showing that his lowest

equilibrium payoff is an increasing linear function of his reputation. It also implies that player 1 can secure

his commitment payoff in all equilibria if and only if π0 ≥ π∗. Since x is the minimal probability with

which player 1 needs to play H in order to provide player 2 an incentive to play T . If player 2 receives no

information about player 1’s past behavior, i.e., K = 0, then player 1 can secure his commitment payoff if

and only if π0 > x. The fact that π∗ < x implies that player 2’s ability to observe player 1’s action in the

period before helps player 1 to secure a high payoff.

I discuss one aspect of my result before presenting the proof. First, unlike the case in which players move

simultaneously in the stage game, allowing the patient player to observe the short-run player’s current-period

action (before choosing his own action) may lead to equilibria where both players receive low payoffs. This

is interesting since one may expect that when actions are complements, allowing player 1 to observe player

2’s action can help players to coordinate on the good outcome (H,T ) due to the usual logic that sequential-

move helps to solve coordination failure problems and can select equilibria with high payoffs.

The intuition is that due to the complementarity in players’ actions, observing player 2’s current-period

action encourages player 1 to rebuild his reputation after milking it. In particular, player 1 will have a strong

incentive to play H after observing player 2 has played T in the current period, regardless of his actions in

the past. The possibility of rebuilding his reputation after milking it increases the chances that the strategic

type of player 1 having a clean history, which raises player 2’s suspicion after she observes a clean history.
4In order to make the result stronger, I use a demanding solution concept PBE for the result that establishes the existence of a

certain type of equilibrium, and use a weak solution concept Nash equilibrium for the result that establishes the non-existence of a
certain type of equilibrium.
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Proof. Since player 1 can observe bt before choosing at, he chooses at in order to maximize (1−δ)u1(at, bt)+

δV (at), where V (at) denotes his continuation value when his action in the period before was at. Since

player 1’s objective function does not depend on player 1’s action in the period before, his incentive at every

history depends only on player 2’s current-period action. Since u1(a, b) has strictly increasing differences,

player 1 has a stronger incentive to play H when player 2’s action in the current period was T .

I consider three types of equilibria. In every equilibrium where player 1 strictly prefers to play H when

player 2 played T in the current period, player 2 strictly prefers to play T at every on-path history of every

Nash equilibrium and at every history in every PBE, since doing so leads to her highest feasible payoff 1.

If player 2 plays T at every history, player 1 has no incentive to play H at any history, which contradicts

the hypothesis that player 1 has a strict incentive to play H and implies that there is no such PBE. However,

there exists a Nash equilibrium in which player 1 strictly prefers to play H when player 2 played T in the

current period, from which player 1 obtains his commitment payoff 1− c.

In every equilibrium where player 1 strictly prefers to play L when player 2 played T in the current

period, player 1 has a strict incentive to play L when player 2 played N in the current period given that

u1(a, b) has strictly increasing differences. As a result, player 2 strictly prefers to play N at every history.

However, according to Bayes rule, player 2 will learn that player 1 is the commitment type after observing his

last period action being H and therefore, will have a strict incentive to play T . This leads to a contradiction

which rules out such equilibria.

The rest of the proof focuses on equilibria in which player 1 is indifferent betweenH and L when player

2’s current-period action was T . Since u1(a, b) has strictly increasing differences, player 1 strictly prefers L

when player 2’s current-period action was N . Let pH and pL be player 2’s probabilities of playing T when

player 1’s last period action was H and L, respectively. Player 1’s continuation values satisfy:

V (H) = pH

{
(1− δ)u1(H,T ) + δV (H)

}
+ (1− pH)

{
(1− δ)u1(L,N) + δV (L)

}
, (42)

V (L) = pL

{
(1− δ)u1(H,T ) + δV (H)

}
+ (1− pL)

{
(1− δ)u1(L,N) + δV (L)

}
, (43)

and

(1− δ)u1(H,T ) + δV (H) = (1− δ)u1(L, T ) + δV (L). (44)

Equation (44) implies that V (H)− V (L) = 1−δ
δ c. Subtracting (43) from (42), we obtain that

V (H)− V (L) = (pH − pL)
{
(1− δ)u1(L, T ) + δV (L)− (1− δ)u1(L,N)− δV (L)

}
,
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which is equivalent to

pH − pL =
c

(1− v)δ
=

∆

δ
. (45)

Since v ∈ (0, 1− c), the RHS of (45) is strictly less than 1 when δ is close enough to 1. When δ → 1, player

1’s equilibrium payoff depends only on pH and pL, which according to (45), converges to

pH(1− c) + (1− pH)(v − c). (46)

I examine player 2’s incentives and provide necessary and sufficient conditions under which there exist

equilibria where player 2’s strategy is parameterized by (pH , pL). Let qH be the strategic type’s probability

of playing H when player 2’s current-period action was T and his action in the period before was H . Let qL

be the strategic type’s probability of playing H when player 2’s current-period action was T and his action

in the period before was L. Fix players’ strategies {pH , pL, qH , qL}. For every a ∈ {H,L}, let µa be the

probability that the last action was a conditional on player 1 being the strategic type and calendar time being

at least 1. Lemma B.1 in the main text implies that there exists y ∈ [0, 1] such that

µH = (1− δ)y + δ
{
µHpHqH + (1− µH)pLqL

}
. (47)

Recall that ∆ ≡ c
1−v . In equilibrium, it must be the case that pL = pH − ∆

δ and qL = x. This implies that

as δ → 1, we have

µH =
(pH −∆)x

1− pHqH + (pH −∆)x
. (48)

When player 1’s last period action was H , player 2 has an incentive to mix between T and N only if

π0 + (1− π0)µHqH
π0 + (1− π0)µH

= x,

or equivalently,

(1− x)π0 = µH(1− π0)(x− qH). (49)

Plugging in the expression for µH in (48), we know that when δ is close enough to 1, there exists an

equilibrium with payoff pH − c if and only if pH > ∆ and there exists qH ∈ [0, x) such that

(1− x)π0 = (1− π0)(x− qH)
(pH −∆)x

1− pHqH + (pH −∆)x
.
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Since the RHS is strictly decreasing in qH and is 0 when qH = x, such a qH exists if and only if

(1− x)π0 ≤ (1− π0)x
(pH −∆)x

1 + (pH −∆)x

or equivalently

π0 ≤
x2(pH −∆)

(1− x) + x(pH −∆)
. (50)

Since the RHS of (50) is strictly increasing in pH , we know that when π0 ≥ x2(1−∆)
1−∆x , player 2 has a strict

incentive to play T when player 1’s action in the period before was H . As a result, pH = 1 and player 1’s

payoff is close to his commitment payoff 1− c in all equilibria as δ → 1.

For every π0 <
x2(1−∆)
1−∆x , the highest pH that can be sustained in equilibrium is 1 and the lowest pH that

can be sustained in equilibrium is

∆+
π0(1− x)

x(x− π0)
.

Plugging this expression into the expression for player 1’s equilibrium payoff as a function of pH , given by

(46), we obtain that player 1’s highest equilibrium payoff is his commitment payoff 1 − c and his lowest

equilibrium payoff is v + π0(1−x)(1−v)
x(x−π0)

.
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