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Abstract: We construct mechanisms that can robustly implement any desired social choice func-
tion when (i) agents may incur a cost to learn the state of the world, (ii) with small probability,
agents’ preferences can be arbitrarily different from some baseline known to the mechanism de-
signer, and (iii) the mechanism designer does not know agents’ beliefs and higher-order beliefs
about one another’s preferences. The mechanisms we propose have a natural interpretation and
do not require the mechanism designer to be able to verify the state ex post. We also establish
impossibility results for stronger notions of robust implementation.
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1 Introduction

Theories of robust implementation study whether a state-contingent social choice function can be

implemented when information about the state must be elicited from agents whose objective may

be misaligned with the social choice function, and the mechanism designer faces uncertainty about

agents’ preferences and their beliefs and higher-order beliefs about one another’s preferences.

Whether a social choice function can be robustly implemented depends on the notion of robust-

ness considered. When robustness is required to hold globally, in the sense that agents’ preferences

and beliefs may be arbitrary, Bergemann and Morris (2005) show that a social choice function

is robustly implementable only if it is ex post incentive compatible. Oury and Tercieux (2012)

consider a less demanding notion of robust implementation, which concerns local perturbations of

agents’ preferences and beliefs in an interim sense. They require that the desired social choice
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function be approximately implemented for all profiles of agent types close to a given type profile.

They show that robustly implementable social choice functions must satisfy Maskin monotonicity

(Maskin 1999)—a demanding property that is violated in a number of settings.

This paper contributes to the literature on robust implementation by proposing a novel ex ante

notion of robust implementation based on the concept of robust equilibrium in Kajii and Morris

(1997). We construct mechanisms that robustly—according to our notion—implement any desired

social choice function when the mechanism designer can use monetary transfers and agents may need

to incur some costs to learn the state.1 Our proofs build on Kajii and Morris (1997)’s “critical path”

lemma, which provides the key technical step to connect our theory of robust implementation to

their theory of robust predictions in games. We also show that robust implementation is impossible

for several stronger notion of robustness. Taken together, these results suggest that our notion of

robustness provides a middle ground, for which robust implementation is possible yet nontrivial.

To fix ideas, consider the CEO of a firm deciding whether to sign a contract offered by another

party. The CEO’s objective is to sign the contract when it is legally sound and to reject it when

the contract is flawed. However, the CEO does not possess the expertise to learn the state of the

world (i.e., whether the contract is sound). She must therefore hire experts to review the contract.2

Reviewing the contract is costly to the experts. To incentivize them, the CEO provides a

mechanism that maps experts’ reports to (i) an outcome (i.e., whether to accept the offer) and (ii)

bonuses for the experts.3

Our notion of robust implementation is motivated by the CEO’s concern that some of the

experts may be biased or incompetent. For example, some experts may hold a private bias or stake

in favor or against the contract, and some experts may face prohibitively high costs of reviewing

the contract. The CEO may also be concerned about experts’ beliefs and higher-order beliefs about

other experts’ biases and competence. The CEO wishes to design a mechanism that is robust in the

1Our mechanisms also work when agents’ costs of learning are zero. Chen, Kunimoto, Sun and Xiong (2021)
provide a sufficient condition under which a social choice function is robustly implementable when the learning costs
are zero. We discuss the connections between their paper and ours by the end of Section 3.

2We construct mechanisms that robustly implement any desired social choice function when there are two experts.
These mechanisms can easily be modified to account for the presence of three or more experts, for example by
applying them to two of the experts and ignoring the reports of remaining experts. In Online Appendix E, we use
an example with three agents to explain why the desired social choice function cannot be robustly implemented by
simply applying majority rule.

3We focus on settings in which the bonuses paid to the experts do not directly depend on the realized state, and
show that the mechanism designer can robustly implement the desired outcome even when she cannot verify the state
ex post. We view this feature as a merit of our results since it may be hard in practice to condition payments on the
state, for example, when the CEO does not have the expertise to verify whether experts’ reports are correct and the
true state of the world (e.g., the legal consequences of signing a bad contract) takes a long time to realize.

2



sense of implementing the desired outcome with high probability as long as the experts are biased

or are incompetent with low enough probability.4

Our notion of robust implementation builds on the concept of robust equilibrium introduced by

Kajii and Morris (1997). According to this concept, a Nash equilibrium of some complete informa-

tion game is robust if it can be approximated by some equilibria in every incomplete information

game where players’ payoffs match those of the complete information game with probability close

to one. In these incomplete information games, players can have arbitrary payoffs with small prob-

ability and arbitrary beliefs and higher-order beliefs about one another’s payoffs as long as these

beliefs are consistent with a common prior.

Building on this concept of robust equilibrium, we will say that a mechanism robustly implements

a social choice function if for every perturbation in which agents’ payoffs differ from those of the

unperturbed environment with small probability, there exists an equilibrium in which conditional

on every state of the world, the desired outcome is implemented with probability close to one.

This local and ex ante notion of robust implementation relaxes some of the restrictive requirements

of the global and interim notions, which either allow perturbations in which agents’ payoffs are

different from those of the unperturbed environment with high probability, or require that the

desired outcome to be approximately implemented under every nearby type.

Our notion of robust implementation departs from Kajii and Morris (1997) by imposing a key

restriction on the set of perturbations considered by the mechanism designer: We do not allow for

perturbations in which agents’ payoffs depend directly on the messages they send to the mechanism.

In our example, each expert submits a private report to the CEO that is not publicly observed, so

it is reasonable to assume that the experts do not have intrinsic preferences about which report

to send per se; rather, they care about the reports only through the decisions and bonuses that

these reports affect. This restriction is also common in other mechanism design problems, since

“the messages of the mechanism are not primitives but are endogenous objects to be chosen by the

mechanism designer” (page 1846 in Aghion, Fudenberg, Holden, Kunimoto and Tercieux 2012).

We construct mechanisms that robustly implement the desired social choice function in two

situations: First, when agents’ learning costs are uniformly bounded above across all perturbations

considered by the mechanism designer. In our example, this might correspond to situations in which

the CEO is confident that experts can review the contract within a given time frame. Second, when

4The CEO’s objective is to implement her desired outcome without regard to the expected bonuses paid to the
experts. We provide justifications for this objective by the end of this section.
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there exists a state whose ex ante probability of occurrence is strictly greater than that of any other

state. This condition holds generically. In the CEO-experts example, it holds when the probability

that the contract is sound is not exactly equal to 1/2.5

We now describe the mechanism obtained in Theorem 2 for the special case of the CEO-experts

example. To fix ideas, suppose that the probability that the contract is sound is strictly less than

1/2 (i.e., the offer made by the other party is more likely to be flawed than sound). Each expert is

given a message space with three messages. The first message corresponds to the ex ante most likely

state (i.e., the contract is not sound) and is called the status quo message. The second message

is a confident message which may be interpreted as saying that the expert is confident that the

contract is sound. The third message is a confession message, and may be interpreted as saying

that the expert confesses that he is biased and wants the CEO to sign the contract.

The implemented outcome is as follows: the CEO abstains from signing the contract when at

least one expert sends the status quo message, and signs the contract otherwise. Therefore, under

our mechanism, the confession message and the confident message lead to the same outcome for

each possible message coming from the other expert.

In terms of transfers, both experts receive the highest bonuses when both of them send the

confident message, but they both receive no bonus when one of them sends the confident message

and the other one does not. By contrast, sending the confession message or the status quo message

results in a smaller but positive bonus as long as the other expert does not send the confident

message.

In the more general case in which there are n states, each agent is given a message space with

2n− 1 messages. One of these messages corresponds to the ex ante most likely state, and is called

the status quo message. The remaining 2n− 2 messages are divided into pairs that are associated

with each of the n − 1 remaining states. The two messages corresponding to state θ have the

following interpretations: One of them is a confident message which means “I am confident that

the state is θ,” and the other message is a confession message which means “I confess that I am

biased in favor of the outcome implemented in state θ.” The implemented outcome and transfers

are similar to the two-state example and are described explicitly in Section 4.2.

We then turn our attention to other notions of robust implementation found in the literature,

and show that robust implementation according to these notions is often impossible.

5This condition is required only when the state space is finite. Online Appendix A extends our robust implemen-
tation results to a continuum of states without imposing this condition.
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First, we consider the case of implementation that is global in the sense that we allow agents’

preferences and costs to be differ from those of the unperturbed environment with probability

bounded away from zero. We show that even if we require only approximate partial implementation,

it is impossible to robustly implement any non-constant social choice function in this global sense.

Second, we examine the possibility of full (or more precisely, virtual) implementation, i.e., of

approximately implementing the desired social choice function for all, rather than some, equilibria

following the choice of a mechanism by the designer. We show that if either (i) agents’ costs of

learning in the unperturbed environment are above some cutoff that depends only agent’s utility

functions in the unperturbed environment, or (ii) agents’ payoff functions in the unperturbed

environment are state-independent, then under every finite mechanism, there exists an equilibrium

in which no agent learns the state. This result implies that under each of these two conditions,

no finite mechanism can virtually implement any non-constant social choice function.6 We also

provide a sufficient condition for virtual implementation: When at least one agent’s preference and

the social choice function jointly satisfy a strict version of Rochet (1987)’s cyclical monotonicity

condition and this agent’s cost of learning is small enough, the mechanism designer can virtually

implement that social choice function by ignoring the report of the other agent.

Third, we examine the possibility of robust partial implementation in aninterim sense. Adapting

to our setting the notion of robust interim implementation used by Oury and Tercieux (2012),7

we show that no finite mechanism can robustly implement any non-constant social choice function

when agents’ costs of learning the state in the unperturbed environment are above some cutoff, even

when the mechanism designer is allowed to use unbounded monetary transfers.

Although we construct mechanisms that robustly implement desired social choice functions, we

do not compute the lowest transfer needed to achieve robust implementation. Although it would be

valuable to determine the lowest cost of implementation, computing it seems challenging because

it would require precise knowledge of the set of all mechanisms that can robustly implement the

desired social choice function, which to the best of our knowledge, remains an open question.

We view our results showing that it is possible to robustly implement the desired outcome

via mechanisms with relatively few messages as an important first step for the study of robust

6This result echoes Strulovici (2021), who shows in a sequential model of learning that when agents’ preferences
are state independent, implementation is impossible even in a partial sense when signals about the state of the world
are subject to an information attrition condition.

7Oury and Tercieux (2012) consider environments without costly learning and with bounded utilities, which stands
in contrast to our setting where agents need to learn the state at some cost and agents’ utilities are unbounded.
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implementation.8 Our results stand in contrast to impossibility results under interim notions of

robust implementation, such as our Theorem 6 and the results in Oury and Tercieux (2012).

We also compute the expected transfers made to the agents under our mechanisms. These

expected transfers provide an upper bound on the minimum cost to achieve robust implementation.

In the CEO-experts example, the upper bound on the bonuses under our mechanism is a linear

function of the experts’ costs of reviewing the contract in the unperturbed environment (see (4.14)).

Therefore, if the experts’ costs of reviewing the contract is small relative to the value of signing

a good contract and the cost of signing a flawed contract, our assumption that the CEO focuses

exclusively on robustly implementing the right outcome (as opposed to also taking explicitly into

account the cost of implementation) may be reasonable as a first-order approximation.

Outline: Section 2 presents an example in which we explain, first, why mechanisms that (i) reward

agents a fixed amount when their reports match, and (ii) give agents no transfer and randomize

across outcomes when their reports mismatch, cannot robustly implement the desired outcome.

We then introduce new mechanisms in the context of this example and provide intuition for why

these mechanisms are robust against types that are biased in favor of certain outcomes and types

that have high costs of learning. The general model is then introduced in Section 3, and our main

results are presented in Section 4. Section 5 presents impossibility results for stronger notions of

robust implementation. Section 6 reviews the related literature. Extensions and other robustness

results are given in the online appendix.

2 Example

Suppose there are two outcomes y ∈ Y ≡ {y1, y2} and two states of the world θ ∈ Θ ≡ {θ1, θ2}.

Let q ∈ (0, 1) be the prior probability that the state is θ2. The mechanism designer knows q but

not θ. Her objective is to implement y1 in state θ1 and to implement y2 in state θ2.

The designer commits to a mechanism M = {M1,M2, g, t1, t2} in order to elicit information

from two agents, where Mi is a finite set of messages for agent i ∈ {1, 2}, g : M1 ×M2 → [0, 1] is

a mapping from messages to the probability of implementing y1, and ti : M1 × M2 → R+ is the

transfer to agent i. Importantly, t1 and t2 depend only on the messages, not on the realized state.

8This first step is, in spirit, similar to the results of Vickrey, Clarke, and Groves, who show that the socially efficient
outcome is dominant-strategy implementable but leave open the question of finding the lowest cost to implement the
socially efficient outcome. Similarly, in the dynamic mechanism design literature, one of Pavan, Segal and Toikka
(2014)’s main contributions is to provide a necessary condition for an allocation to be implementable.
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Each agent decides whether to learn the state at cost c. His learning decision and the information

he obtains are both private: they are observed neither by the designer nor by the other agent.

Agent i’s payoff is ti − cdi, where di ∈ {0, 1} denotes his decision of whether to learn the state.

Partial Implementation without Robustness: When agents’ payoffs are common knowledge,

the designer can implement the desired social choice function (y1 in state θ1 and y2 in state θ2) via

a Maskin mechanism: Each agent is asked to report the state. The outcome and the transfers are:

outcome θ1 θ2

θ1 y1 y1 with prob 1/2

θ2 y1 with prob 1/2 y2

transfers θ1 θ2

θ1 R,R 0, 0

θ2 0, 0 R,R

where the first table specifies the mapping from messages to lotteries over outcomes and the second

table specifies the mapping from messages to transfers.

When the reward R > 0 is large relative to agents’ cost of learning c, there is an equilibrium in

which both agents pay the learning cost and report the state truthfully.

Failure of Maskin Mechanisms with Biased Agents: Maskin mechanisms fail to implement

the desired social choice function—even approximately—when agents can have biases over outcomes

with small but positive probability.

We illustrate such failures with a class of perturbations inspired by Rubinstein (1989)’s email

game. Suppose that nature draws a random variable ω from a countable set Ω ≡ {ω0, ω1, ω2, ...}

according to the geometric distribution Pr(ω = ωt) = η(1 − η)t for every t ∈ N, where η > 0 is a

parameter close to 0. We assume that ω is independent of the state θ.

Agent 1 observes which element of the partition {ω0}, {ω1, ω2}, {ω3, ω4}, ... the realized ω belongs

to before deciding whether to learn θ and what message to send. Likewise, agent 2 observes which

element of the partition {ω0, ω1}, {ω2, ω3}, ... the realized ω belongs to before deciding whether to

learn θ and what message to send. An agent’s type is the partition cell that he observes. After

observing his own type, each agent updates his belief about the other agent’s type according to Bayes

rule.9 The distribution of ω has the property that, whenever an agent observes a cell {ωk, ωk+1} of

his partition, this agent assigns strictly higher probability to ω = ωk than to ω = ωk+1.

Agent 2’s payoff is t2 − cd2 at every ω ∈ Ω. Agent 1’s payoff is t1 − cd1 at every ω ̸= ω0. When

ω = ω0, agent 1’s payoff is t1 − cd1 +B · 1{y = y1}, i.e., he receives a benefit B > 0 if outcome y1

9For example, the type of agent 2 who knows that ω ∈ {ω0, ω1} assigns probability 1
2−η

to agent 1 being type

{ω0}, the type of agent 1 who knows that ω ∈ {ω1, ω2} assigns probability 1
2−η

to agent 2 being type {ω0, ω1}, etc.
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is implemented. This perturbation is small when η is close to 0 in the sense that agents’ payoffs

coincide with those in the unperturbed environment when ω ̸= ω0, and Pr(ω ̸= ω0) = 1− η.

We show that Maskin mechanisms fail to implement the desired social choice function even

when η is arbitrarily close to 0: For any reward R ∈ R+, there exists a bias B > R such that no

matter how close η is to 0, the perturbed game has a unique equilibrium in which no agent learns

the state and both agents report θ1 regardless of the realized state.10 As a result, in the unique

equilibrium, outcome y1 is implemented regardless of the realized state.

This conclusion comes from the following contagion argument. When ω = ω0, agent 1 is biased

in favor of implementing y1. If B is large enough, he has an incentive to report θ1 regardless of

the realized θ. When ω ∈ {ω0, ω1}, agent 2 is unbiased, but he believes that agent 1 is biased with

probability greater than 1
2 , so he believes that agent 1 will report θ1 with probability greater than

1
2 for every realized θ. Since agent 2 maximizes his expected transfer minus his cost of learning,

he has a strict incentive to report θ1 regardless of the realized θ. By induction, all types of both

agents will report θ1 regardless of the realized θ in the unique equilibrium of the perturbed game.

In general, agents may be biased in either direction: some agent types may benefit from imple-

menting y1 while others may benefit from implementing y2, and these biases may have arbitrary

magnitudes. The mechanism designer faces uncertainty about the direction and magnitude of

these biases as well as about agents’ beliefs and higher-order beliefs about each other’s biases. The

mechanism designer aims to design a mechanism that can approximately implement the desired

social choice function under every perturbation where agents are unbiased with probability close

to 1, but may have arbitrary biases with small probability and may entertain arbitrary beliefs and

higher-order beliefs about these biases, as long as those beliefs can be derived from a common prior.

Status Quo Rule with Ascending Transfers. We propose a mechanism that implements

the desired social choice function when the mechanism designer does not know the direction and

magnitude of agents’ biases. From now on, we assume that agents’ costs of learning are commonly

known and equal to some constant c. We later introduce mechanisms to address the case in which

the mechanism designer also faces uncertainty about the cost of learning.

10For Maskin mechanisms to fail, we do not need type ω0’s bias B to be arbitrarily large. Our contagion argument
applies when agent 1’s payoff when ω = ω0 is −cd1 + b · 1{y = y1}, i.e., type ω0 of agent 1 is purely outcome-
driven in the sense that he does not care about the transfers, and receives a strictly positive benefit b > 0 from
implementing outcome y1. Maskin mechanisms fail even when b is arbitrarily small. Our Augmented Status Quo
Rule with Ascending Transfers can robustly implement the desired social choice function when perturbations can also
affect agents’ marginal utilities from transfers. The details are available upon request.
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Our mechanism asks each agent to report the state, either θ1 or θ2. Recall that q is the prior

probability that θ = θ2. The outcome (first table) and the transfers (second table) are:

outcome θ1 θ2

θ1 y1 y1

θ2 y1 y2

transfers θ1 θ2

θ1 R1, R1 0, 0

θ2 0, 0 R2, R2

where the magnitude of transfers R2 and R1 satisfy R2 −R1 > 2c
q and R1 > c

1−q .

Our mechanism features a status quo outcome, y1, which is implemented as long as one agent

reports θ1. Outcome y2 is implemented if and only if both agents report θ2. Agents receive strictly

positive transfers if and only if their reports coincide. They receive a larger transfer when they

both report θ2 than when they both report θ1.

To see why this mechanism is robust to the existence of biased types, let us revisit the email game

perturbations introduced above: Nature draws a random variable ω from Ω = {ω0, ω1, ω2, ...} ac-

cording to distribution Π ∈ ∆(Ω) independently of θ. Agent 1’s information partition is {ω0}, {ω1, ω2},

{ω3, ω4}, ... Agent 2’s information partition is {ω0, ω1}, {ω2, ω3}, ... Agent 2’s payoff is t2 − cd2 at

every ω. Agent 1’s payoff is t1 − cd1 at every ω ̸= ω0. Therefore, every email game perturbation is

characterized by the distribution Π and by agent 1’s payoff at ω0.

1. Suppose first that type ω0 of agent 1 receives a large benefit from outcome y1. This type can

guarantee y1 by reporting θ1 regardless of the realized state. Since R2 − R1 > 2c
q , however,

there exists λ ∈ (0, 1) such that Π(ω1) needs to be less than λΠ(ω0) in order for type {ω0, ω1}

of agent 2 to have an incentive to report θ1 regardless of the realized state. Likewise, Π(ω2)

needs to be less than λΠ(ω1) in order for type {ω1, ω2} of agent 1 to have an incentive to

report θ1 regardless of the realized state, and so on. The upper bounds on these probabilities

form a decaying geometric sequence, so the total probability of types that are infected by

type ω0 is at most
∑+∞

t=0 λ
tΠ(ω0) =

1
1−λΠ(ω0). This expression vanishes to 0 as Π(ω0) → 0.

2. Suppose now that type ω0 of agent 1 receives a large benefit from outcome y2. If Π(ωt) =

η(1− η)t for every t ∈ N and type ω0 reports θ2 regardless of the state, then all types of both

agents have a strict incentive to report θ2 regardless of the state, because R2 > R1 > 0.

However, according to our mechanism, outcome y2 is implemented only if both agents report

θ2. Therefore, an agent cannot implement y2 when (i) θ1 is the realized state and (ii) the

other agent never reports θ2 when the realized state is θ1. In this case, paying the cost of
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learning and reporting θ1 when the realized state is θ1 will lead to a strictly positive transfer.

The expected value of this transfer exceeds the cost of learning c when R1 > c
1−q .

The above argument only shows why the mechanism we propose may be able to avoid some

type of contagion for some specific perturbations. In order to address the general case, we show in

the proof of Theorem 1 that under our mechanism, for every perturbation in which both agents are

unbiased with probability close to 1, which includes but is not limited to email game perturbations,

there always exists an equilibrium in which (i) agents never report θ2 when the realized state is

θ1, and (ii) both agents report the state truthfully with probability close to 1. This equilibrium

approximately implements the desired social choice function.

In terms of the connections with Kajii and Morris (1997), in the normal-form game induced

by our mechanism where each agent has four strategies, both agents reporting θ2 regardless of

the realized state is a γ-dominant equilibrium for some γ < 1/2, which implies that under every

small perturbation in the sense of Kajii and Morris (1997), there exists an equilibrium where with

probability close to 1, both agents report θ2 regardless of the realized state. Under an email game

perturbation where type ω0 of agent 1 directly benefits from reporting θ2, both agents reporting θ2

regardless of the realized state is the unique equilibrium of this perturbed game.

We show that in the restricted game where agents cannot report θ2 when the state is θ1,

reporting truthfully is a γ-dominant equilibrium for some γ < 1/2. This implies that under every

small perturbation in the sense of Kajii and Morris (1997), there exists an equilibrium in the

restricted game where agents report truthfully with probability close to 1. Once we rule out

perturbations where agents’ payoffs depend directly on their messages, such as the email game

perturbation where type ω0 directly benefits from reporting θ2, every equilibrium in the restricted

game remains to be an equilibrium in the unrestricted game since no type has any incentive to

report θ2 when the state is θ1 provided that all other types will not report θ2 when the state is θ1.

Uncertainty about Agents’ Costs of Learning: The mechanism designer may also face un-

certainty about agents’ costs of learning the state. In addition, one or both agents may be “inept”

in the sense of being unable to learn the state. We show that, as long as the prior belief about

the state q is not exactly equal 1
2 , there exists a mechanism that approximately implements the

desired social choice function when, with probability close to 1, agents are unbiased and have cost

of learning c, but with some small probability can have arbitrary biases and costs of learning.

We start by explaining why the Status Quo Rule with Ascending Transfers, which was introduced
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earlier to address agents’ biases, is unable to deal with inept types. For any 0 < R1 < R2, consider

an email game perturbation where agent 1’s payoff at ω0 is t1 − c̃d1 +B · 1{y = y2}. We consider

perturbations where his benefit from implementing outcome y2, given by B > 0, and his cost of

learning c̃ > 0 are large relative to the transfers promised by the mechanism.

When this high-cost biased type of agent 1 believes that agent 2 reports θ2 when the realized

state is θ2, he prefers to report θ2 when the realized state is θ2, since he receives a large benefit

B from implementing outcome y2. If this type wants to report θ1 when the realized state is θ2,

then he needs to pay the cost of learning, but his cost c̃ outweighs the highest transfer promised

by the mechanism. Hence, this type prefers to report θ2 regardless of the realized state even when

he believes that agent 2 will report truthfully. Since R2 > R1, this causes contagion when the

distribution of ω satisfies Π(ωt) = η(1− η)t for every t ∈ N, no matter how close η is to 0.

Augmented Status Quo Rule with Ascending Transfers: We propose another mechanism

called the Augmented Status Quo Rule with Ascending Transfers that solves the problem caused by

high-cost biased types. Without loss of generality, we focus on the case in which q < 1
2 . Under this

new mechanism, each agent has a third message, which we denote by −θ2, and which we interpret

as the agent confessing that he is biased in favor of the desired outcome in state θ2. Under this

new mechanism, the outcome and transfers are given by:

outcome −θ2 θ1 θ2

−θ2 y2 y1 y2

θ1 y1 y1 y1

θ2 y2 y1 y2

transfers −θ2 θ1 θ2

−θ2 R0, R0 R0, R0 0, 0

θ1 R0, R0 R1, R1 0, 0

θ2 0, 0 0, 0 R2, R2

where R0

R2 ≈ 1, and R2 −R1, R1 −R0, and R0 are bounded below by some linear function of c.

According to our new mechanism, the confession message −θ2 implements the same outcome

as message θ2 regardless of the other agent’s message; each agent can unilaterally implement the

status quo outcome y1 by reporting message θ1; and coordinating on the confession message −θ2

leads to a lower transfer R0 than coordinating on any other message, but reporting the confession

message leads to a positive transfer as long as the other agent does not report θ2. By contrast,

reporting θ2 leads to a positive transfer if and only if the other agent also reports θ2.

We now explain why including the confession message makes the mechanism robust to high-

cost biased types. First, we note that if agent 1 believes that agent 2 will never send message

θ2 when the realized state is θ1 (but agent 2 may send messages −θ2 and θ1), then regardless of
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agent 1’s preference over outcomes and his cost of learning, agent 1 prefers sending −θ2 in both

states to sending θ2 in both states. The reason is that (i) both strategies induce the same outcome

regardless of agent 2’s message, (ii) none of the two strategies requires any cost of learning, and

(iii) agent 1’s expected transfer for sending −θ2 in both states equals R0 Pr(m2 ̸= θ2) and agent

1’s expected transfer for sending θ2 in both states equals R2 Pr(m2 = θ2). As long as agent 2 does

not send message θ2 when the realized state is θ1, we have Pr(m2 ̸= θ2) ≥ Pr(θ = θ1) = 1− q and

Pr(m2 = θ2) ≤ Pr(θ = θ2) = q. Since q < 1
2 and R0

R2 ≈ 1, reporting −θ2 in both states leads to a

higher expected transfer than reporting θ2 in both states. Hence, the high-cost biased type prefers

sending message −θ2 in both states over sending message θ2 in both states.

The second key observation is that when a type sends −θ2 in both states, the total probability

of types that it can infect is bounded above by a linear function of the probability of this type. This

is because sending message −θ2 leads to a transfer of at most R0, while coordinating on message θ1

or coordinating on message θ2 results in strictly greater transfers R1 and R2. Every type of agent

i ∈ {1, 2} whose payoff is ti− cdi prefers to pay the learning cost and to report the state truthfully,

as long as he believes that (i) no type of the other agent reports θ2 when the realized state is θ1,

and (ii) with probability at least 1
2 , the other agent reports the state truthfully.

Our proof, which covers perturbations in which agents may have arbitrarily high learning costs,

generalizes the above argument and shows that under every perturbation in which, with probability

close to 1, agents are unbiased and have costs of learning equal to c, there is an equilibrium in which

(i) agents never send θ2 when the realized state is θ1 and (ii) with probability close to 1, agents

send θ2 when the realized state is θ2 and send θ1 when the realized state is θ1. Such an equilibrium

implements the desired social choice function with probability close to 1.

Similar to the Status Quo Rule with Ascending Transfers, in the normal-form game induced

by the Augmented Status Quo Rule, both agents reporting θ2 regardless of the realized state is a

γ-dominant equilibrium for some γ < 1/2. Under an email game perturbation where type ω0 of

agent 1 directly benefits from reporting θ2, both agents reporting θ2 regardless of the realized state

is the unique equilibrium. However, in the restricted game where agents cannot report θ2 when

the realized state is θ1, reporting truthfully is a γ-dominant equilibrium for some γ < 1/2. This

implies that under every small perturbation in the sense of Kajii and Morris (1997), there exists an

equilibrium in the restricted game where agents report the state truthfully with probability close to

1. Once we rule out perturbations where agents’ payoffs depend directly on their messages, every

equilibrium in the restricted game remains to be an equilibrium in the unrestricted game since
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every type strictly prefers to report −θ2 in both states than to report θ2 in both states.

3 Model

Unperturbed Environment: A designer wants to implement a social choice function f : Θ →

∆(Y ) where Θ is a finite set of states and Y is a set of outcomes.11 The typical elements in these

sets are θ ∈ Θ and y ∈ Y . Let n ≡ |Θ| be the number of states. Let q ∈ ∆(Θ) be the objective

distribution of θ, with q(θ) the probability of state θ. We assume that q(θ) > 0 for every θ ∈ Θ.

The designer knows q but does not know θ. She commits to a mechanismM ≡ {M1,M2, t1, t2, g}

in order to elicit θ from two agents, where Mi is a finite set of messages for agent i, ti : M1×M2 →

R+ is the transfer to agent i, and g : M1×M2 → ∆(Y ) is the implemented outcome. Our restriction

to finite mechanisms makes our robust implementation results stronger. It is also motivated by the

fact that mechanisms with infinitely many messages have undesirable properties.

After observing M, agents simultaneously and independently decide whether to observe θ at

some cost. Let di ∈ {0, 1} be agent i’s decision to obtain information, where di = 1 represents

agent i obtaining information about θ and vice versa. Let ci ≥ 0 be agent i’s cost of learning.12 We

assume that learning is covert in the sense that neither agent −i nor the designer can observe di.

Agents then simultaneously send messages (m1,m2) ∈ M1 × M2 to the designer, after which

the designer makes transfers and implements an outcome according to M. Agent i’s payoff is:

ui(θ, y)− cidi + ti. (3.1)

Robust Implementation: We examine whether the designer can robustly implement f when

agents’ preferences over outcomes, their costs of learning the state, and their beliefs and higher-order

beliefs about each other’s payoffs can differ from those of the baseline setting.

Following Kajii and Morris (1997), a perturbation G ≡ {Ω,Π, Q1, Q2, ũ1, ũ2, c̃1, c̃2} consists of

a countable set of circumstances Ω, a distribution Π ∈ ∆(Ω) over the set of circumstances which

11Agents’ ability to learn the state of the world may be limited, creating a discrepancy between what agents can
learn and what the designer cares about. In this case, we interpret θ as what agents can learn, since it is the only
information that can be elicited from any mechanism. Online Appendix C shows that our results extend when agents
observe noisy private signals about the state after paying their costs of learning. Our main result also holds when
there is a continuum of states, as shown in Online Appendix A, under the assumption that the social choice function
f and agents’ payoff functions in the unperturbed environment (u1, u2) are continuous with respect to θ.

12In our baseline model, each agent either fully learns the state or learns nothing. In Online Appendix B, we
generalize our result by allowing agents to choose any partition of the state space as their information structures,
and different partitions may incur different costs. In Online Appendix C, we generalize the main result to situations
in which agents can only observe noisy signals about the state after paying their learning costs.
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we assume is independent of θ, a partition Qi of Ω such that agent i ∈ {1, 2} knows which element

of the partition Qi the realized ω belongs to, as well as mappings ũi : Ω × Θ × Y → R, and

c̃i : Ω → [0,+∞] for i ∈ {1, 2}, where c̃i(ω) = +∞ means that agent i does not have the ability to

learn θ at ω. Agent i’s payoff under perturbation G is

ũi(ω, θ, y)− c̃i(ω)di + ti. (3.2)

For given c > 0, we say that G is a c-bounded perturbation if c̃i(ω) ≤ c for every i and ω.

For every ω ∈ Ω, let Qi(ω) be the partition element of Qi that contains ω, which we call agent

i’s type. Type Qi(ω) is a normal type if ũi(ω
′, θ, y) = ui(θ, y) and c̃i(ω

′) = ci for every ω′ ∈ Qi(ω),

i.e., type Qi(ω) of agent i knows that his payoff in the perturbed environment coincides with his

payoff in the unperturbed environment. We introduce our notion of small perturbations:

η-Perturbation. For every η ∈ (0, 1), we say that G is an η-perturbation if

Π
(
both agents are normal types

)
≥ 1− η. (3.3)

We say that G is a c-bounded η-perturbation if G is an η-perturbation and is c-bounded.

Intuitively, a perturbation is small if agents’ payoffs coincide with those in the unperturbed

environment with probability close to one, but their payoffs can be very different from the unper-

turbed environment with small but positive probability. Even though every normal-type agent’s

payoff coincides with his payoff in the unperturbed environment, he may believe that the other

agent is not normal, and may believe that the other agent thinks that he is not normal, and so on.

The email game perturbations considered in Section 2 are η-perturbations since both agents are

normal types when ω ∈ Ω\{ω0}, and the event Ω\{ω0} occurs with probability 1− η under Π.

The designer faces uncertainty about the perturbation G when she designs the mechanism. After

observing the perturbation G and the mechanism M, the two agents are playing an incomplete

information game, which we denote by (M,G). A typical strategy profile of this game is denoted

by σ. Let gσ(θ) ∈ ∆(Y ) be the implemented lottery over outcomes conditional on the state being

θ when the designer commits to outcome function g and agents behave according to σ.

Like Oury and Tercieux (2012), we focus on partial implementation: the designer requires only

that f be implemented in at least one equilibrium, not necessarily all equilibria. Our main results

in Section 4 examine whether the designer can design a mechanism that approximately implements
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f for all small enough perturbations.13

1. We say that M robustly implements f if for every ε > 0, there exists η > 0 such that for every

η-perturbation G, there exists an equilibrium σ(G) of the game induced by (M,G), such that

max
θ∈Θ

||gσ(G)(θ)− f(θ)||TV < ε, (3.4)

where || · ||TV is the total variation distance between two distributions.

2. We say that M robustly implements f for all c-bounded perturbations if for every ε > 0, there

exists η > 0 such that for every c-bounded η-perturbation G, there exists an equilibrium σ(G)

of the incomplete information game induced by (M,G) such that inequality (3.4) holds.

We do not characterize the lowest expected transfer needed to robustly implement f . Doing so

would likely require knowing the set of games for which there exist robust equilibria that implement

f , which to the best of our knowledge, remains an open question. However, we do compute the

expected transfer that is needed to robustly implement f under the mechanisms we propose. This

transfer may be viewed as an upper bound on the cost needed to robustly implement f .

Formally, we say that mechanism M robustly implements f with cost no more than T ∈ R+

if for every ε > 0 and ξ > 0, there exists η > 0 such that for every η-perturbation G, there exists

an equilibrium σ(G) of the game induced by (M,G) such that inequality (3.4) is satisfied and,

moreover, E
[
t1(m1,m2) + t2(m1,m2)

∣∣∣M,G, σ(G)
]
≤ T + ξ.

Two Remarks on the Modeling Assumptions: First, we assume that the realized perturba-

tion is common knowledge among the agents but is unknown to the designer. This assumption is

standard in the robust mechanism design literature (e.g., Chung and Ely 2007). It fits applications

in which (i) the designer sets rules in advance without knowing the specific circumstances that the

firm or the society will be facing, but (ii) agents do know the particular circumstances they are

facing when they decide on how to react to the mechanism.

Since both agents can observe the perturbation G, one may wonder whether the designer could

ask both agents to report G, and punish both agents if their reports do not coincide (e.g., by

implementing a particular outcome or by giving them negative transfers).

13Using the results in Morris, Oyama and Takahashi (2023), our theorems can be extended to a stronger notion of
robust implementation: Mechanism M robustly implements f if for every ε > 0, there exists η > 0 such that for every
perturbation G under which agents’ payoffs are η-close to those in the unperturbed environment with probability at
least 1− η, there exists an equilibrium that implements f(θ) with probability more than 1− ε for every θ ∈ Θ.
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Although this possibility would be worth exploring, we make two observations. First, our focus

on finite mechanisms precludes such a possibility, since there are infinitely many perturbations.

Soliciting information about the realized perturbation requires the use of infinite mechanisms.

Moreover, asking agents to report complicated objects such as the realized perturbation may be

difficult and intractable in practice. Second, when only two agents can learn the state, it is unclear

whether there exists a mechanism that can induce all agent types to report the realized perturbation

truthfully. The reason is that agents’ preferences in the perturbed environment can be arbitrary,

so it is impossible to design a punishment that deters all types from lying. For example, the

outcome that punishes some types may constitute an arbitrarily large reward for other types who

are strongly biased in favor of this outcome, and may encourage these latter types to lie about

the perturbation they observed just for the sake of getting this outcome implemented. Moreover,

agents’ coordination motives would then imply that a type’s incentive to lie about the perturbation

may encourage other types to lie as well.

Second, while our mechanisms achieve robust implementation with positive learning costs, we

are unaware of similar results even when agents have zero learning cost. If c1 = c2 = 0 and u1(θ, y)

and u2(θ, y) are independent of θ, there is a trivial solution to the robust implementation problem:

The designer promises agent 1 a transfer of −u1(y) and agent 2 a transfer of −u2(y) whenever she

implements outcome y. The normal type of each agent is indifferent between all messages, so there

exists an equilibrium where all normal types learn the state and report it truthfully. However, this

solution does not work when u1 or u2 depends on θ, or when agents have positive costs of learning.

When c1 = c2 = 0, and (f, u1, u2) satisfies a Maskin monotonicity* condition, which is strictly

stronger than the Maskin monotonicity condition in Maskin (1999), Chen, Kunimoto, Sun, and

Xiong (2021) show that there exists a finite mechanism that fully implements f under the solution

concept of correlated rationalizability, which implies that their mechanism can fully implement f

under the solution concept of correlated equilibrium. According to Proposition 3.2 in Kajii and

Morris (1997), the mechanism in Chen et al (2021) can robustly implement f when (f, u1, u2)

satisfies Maskin monotonicity*. By contrast, our results in Section 4 construct a different class of

finite mechanisms that can robustly implement f without any restriction on (f, u1, u2).
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4 Main Results

Theorem 1 shows that every f is robustly implementable when agents’ costs of learning are uni-

formly bounded from above across all the perturbations considered by the designer. Theorem 2

shows that even when arbitrarily large (or infinite) learning costs are allowed, every f is robustly

implementable, as long as the state’s prior distribution satisfies a generic assumption.

4.1 Robust Implementation with Bounded Perturbations

Theorem 1. For every c > 0 and f : Θ → ∆(Y ), there exists a mechanism with n ≡ |Θ|

messages for each agent that robustly implements f for all c-bounded perturbations.

For simplicity, in the main text, we prove all our results under the assumptions that u1(θ, y) =

u2(θ, y) = 0 and c1 = c2 = c, i.e., that each normal type’s payoff is equal to his transfer minus his

cost of learning and the normal types of both agents face the same cost c. Types that are not normal

can have arbitrary payoffs ũi(ω, θ, y) and c̃i(ω). The proofs for general utility functions (u1, u2)

and heterogeneous costs of learning are in Appendix A and do not present additional challenges.

Proof. We propose a mechanism called the Status Quo Rule with Ascending Transfers. Let Θ ≡

{θ1, ..., θn}. Each agent’s message space is given by M1 = M2 ≡ M ≡ {1, 2, ..., n}. The outcome

function is

g(m1,m2) =

 f(θm1) if m1 = m2

f(θ1) otherwise.
(4.1)

The transfer function for agent i ∈ {1, 2} is

ti(mi,m−i) =

 Rj if m1 = m2 = j

0 otherwise,
(4.2)

where R1 > c
q(θ1)

, Rj > R1 for every j ≥ 2, and
∑n

j=2(R
j −R1)q(θj) > 2c.14

In the unperturbed game induced by our mechanism, an agent’s pure strategy can be described

as an n-dimensional vector (m1, ...,mn), where mj ∈ M is the message that the agent sends when

the state is θj . If agent 1 uses strategy (m1
1, ...,m

n
1 ) and agent 2 uses strategy (m1

2, ...,m
n
2 ), then

14The mechanism for general (u1, u2, c1, c2) has the same outcome function. The transfers satisfy (A.1) and (A.2).
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agent i’s expected payoff equals

n∑
j=1

q(θj)
{
ti(m

j
1,m

j
2) + ui(θ

j , g(mj
1,m

j
2))

}
−
(
1− 1{m1

i = ... = mn
i }

)
ci. (4.3)

When u1 = u2 = 0 and c1 = c2 = c—the case we focus on in the main text—agent i’s expected

payoff equals
n∑

j=1

q(θj)ti(m
j
1,m

j
2)−

(
1− 1{m1

i = ... = mn
i }

)
c. (4.4)

In the incomplete information game induced byM and perturbation G = {Ω,Π, Q1, Q2, ũ1, ũ2, c̃1, c̃2},

a type’s pure strategy is also given by (m1, ...,mn), where mj ∈ M is the message that this type

sends when the state is θj . A pure strategy profile {(m1
i (ω), ...,m

n
i (ω))}i∈{1,2},ω∈Ω describes each

agent i’s message mj
i (ω) for each state θj and circumstance ω, and must satisfy the restriction

that mj
i (ω) be measurable with respect to Qi for every i ∈ {1, 2} and j ∈ {1, 2, ..., n}. For every

i ∈ {1, 2} and ω∗ ∈ Ω, the expected payoff for type Qi(ω
∗) of agent i’s is given by

n∑
j=1

q(θj)Eω

[
ti(m

j
1(ω),m

j
2(ω)) + ũi

(
ω, θj , g(mj

1(ω),m
j
2(ω))

)∣∣∣Qi(ω
∗)
]

−
(
1− 1{m1

i (ω
∗) = ... = mn

i (ω
∗)}

)
Eω

[
c̃i(ω)

∣∣∣Qi(ω
∗)
]
. (4.5)

Let Σ ≡ {1, 2, ..., n}n denote the set of pure strategies. Agent i ∈ {1, 2} is truthful if he uses

strategy (1, 2, ..., n), i.e., if he truthfully reports the index of the realized state. We define Σ∗ ⊂ Σ

as:

Σ∗ ≡
{
(m1, ...,mn) ∈ Σ such that mj ∈ {1, j} for every j ≥ 1

}
. (4.6)

If an agent’s strategy belongs to Σ∗, then in every state θj , this agent either sends the status

quo message 1 or reports the state truthfully by sending message j. For example, when n = 2,

Σ∗ = {(1, 1), (1, 2)} while Σ = {(1, 1), (1, 2), (2, 1), (2, 2)}.

Roadmap: The rest of the proof consists of three steps. First, we study a restricted game where

agents can only use strategies in Σ∗. We show that both agents reporting the state truthfully,

i.e., using strategy (1, 2, ..., n), is a γ-dominant equilibrium for some γ < 1/2. Next, we apply the

critical path lemma in Kajii and Morris (1997), which implies that under every small perturbation,

there exists an equilibrium in the perturbed restricted game where agents report truthfully with

probability close to 1. Then, we show that even when the agents can use any strategy in Σ, no type
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of any agent has any incentive to deviate to strategies that belong to Σ\Σ∗ provided that the other

agent’s strategy belongs to Σ∗. This verifies that every equilibrium in the perturbed restricted

game remains to be an equilibrium in the perturbed game without any restriction.

Step 1: The first step examines a restricted game without perturbation where both agents are

only allowed to use (mixed) strategies in ∆(Σ∗) and it is common knowledge that agents’ payoffs

are t1 − cd1 and t2 − cd2. For any given γ ∈ [0, 1], a γ-dominant equilibrium is a Nash equilibrium

where every agent finds it strictly optimal to play his equilibrium strategy when he believes that

the other agent will play their equilibrium with probability at least γ.

Lemma 1. In the restricted game without perturbation, there exists γ < 1
2 such that both agents

being truthful is a γ-dominant equilibrium.

Proof. In the restricted game without perturbation, agents can only send message 1 conditional on

θ = θ1 and, for every j ≥ 2, agents can only send message 1 or message j conditional on θ = θj .

� If agent 1 sends message j in state θj , his expected transfer equals Pr(m2 = j|θj)Rj .

� If agent 1 sends message 1 in state θj , his expected transfer equals Pr(m2 = 1|θj)R1.

Suppose agent 2 is truthful with probability at least 1
2 , Pr(m2 = j|θj) ≥ 1

2 and Pr(m2 = 1|θj) ≤
1
2 . Since Rj > R1 for every j ≥ 2, agent 1 strictly prefers strategy (1, 2, ..., n) to any other

strategy (m1, ...,mn) that belongs to Σ∗ but is neither (1, 2, ..., n) nor (1, 1, ..., 1). Since
∑n

j=2(R
j −

R1)q(θj) > 2c, agent 1’s expected payoff under (1, 2, ..., n) minus that under (1, 1, ..., 1) is at least∑n
j=2

1
2(R

j −R1)q(θj)− c, which is strictly positive. Since each agent strictly prefers (1, 2, ..., n) to

any other strategy in Σ∗ when he believes that the other agent is truthful with probability at least

1
2 , there exists γ < 1

2 such that both agents being truthful is a γ-dominant equilibrium.

Step 2: For any G, consider a restricted game with perturbation G where agent i ∈ {1, 2}’s payoff

is ũi(ω, θ, y) − c̃i(ω)di + ti, and agents are only allowed to use strategies in ∆(Σ∗). Since there

exists γ < 1
2 such that both agents being truthful is a γ-dominant equilibrium in the restricted

game without perturbation, the Critical Path Lemma in Kajii and Morris (1997) implies that:

Lemma 2. For every ε > 0, there exists η > 0, such that for every η-perturbation G, there

exists an equilibrium σ(G) in the restricted game with perturbation G, under which the probability

with which both agents being truthful is greater than 1− ε.
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Since g(j, j) = f(θj) for every j ∈ {1, 2, ..., n}, f is implemented when both agents are truthful,

which occurs with probability at least 1− ε when agents behave according to σ(G).

Step 3: We show that for every G, the equilibrium σ(G) constructed in the previous step remains

an equilibrium under perturbation G when agents can use any strategy in the set ∆(Σ).

Suppose by way of contradiction that there exists a typeQ1(ω) who strictly prefers (m1, ...,mn) /∈

Σ∗ to all strategies in Σ∗ when agent 2 behaves according to σ(G). Let us define a new strategy

(m1
∗, ...,m

n
∗ ) for agent 1 as follows:

mj
∗ ≡

 mj if mj ∈ {1, j}

1 if mj /∈ {1, j}
for every j ∈ {1, 2, ..., n}.

By construction, (m1
∗, ...,m

n
∗ ) ∈ Σ∗. We compare type Q1(ω)’s expected payoff from (m1, ...,mn)

to his expected payoff from (m1
∗, ...,m

n
∗ ).

1. First, (m1, ...,mn) and (m1
∗, ...,m

n
∗ ) lead to the same joint distribution of (θ, y) when agent 2’s

strategy belongs to ∆(Σ∗). This is because mj
∗ = mj when mj ∈ {1, j}; and when mj /∈ {1, j},

agent 2 sends either 1 or j when the realized state is θj . Given the outcome function (4.1),

the implemented outcome is f(θ1) whenever agent 1 sends a message other than j.

2. Second, conditional on each state, (m1
∗, ...,m

n
∗ ) gives a weakly greater transfer to agent 1

than does (m1, ...,mn). This is because when the state is θj and agent 2’s message belongs

to {1, j}, agent 1 receives zero transfer when he sends any message that is neither 1 nor j.

3. Third, if (m1
∗, ...,m

n
∗ ) requires a strictly greater learning cost compared to (m1, ...,mn), then

m1 = ... = mn ≥ 2. Conditional on θ = θ1, the transfer under m1
∗ is R

1 and the transfer under

m1 is 0 when the other agent’s strategy belongs to ∆(Σ∗). Since q(θ1)R1 ≥ c, the expected

transfer from (m1
∗, ...,m

n
∗ ) is greater than c plus the expected transfer from (m1, ...,mn).

Since each agent’s learning cost is no more than c when G is a c-bounded perturbation, every

type prefers (m1
∗, ...,m

n
∗ ) to (m1, ...,mn). This contradicts the hypothesis that type Q1(ω) strictly

prefers (m1, ...,mn) to all strategies in Σ∗. Since σ(G) is an equilibrium in the restricted game with

perturbation when agents are only allowed to use strategies in ∆(Σ∗), σ(G) remains an equilibrium

in the unrestricted game with perturbation G in which agents can use any strategy in ∆(Σ).

20



Implementation Cost: We bound the expected cost to implement f focusing on the case where

u1 = u2 = 0 and c1 = c2 = c. The cost for the general case is in Appendix A. The expected cost

E[t1 + t2] under our mechanism equals 2
∑n

j=1 q(θ
j)Rj , which can be as low as

2c

maxθ∈Θ q(θ)
+ 4c. (4.7)

This is because when θ1 maximizes q(θ), R1 can be as low as c
maxθ∈Θ q(θ) , and the requirement that∑n

j=2(R
j −R1)q(θj) > 2c implies that

∑n
j=2 q(θ

j)Rj can be as low as 2c+R1
∑n

j=2 q(θ
j).

4.2 Robust Implementation with an Ex Ante Most Likely State

We show that as long as the objective state distribution q ∈ ∆(Θ) satisfies a generic condition,

stated below, every f is robustly implementable even when some types have arbitrarily large biases

or learning costs, or when some types are inept in the sense that they do not have the ability to

learn the state, that is, their cost of learning is +∞.

Definition 1. q ∈ ∆(Θ) is generic if there exists θ∗ ∈ Θ such that q(θ∗) > q(θ′), ∀θ′ ̸= θ∗.

When there are two states, for instance, this condition rules out the objective state distribution

that assigns probability exactly 1
2 to each state, but allows any other full support distribution. In

Online Appendix A, we generalize our result to environments in which (i) there is a continuum of

states, (ii) the objective distribution q has no atom, and (iii) (f, u1, u2) are continuous with respect

to the state. In that environment, the generic condition is no longer required and our result holds

for all full support distributions.

Theorem 2. Suppose q is generic. For every social choice function f : Θ → ∆(Y ), there exists

a mechanism with 2|Θ| − 1 messages for each agent that robustly implements f .

Proof. We propose a mechanism called the Augmented Status Quo Rule with Ascending Transfers.

When q is generic, we can write Θ ≡ {θ1, ..., θn} such that q(θ1) > q(θ2) ≥ ... ≥ q(θn) > 0.

Consider a mechanism where each agent’s message space is given by M1 = M2 = M =

{−n, ...,−2} ∪ {1} ∪ {2, ..., n}. The outcome function is

g(m1,m2) =

 f(θ|m1|) if |m1| = |m2|

f(θ1) otherwise.
(4.8)
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The transfer function for agent i ∈ {1, 2} is

ti(mi,m−i) =


Rj if m1 = m2 = j ≥ 1

R0 if m1,m2 ≤ 1 but (m1,m2) ̸= (1, 1)

0 otherwise,

(4.9)

where Rn, ..., R0 satisfy min{Rn, ..., R2} > R1 > R0 > 0,

n∑
j=2

q(θj)(Rj −R1) > 2c, (4.10)

and
R0

Rj
>

q(θj)

q(θ1)
for every j ≥ 2. (4.11)

When q is generic, there exist Rn, ..., R0 that satisfy these inequalities. Our mechanism when there

are two states is presented in Section 2. When there are three states, our mechanism is given by:

g −3 −2 1 2 3

−3 f(θ3) f(θ1) f(θ1) f(θ1) f(θ3)

−2 f(θ1) f(θ2) f(θ1) f(θ2) f(θ1)

1 f(θ1) f(θ1) f(θ1) f(θ1) f(θ1)

2 f(θ1) f(θ2) f(θ1) f(θ2) f(θ1)

3 f(θ3) f(θ1) f(θ1) f(θ1) f(θ3)

t1, t2 −3 −2 1 2 3

−3 R0, R0 R0, R0 R0, R0 0, 0 0, 0

−2 R0, R0 R0, R0 R0, R0 0, 0 0, 0

1 R0, R0 R0, R0 R1, R1 0, 0 0, 0

2 0, 0 0, 0 0, 0 R2, R2 0, 0

3 0, 0 0, 0 0, 0 0, 0 R3, R3

An agent’s (or an agent type’s) pure strategy is (m1, ...,mn), where mj ∈ M represents the

message he sends when the state is θj . He pays the cost of learning unless m1 = ... = mn. An agent

is truthful if he uses strategy (1, 2, ..., n), according to which he reports the index of the realized

state. Let Σ ≡ {−n, ...,−2, 1, 2, ..., n}n be the set of pure strategies. Let

Σ∗ ≡
{
(m1, ...,mn) ∈ Σ such that mj ∈ {−n, ...,−2, 1} ∪ {j} for every j ≥ 1

}
. (4.12)

By definition, if an agent’s strategy belongs to Σ∗, then conditional on each state θj , he either sends

a negative message, or sends the status quo message 1, or sends message j. For example, when

n = 2, Σ∗ = {(−2,−2), (−2, 1), (−2, 2), (1,−2), (1, 1), (1, 2)} while Σ = Σ∗⋃{(2,−2), (2, 1), (2, 2)}.
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Roadmap: The rest of the proof consists of three steps. First, we examine a restricted game

where agents can only use strategies in Σ∗. We show that both agents using strategy (1, 2, ..., n)

is a γ-dominant equilibrium for some γ < 1/2. Next, we apply the critical path lemma in Kajii

and Morris (1997), which implies that under every small perturbation, there exists an equilibrium

in the perturbed restricted game where agents use strategy (1, 2, ..., n) with probability close to 1.

Then, we show that even when the agents can use any strategy in Σ, no agent has any incentive to

deviate to strategies that belong to Σ\Σ∗ provided that the other agent will use strategies in Σ∗.

Step 1: We examine a restricted game without perturbation in which it is common knowledge

that payoffs are t1−cd1 and t2−cd2,
15 and both agents are only allowed to use strategies in ∆(Σ∗).

We show that there exists γ < 1
2 such that both agents being truthful is a γ-dominant equi-

librium in the restricted game without perturbation. Suppose agent 1 believes that agent 2 plays

(1, 2, ..., n) with probability at least 1
2 and that agent 2’s strategy belongs to ∆(Σ∗).

� For every j ≥ 2, conditional on θ = θj , agent 1’s expected transfer equals Pr(m2 = j|θj)Rj if

he sends message j, and is at most Pr(m2 ≤ 1|θj)R1 if he sends message 1 or any negative

message. If he believes that agent 2 is truthful with probability at least 1
2 , then Pr(m2 =

j|θj)Rj > Pr(m2 ≤ 1|θj)R1 given that Rj > R1.

� Conditional on θ = θ1, agent 1’s expected transfer equals Pr(m2 = 1|θ1)R1 + Pr(m2 ≤

−2|θ1)R0 if he sends message 1 and equals R0 if he sends any negative message. If he

believes that agent 2 is truthful with probability at least 1
2 , then Pr(m2 = 1|θ1)R1+Pr(m2 ≤

−2|θ1)R0 > R0 given that R1 > R0.

The discussion above implies that agent 1 strictly prefers the truthful strategy to any other non-

constant strategy that belongs to Σ∗. Agent 1’s expected payoff from using a constant strategy

in Σ∗ is at most
∑n

j=1 q(θ
j)R1 Pr(m2 ≤ 1|θj), while his expected payoff from being truthful is at

least
∑n

j=1 q(θ
j)Rj Pr(m2 = j|θj). Inequality (4.10) implies that

∑n
j=1 q(θ

j)Rj Pr(m2 = j|θj) >

c+
∑n

j=1 q(θ
j)R1 Pr(m2 ≤ 1|θj) when agent 2 is truthful with probability at least 1

2 . Since agent 1

strictly prefers to be truthful when he believes that agent 2 is truthful with probability at least 1
2 ,

there exists γ < 1
2 such that agent 1 strictly prefers (1, 2, ..., n) to any other strategy in Σ∗ when

(i) agent 2’s strategy belongs to ∆(Σ∗) and (ii) agent 2 is truthful with probability at least γ.

15Recall that in the main text, our proof focuses on the case where u1 = u2 = 0 and c1 = c2 = c. We explain how
to generalize our proof to arbitrary u1(θ, y) and u2(θ, y), and to heterogeneous costs of learning in Appendix A.
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Step 2: For any perturbation G, consider a restricted game with perturbation G where agent i’s

payoff is ũi(ω, θ, y)− c̃i(ω)di + ti, and agents are only allowed to use strategies in ∆(Σ∗).

Since there exists γ < 1
2 such that both agents being truthful is a γ-dominant equilibrium in

the restricted game without perturbation, the Critical Path Lemma implies that for every ε > 0,

there exists η > 0, such that for every η-perturbation G, there exists an equilibrium σ(G) in the

restricted game perturbed by G in which both agents are truthful with probability more than 1−ε.

Since g(j, j) = f(θj) for every j ∈ {1, 2, ..., n}, f is implemented when both agents are truthful,

which occurs with probability more than 1− ε when agents behave according to σ(G).

Step 3: We show that when q is generic and {Rn, ..., R1, R0} satisfy (4.10) and (4.11), the equi-

librium σ(G) in the restricted game with perturbation G remains an equilibrium in the unrestricted

game with perturbation G in which agents can use any strategy in ∆(Σ), not just those in ∆(Σ∗).

For this purpose, we only need to show that for every pure strategy that does not belong to Σ∗,

there exists a pure strategy that belongs to Σ∗ such that every type of agent 1 weakly prefers the

latter to the former when he believes that agent 2 plays according to σ(G). We consider two cases.

First, for every (m1, ...,mn) /∈ Σ∗ that is non-constant, let (m1
∗, ...,m

n
∗ ) be defined as

mj
∗ ≡

 mj if mj ∈ {−n, ...,−2} ∪ {1, j}

−mj if mj /∈ {−n, ...,−2} ∪ {1, j}
for every j ∈ {1, 2, ..., n}. (4.13)

By construction, (m1
∗, ...,m

n
∗ ) ∈ Σ∗. Since (m1, ...,mn) is non-constant, (m1

∗, ...,m
n
∗ ) does not

increase the cost of learning compared to (m1, ...,mn). The outcome function (4.8) ensures that,

regardless of whether agent 1 uses strategy (m1
∗, ...,m

n
∗ ) or strategy (m1, ...,mn), he will induce

the same joint distribution of (θ, y) regardless of agent 2’s strategy. When agent 1 believes that

agent 2’s strategy belongs to ∆(Σ∗), which is the case when agent 2 plays according to σ(G), agent

1 receives a weakly greater transfer from (m1
∗, ...,m

n
∗ ) compared to (m1, ...,mn). This is because

sending any message that does not belong to {−n, ...,−2} ∪ {1, j} leads to a transfer of 0 in state

θj when agent 2’s message in state θj belongs to {−n, ...,−2} ∪ {1, j}.

Second, for every (m1, ...,mn) /∈ Σ∗ that satisfies m1 = ... = mn, there exists k ∈ {2, 3, ..., n}

such that (m1, ...,mn) = (k, ..., k). Let us compare the expected payoff that any given type of agent

1 receives with strategies (k, ..., k) and (−k, ...,−k). The outcome function in (4.8) implies that

(k, ..., k) and (−k, ...,−k) lead to the same joint distribution over (θ, y). None of these strategies

requires agent 1 to learn θ. The expected transfer is Pr(m2 = k)Rk if agent 1 uses strategy (k, ..., k),
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and is Pr(m2 ≤ 1)R0 if he uses strategy (−k, ...,−k). When every type of agent 2’s strategy belongs

to ∆(Σ∗), we have Pr(m2 ≤ 1) ≥ q(θ1) and Pr(m2 = k) ≤ q(θk). Condition (4.11) then implies

that Pr(m2 = k)Rk ≤ q(θk)Rk < q(θ1)R0 ≤ Pr(m2 ≤ 1)R0. Hence, type Q1(ω)’s expected transfer

is weakly greater under (−k, ...,−k) compared to that under (k, ..., k).

Implementation Cost: In the case where u1 = u2 = 0 and c1 = c2 = c, the expected cost

E[t1 + t2] under our mechanism equals 2
∑n

j=1 q(θ
j)Rj . A tight lower bound for this is

4c∑n
j=2(q(θ

1)− q(θj))
+ 4c, (4.14)

which is a linear function of the agents’ learning cost in the unperturbed environment. The calcu-

lations are in Appendix A, together with the implementation cost in the general case.

4.3 Summary of Other Robustness Results

We discuss other robustness results in the online appendix. In Online Appendix A, we extend our

results to environments in which there is a continuum of states and both the social choice function

and normal types’ payoffs are continuous with respect to the state. In Online Appendix B, we

extend our results when agents can choose any partition of the state space as their information

structures and different partitions have different costs. Online Appendix C modifies our mechanism

so that it can robustly implement f when (i) agents tremble with small probability, and (ii) agents

observe noisy private signals about the state after paying their costs of learning. This extension

captures situations in which learning the state perfectly is prohibitively costly and agents can only

learn an imperfect signal about the state. Online Appendix D examines the robustness of our results

when the designer does not know the state distribution q or faces uncertainty about agents’ beliefs

about the state (e.g., when agents receive noisy private signals about the state before observing the

mechanism and the designer does not know the agents’ information structures).16

5 Stronger Notions of Robust Implementation

We consider the robust implementation of non-constant social choice functions, defined as follows.

Definition 2. Social choice function f is non-constant if there exist θ, θ′ such that f(θ) ̸= f(θ′).

16Applying the results in Oyama and Tercieux (2010), we can extend our results to some environments with
non-common priors about θ. The details are available upon request.
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Section 5.1 shows that the designer cannot robustly implement any non-constant social choice

function when we allow for perturbations where agents’ payoffs do not coincide with those in the un-

perturbed environment with high probability. Sections 5.2 and 5.3 show that when agents’ costs of

learning in the unperturbed environment are above some cutoff, the designer cannot approximately

implement any non-constant social choice function in all equilibria, and she cannot robust-partially

implement any non-constant social choice function in an interim sense.

5.1 Impossibility of Global Implementation

First, suppose that perturbations for which c̃i(ω) is arbitrarily large are allowed, and that agents’

payoffs may differ from those of the unperturbed environment with significant probability. In this

case, it is easy to see that no finite mechanism can approximately implement any non-constant social

choice function. To this end, fix any finite mechanism M. Clearly, no agent has any incentive to

learn the state when agents’ learning costs exceed the maximal transfer promised by mechanism

M plus maxi,θ,y |ui(θ, y)|. This implies that f cannot be implemented conditional on this event,

which can occur with probability bounded above 0.

Next, we show that even when we only consider c-bounded perturbations, or even when we only

consider perturbations where it is common knowledge that agents’ costs are c1 and c2, no finite

mechanism can approximately implement any non-constant social choice function if the probability

of normal types is not close to 1.17

To state the result formally, we will say that mechanism M globally implements f for all c-

bounded perturbations if for every ε > 0 and every c-bounded perturbation G, there exists an

equilibrium σ(G) of incomplete information game (M,G) such that maxθ∈Θ ||gσ(G)(θ)−f(θ)||TV < ε.

Theorem 3. For every c > 0 and every f : Θ → ∆(Y ) that is non-constant, there exists no

finite mechanism that can globally implement f for all c-bounded perturbations.

The proof is in Appendix B. Here we provide some general intuition. For every f that is non-

constant, one can find θ ∈ Θ such that f(θ) does not belong to the convex hull of {f(θ′)}θ′ ̸=θ,

which we denote by Y ′. For a mechanism M to implement f in a perturbation where all types of

agent 1 dislike f(θ) and like outcomes in Y ′, there must exist a distribution of agent 2’s messages

under which agent 1’s payoff cannot exceed his payoff from f(θ) no matter which message he sends.

17Although Theorem 3 holds when we restrict attention to perturbations where the learning costs are bounded,
players’ utilities need to be unbounded with positive probability. This is because when it is common knowledge that
c̃i ≤ c and |ui(θ, y)| ≤ u for every i ∈ {1, 2}, θ ∈ Θ, and y ∈ Y , one can use the Maskin mechanism in Section 2 to
robustly implement the desired outcome by setting the transfer R to be large enough such that Rminθ∈Θ q(θ) ≥ 2u+c.
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This implies that under another perturbation where all types of agent 2 like f(θ), agent 2 can

guarantee his payoff from f(θ) regardless of agent 1’s message, which means that mechanism M

cannot implement any outcome in set Y ′.

In fact, the proof of Theorem 3 implies the following corollary, which shows that even if one

focuses on virtual implementation, no mechanism can virtually implement f when payoff pertur-

bations have a probability that is bounded away from zero.

Corollary 1. For every f : Θ → ∆(Y ) that is non-constant, there exists k(f) > 0 such that for

every finite mechanism M and every η > 0, there exists a c-bounded η-perturbation G, such that

for every equilibrium σ(G) of the game (M,G), we have maxθ∈Θ ||gσ(G)(θ)− f(θ)||TV ≥ ηk(f).

Corollary 1 shows that for every finite mechanism M, there exists a perturbation G under which

every equilibrium of the incomplete information game induced by (M,G) implements a social choice

function that is bounded away from f . This corollary shows that, even if one focuses on partial

and virtual implementation, robust implementation is possible only if the perturbed environment

is close to the unperturbed environment.

5.2 Full Implementation and Virtual Implementation

We now examine whether the designer can approximately implement f in all equilibria under all

small enough perturbations. Say that f is virtually implementable if for every ε > 0, there exists

a mechanism Mε, such that ||gσ(θ)− f(θ)||TV ≤ ε for every θ ∈ Θ and every equilibrium σ under

Mε.
18 Our first result provides two sufficient conditions under which every non-constant social

choice function is not virtually implementable, even with no robustness concern.

Theorem 4. Suppose f is non-constant.

1. If (u1, u2) do not depend on θ, then f is not virtually implementable.

2. For every (u1, u2), there exists c > 0 that depends only on (u1, u2) such that f is not virtually

implementable when c1, c2 > c.

The proof, in Appendix C, shows that as long as c1 and c2 are above some cutoff c > 0, even

when the designer can use arbitrarily large transfers, there always exists an equilibrium where no

18Our definition of virtual implementation is similar to that of Abreu and Matsushima (1992) except that we
require the desired outcome to be implemented in every Nash equilibrium while they require the desired outcome
to be implemented in every rationalizable strategy. Since our goal is to show a negative result—every non-constant
social choice function is not virtually implementable—using a stronger solution concept makes our result stronger.
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agent learns the state. Intuitively, suppose agent 1’s message does not depend on θ. Since agents’

transfers depend only on the messages, the only incentive for agent 2 to learn θ is to induce a more

favorable joint distribution of (θ, y) in order to increase u2(θ, y). Therefore, agent 2’s benefit from

learning the state depends only on u2. When agent 2’s cost of learning outweighs this benefit from

increasing u2(θ, y), he has no incentive to learn provided that agent 1’s message does not depend

on θ, no matter how large the promised transfers are. This logic gives rise to equilibria where no

agent learns the state and the implemented outcome is the same regardless of the state.

We also provide sufficient conditions under which the desired social choice function f can be

robustly implemented in all equilibria. Say that f is robust-fully implementable if there exists

a finite mechanism M such that (i) every equilibrium of M in the unperturbed environment

implements f , and (ii) for every ε > 0, there exists η > 0 such that for every η-perturbation G,

||gσ(G)(θ)− f(θ)||TV ≤ ε for every θ ∈ Θ and every equilibrium σ(G) of (M,G).

As we discussed in Section 3, when c1 = c2 = 0 and (f, u1, u2) satisfies Maskin monotonicity∗,

Chen, Kunimoto, Sun, and Xiong (2021) construct a finite mechanism that robustly and fully

implements f . When c1, c2 > 0, f is robust-fully implementable when one of the agent’s payoff

function satisfies a strict version of Rochet (1987)’s cyclical monotonicity condition and that c1

and c2 are below some cutoff. Formally, (ui, f) satisfies strict cyclical monotonicity if for every

permutation ξ : Θ → Θ, we have

∑
θ∈Θ

ui(θ, f(θ)) ≥
∑
θ∈Θ

ui

(
θ, f(ξ(θ))

)
, (5.1)

with strict inequality for every ξ that satisfies f(ξ(θ)) ̸= f(θ) for some θ ∈ Θ. Condition (5.1) is

the cyclical monotonicity condition. The strict inequality condition has no bite when f is constant,

but can be violated when f is non-constant (e.g., when ui does not depend on θ).

Theorem 5. If (ui, f) satisfies strict cyclical monotonicity for some i ∈ {1, 2}, then there exists

c > 0 such that when ci ≤ c, there is a finite mechanism that robust-fully implements f .

The proof is in Appendix D.

5.3 Interim Notion of Robust Implementation

Finally, we show that robust implementation in the interim sense is impossible when the costs of

learning c1 and c2 lie above some cutoff that depends only on the unperturbed preferences u1 and

u2, and which holds regardless of whether the designer can use arbitrarily large transfers.
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We adapt the notion of interim robust implementation in Oury and Tercieux (2012) to our

setting. Agents need to pay a cost to learn the state θ ∈ Θ. The designer knows the objective

state distribution q ∈ ∆(Θ) but faces uncertainty about agents’ payoffs and costs of learning, and

can use transfers to motivate the agents. Let Y be the set of outcomes, with y ∈ Y . Let Ω be a

countable set of circumstances. Agent i’s payoff is ũi(ω, θ, y) − c̃i(ω)di + ti. Let ω∗ ∈ Ω be such

that ũi(ω
∗, θ, y) = ui(θ, y) and c̃i(ω

∗) = ci for every (θ, y) and i ∈ {1, 2}.

A model is denoted by Z ≡ (Z, κ) where Z ≡ Z1 × Z2 is a countable type space and κi(zi) ∈

∆(Ω×Z−i) is the belief associated with type zi ∈ Zi. For two models Z ≡ (Z, κ) and Z ′ ≡ (Z ′, κ′),

Z ′ ⊂ Z if Z ′ ⊂ Z and κ′i(z
′
i)[(Ω × Z ′

−i) ∩ E] = κi(z
′
i)(E) for every z′i ∈ Z ′

i and measurable event

E ⊂ Ω× Z−i. For each type zi, one can compute his first-order belief (i.e., his belief about ω), his

second-order belief (i.e., his belief about ω and the first-order belief of agent −i), and so on.19 Let

hki (zi) denote the kth-order belief of type zi. A sequence of types {zi[n]}+∞
n=0 converges to type zi

(under the product topology) if for every k ∈ N, hki (zi[n]) converges to hki (zi) as n → +∞.

The model that corresponds to our unperturbed environment is denoted by Z∗ = (Z∗, κ∗) where

Z∗ = {(z∗1 , z∗2)} and κ∗i (z
∗
i ) assigns probability 1 to ω = ω∗ and z−i = z∗−i. That is, ω = ω∗ is

common knowledge in this model. A mechanism M robustly implements f : Θ → ∆(Y ) in the

interim sense if for every model Z with Z∗ ⊂ Z, there is an equilibrium in the game induced by

(M,Z) such that (i) f is implemented when agents’ types are (z∗1 , z
∗
2), and (ii) for every sequence

of types in Z that converge to (z∗1 , z
∗
2), the implemented social choice function converges to f .

Theorem 6. For every (u1, u2) and non-constant f , there exists c > 0 that depends only on

(u1, u2) such that when c1, c2 > c, no finite mechanism robustly implements f in the interim sense.

The proof is in Appendix E. In terms of how large c needs to be, when u1(θ, y) = u2(θ, y) = 0,

Theorem 6 only requires that c1, c2 > 0, i.e., c can be 0. However, for general (u1, u2), the

requirement that c1, c2 being large enough is not redundant, which we explain in Appendix E.

6 Related Literature

Our paper contributes to the literature on robust implementation.20 We take an ex ante perspective

and show that all social choice functions are robustly implementable under generic state distribu-

19We omit the mathematical details of computing belief hierarchies. We refer readers to Weinstein and Yildiz
(2007) and Oury and Tercieux (2012) for rigorous treatments.

20Our results are also related to the results in Chung and Ely (2003) and Aghion, Fudenberg, Holden, Kunimoto
and Tercieux (2012), who examine the robustness of undominated strategy and subgame perfect implementation.
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tions or under bounded costs of learning.21 This stands in contrast to Oury and Tercieux (2012),

Chen, Kunimoto and Sun (2020), and Chen, Mueller-Frank and Pai (2022), who adopt an interim

approach to study robust partial implementation. We also show that no non-constant social choice

function is robustly implementable in the interim sense of Oury and Tercieux (2012) when agents’

costs of learning are above some threshold, even if the designer can use unbounded transfers.

We require the desired outcome to be implemented with probability close to 1. This is related to

the literature on virtual implementation such as Abreu and Matsushima (1992). They construct,

for each ε, a mechanism that fully implements the desired outcome with probability more than

1 − ε. The number of messages in their mechanisms goes to infinity as ε → 0. By contrast, we

construct for all ε, a mechanism that partially implements the desired outcome with probability

more than 1−ε when the perturbation on agents’ preferences and costs of learning is small enough.

The number of messages in our mechanism either equals the number of states n, or equals 2n− 1.

Kim (2021) proposes a monotonicity condition and that he shows to be necessary for partial

implementation in p-dominant strategies when the environment is quasi-linear. By contrast, we

show that every social choice function is robustly implementable. This is driven by the differences

between the notion of robust equilibrium in Kajii and Morris (1997) and our notion of robust

implementation: We only perturb agents’ preferences over outcomes and their costs of learning the

state, but we assume that it is common knowledge that agents’ payoffs do not directly depend on

their messages.

Our work is related to the literature on robust prediction in games (e.g., Rubinstein 1989, Kajii

and Morris 1997, Weinstein and Yildiz 2007) and the literature on the robustness of equilibrium

refinements (e.g., Fudenberg, Kreps and Levine 1988). Our notion of robust implementation builds

on the notion of robust equilibrium in Kajii and Morris (1997), which is broadly applied to study

the robustness of equilibria in potential games (Ui 2001, Morris and Ui 2005) and supermodular

games (Oyama and Takahashi 2020). The key difference is that in our model, agents’ payoffs do

not directly depend on their messages, which are their actions in our mechanism design setting.

This assumption is commonly made in the mechanism design literature, including Rochet (1987),

Chung and Ely (2007), and Bergemann and Morris (2009).

Finally, our work is related to the literature on contracting with costly information acquisition,

21This echoes the findings in the literature on robust predictions in games. Weinstein and Yildiz (2007) show that
an equilibrium is robust in the interim sense if and only if it is strictly dominant. Kajii and Morris (1997) provide
sufficient conditions for an equilibrium to be robust in the ex ante sense, which are more permissible than the ones
in Weinstein and Yildiz (2007). Oyama and Tercieux (2010) drop the common prior assumption and show that the
two approaches become essentially equivalent in terms of the characterization of robust equilibrium outcomes.
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including Zermeno (2011), Carroll (2019), and Clark and Reggiani (2021). In contrast to those

papers in which there is only one agent and the principal can verify the state ex post, we show that

the principal can robustly implement the desired outcome even when the principal cannot verify

the state ex post, as long as there are at least two agents who can learn the state.

Our mechanisms can robustly elicit costly information when the designer (almost) knows agents’

learning technologies but faces uncertainty about their payoffs as well as their beliefs and higher-

order beliefs.22 Our research question differs from Carroll (2019), which examines robust contracting

when the designer faces uncertainty about the agent’s information acquisition technology. We show

in the online appendix that (i) the mechanisms we propose can robustly implement the desired social

choice function when agents can either perfectly observe the state or observe signals that are highly

correlated with the state, and (ii) our results do not require the designer to know the agents’ interim

beliefs and are robust to small trembles in agents’ reporting strategies.

22Our work is related to the literature on the optimal contracts for information acquisition. Zermeno (2011), Clark
and Reggiani (2021), and Larionov, Pham and Yamashita (2021) examine the optimal contracts for information
acquisition in fixed informational environments. By contrast, we examine whether it is possible to implement a
desired social choice function in all nearby informational environments.

31



A Proofs of Theorems 1 and 2: General Utility Functions

We generalize the proofs of Theorems 1 and 2 to arbitrary u1(θ, y), u2(θ, y), c1, and c2.

Proof of Theorem 1: The outcome function is the same as the Status Quo Rule with Ascending
Transfers in Section 4.1. Agents receive 0 transfer if their messages do not coincide. If both of
them report message j, then agent i receives Rj

i which satisfies R1
i ≥ c

q(θ1)
,

Rj
i + ui(θ

j , f(θj))−R1
i − ui(θ

j , f(θ1)) > 0 for every j ≥ 2 (A.1)

n∑
j=2

q(θj)
{
Rj

i + ui(θ
j , f(θj))−R1

i − ui(θ
j , f(θ1))

}
> 2ci. (A.2)

We modify the first step of our proof in which we show that both agents using their truthful
strategies is a γ-dominant equilibrium for some γ < 1

2 . The second and third steps remain the
same. Let Σ ≡ {1, 2, ..., n}n and let

Σ∗ ≡
{
(m1, ...,mn) ∈ Σ such that mj ∈ {1, j} for every j ≥ 1

}
.

In the restricted game without perturbation where agents can only use strategies in ∆(Σ∗), they
can only send message 1 conditional on θ = θ1, and for every j ∈ {2, 3, ..., n}, agents send either
message 1 or message j conditional on θ = θj

� If agent 1 sends message j in state θj , his expected transfer equals Pr(m2 = j|θj)Rj .

� If agent 1 sends message 1 in state θj , his expected transfer equals Pr(m2 = 1|θj)R1.

If agent 2 is truthful with probability at least 1
2 , then Pr(m2 = j|θj) ≥ 1

2 and Pr(m2 = 1|θj) ≤ 1
2 .

Hence, conditional on knowing that θ = θj , agent 1’s expected payoff from sending message j is:

Pr(m2 = j|θj)
(
u1(θ

j , f(θj)) +Rj
)
+ Pr(m2 = 1|θj)u1(θj , f(θ1)),

and his expected payoff from sending message 1 is:

Pr(m2 = j|θj)u1(θj , f(θ1)) + Pr(m2 = 1|θj)
(
u1(θ

j , f(θ1)) +R1
)
.

The former is greater than the latter if (A.1) is satisfied. Inequality (A.2) implies that agent i
strictly prefers (1, 2, ..., n) to (1, 1, ..., 1) when he believes that agent −i uses the truthful strategy
with probability at least 1

2 . Hence, there exists γ < 1
2 such that agent 1 strictly prefers (1, 2, ..., n)

to any other strategy that belongs to Σ∗ when he believes that agent 2’s strategy belongs to ∆(Σ∗)
and agent 2 is truthful with probability at least γ. The second and third steps are not affected
by u1 and u2, which remain the same as in Section 4.1. The expected cost of implementation∑2

i=1

∑n
j=1 q(θ

j)Rj
i can be as low as

min
θ∗∈Θ

2∑
i=1

{ c

q(θ∗)
+ 2ci +

∑
θ∈Θ

q(θ)(ui(θ, f(θ
∗))− ui(θ, f(θ)))

}
(A.3)

Hence, in order to lower the implementation cost, one needs to choose a status quo state θ∗ that
occurs with high ex ante probability but agents receive low utilities from outcome f(θ∗) when
θ ̸= θ∗.
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Proof of Theorem 2: Without loss of generality, let Θ = {θ1, ..., θn} with q(θ1) > q(θ2) ≥ ... ≥
q(θn) > 0. The outcome function remains the same as before. The transfers are similar although
we replace Rj with Rj

1 and Rj
2 for every j ∈ {0, 1, 2, ..., n} such that for every i ∈ {1, 2}

Di(j) ≡ Rj
i +ui(θ

j , f(θj))+min
τ

ui(θ
j , f(θτ ))−R1

i −2max
τ

ui(θ
j , f(θτ )) > 0 for every j ≥ 2, (A.4)

Di(1) ≡ R1
i + ui(θ

1, f(θ1))−R0
i −max

τ
ui(θ

1, f(θτ )) > 0, (A.5)

n∑
j=2

q(θj)Di(j) > 2ci,
n∑

j=2

q(θj)
(
Di(j) +R1

i −R0
i

)
+ q(θ1)Di(1) > 2ci, (A.6)

and
R0

i

Rj
i

>
q(θj)

q(θ1)
for every j ≥ 2. (A.7)

We modify the first step of our proof in which we show that both agents being truthful is a γ-
dominant equilibrium for some γ < 1

2 . Consider a restricted game without perturbation where both
agents are only allowed to use strategies that belong to ∆(Σ∗) where Σ∗ is defined as

Σ∗ ≡
{
(m1, ...,mn) ∈ Σ such that mj ∈ {−n, ...,−2, 1} ∪ {j} for every j ≥ 1

}
.

We show that in the restricted game without perturbation, both agents using (1, 2, ..., n) is a γ-
dominant equilibrium for some γ < 1

2 . Suppose agent 2 is truthful with probability at least 1
2 ,

� Conditional on θ = θj for every j ∈ {2, 3, ..., n}. Agent 1’s payoff when he sends j is at
least 1

2(R
j
1 + u1(θ

j , f(θj))) + 1
2 minτ u1(θ

j , f(θτ )). His payoff when he sends 1 is at most
u1(θ

j , f(θ1)) + 1
2R

1
1, and his payoff when he sends any negative message is at most 1

2R
0
1 +

maxτ u1(θ
j , f(θτ )). Inequality (A.4) implies that his expected payoff is strictly greater when

he sends message j.

� Conditional on θ = θ1. Agent 1’s payoff when he sends 1 is at least u1(θ
1, f(θ1)) + 1

2(R
1
1 +

R0
1) and his payoff when he sends any negative message is at most R0

1 + 1
2u1(θ

1, f(θ1)) +
1
2 maxτ u1(θ

1, f(θτ )). Inequality (A.5) implies that his expected payoff is strictly greater
when he sends message 1.

The above discussion implies that agent 1 prefers to be truthful compared to any other non-constant
strategy that belongs to Σ∗. Inequality (A.6) implies that he prefers to be truthful to any constant
strategy that belongs to Σ∗. Since agent 1 has a strict incentive to be truthful when he believes
that agent 2 is truthful with probability at least 1

2 , there exists γ < 1
2 such that both agents being

truthful is a γ-dominant equilibrium in the restricted game without perturbation. The second and
third steps are not affected by u1 and u2, which remain the same as in Section 4.2.

We provide a tight lower bound on expected cost of implementation
∑2

i=1

∑n
j=1 q(θ

j)Rj
i given

constraints (A.4), (A.5), (A.6), and (A.7). First, we bound R1
i from below. Inequality (A.6) implies

that

2ci <

n∑
j=2

q(θj)
{
Rj

i −R1
i +min

τ
ui(θ

j , f(θτ ))− 2max
τ

ui(θ
j , f(θτ )) + ui(θ

j , f(θj))
}
.

Inequality (A.7) implies that R0
i q(θ

1) > Rj
i q(θ

j) for every j ≥ 2, and using plugging in inequality
(A.5) to substitute R0

i with R1
i , we obtain:

2ci <
n∑

j=2

(q(θ1)− q(θj))R1
i +

n∑
j=2

q(θj)
{
min
τ

ui(θ
j , f(θτ ))− 2max

τ
ui(θ

j , f(θτ )) + ui(θ
j , f(θj))

}
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−
n∑

j=2

q(θ1)
{
max
τ

ui(θ
1, f(θτ ))− ui(θ

1, f(θ1))
}
. (A.8)

Inequality (A.8) leads to a tight bound onR1
i . Next, we compute a tight lower bound on

∑n
j=1 q(θ

j)Rj
i .

n∑
j=1

q(θj)Rj
i = R1

i +
n∑

j=2

q(θj)(Rj
i −R1

i )

= R1
i +

n∑
j=2

q(θj)Di(j) +
n∑

j=2

q(θj)
{
2max

τ
ui(θ

j , f(θj))−min
τ

ui(θ
j , f(θj))− ui(θ

j , f(θj))
}

> 2ci +R1
i +

n∑
j=2

q(θj)
{
2max

τ
ui(θ

j , f(θj))−min
τ

ui(θ
j , f(θj))− ui(θ

j , f(θj))
}
.

Plugging in the tight lower bound on R1
i , we obtain a tight lower bound on the implementation

cost. In the special case where u1 = u2 = 0 and c1 = c2 = c, the lower bound is given by (4.14).

B Proof of Theorem 3

For any finite mechanism M ≡ {M1,M2, g, t1, t2}, let

X(M) ≡ max
(i,m1,m2)∈{1,2}×M1×M2

∣∣∣ti(m1,m2)
∣∣∣

be the highest transfer promised to any agent by M. By definition, X(M) exists. Recall that Y is
the set of outcomes, ∆(Y ) is the set of lotteries over outcomes, and f(θ) ∈ ∆(Y ). We use co(·) to
denote the convex hull of a set. Since f is non-constant, there exists θ∗ ∈ Θ such that

f(θ∗) /∈ co
(
{f(θ)}θ∈Θ\{f(θ∗)}

)
≡ Y.

According to the separating hyperplane theorem, there exists v : Y → R such that v(f(θ∗)) <

miny∈Y v(y).23 Hence, there exists C > 0 such that
(
miny∈Y v(y)− v(f(θ∗))

)
C > 4X(M).

First, consider a perturbation G+ in which ũ1(ω, θ, y) = Cv(y) for all (ω, θ) ∈ Ω × Θ. If M
implements f(θ∗) in state θ∗ under perturbation G+, there must exist m∗

2 ∈ ∆(M2) such that

max
m1∈∆(M1)

{
Cv(g(m1,m

∗
2)) + t1(m1,m

∗
2)
}
≤ Cv(f(θ∗)) +X(M)︸ ︷︷ ︸

agent 1’s highest possible payoff if the designer implements f(θ∗)

.

(B.1)
This is because otherwise, agent 1 can secure himself a payoff strictly greater than the right-hand-
side of (B.1), in which case f(θ∗) cannot be implemented in any state under G+.

Next, consider another perturbation G− where ũ2(ω, θ, y) = −Cv(y) for all (ω, θ) ∈ Ω × Θ.
Agent 2’s payoff by playing m∗

2 is at least

min
m1∈∆(M1)

{
− Cv(g(m1,m

∗
2)) + t2(m1,m

∗
2)
}
. (B.2)

23For every distribution over outcomes ỹ ∈ ∆(Y ), we let v(ỹ) denote the expected value of v(y) when y is distributed
according to ỹ.
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Since we have chosen C > 0 in order to satisfy
(
miny∈Y v(y)−v(f(θ∗))

)
C > 4X(M) and moreover,

X(M) ≥ |ti(m1,m2)| for every i and (m1,m2), inequality (B.1) implies that

min
m1∈∆(M1)

{
− Cv(g(m1,m

∗
2)) + t2(m1,m

∗
2)
}
≥ −Cv(f(θ∗))− 3X(M) > −Cmin

y∈Y
{v(y)}+X(M)︸ ︷︷ ︸

since

(
miny∈Y v(y)−v(f(θ∗))

)
C>4X(M)

.

Therefore, agent 2 can secure a payoff strictly greater than −Cminy∈Y{v(y)} + X(M), which
implies that no outcome in Y can be implemented under perturbation G−. Hence, every finite
mechanism M that can implement non-constant f under G+ cannot implement f under G−.

C Proof of Theorem 4

Suppose that u1 and u2 are independent of θ. Under any finite mechanism M, there always exists
an equilibrium in which both agents use state-independent strategies, since agents’ preferences
over messages are independent of the state regardless of the mechanism. In this equilibrium, the
implemented outcome does not depend on the state, which means that for every non-constant f ,
there exists a state θ ∈ Θ such that the implemented outcome is bounded away from f(θ).

Next, we show that f is not virtually implementable when c1 and c2 are above some cutoff c
that depends only on (u1, u2). For every (u1, u2), let

X(u1, u2) ≡ max
i∈{1,2}

{
max
θ,y

ui(θ, y)−min
θ,y

ui(θ, y)
}
.

Fix any finite mechanism M and, for every m2 ∈ ∆(M2), let T (m2) ≡ maxm1∈M1 t1(m1,m2) be the
maximal transfer received by agent 1 when agent 2’s message is m2. Suppose that agent 1 believes
that agent 2’s message is m2 regardless of θ. Then, the difference between agent 1’s expected payoff
when he learns θ and when he does not learn θ is

E
[

max
m1∈M1

{u1(θ, g(m1,m2)) + t1(m1,m2)}
]
− max

m1∈M1

E
[
u1(θ, g(m1,m2)) + t1(m1,m2)

]
. (C.1)

By definition, if m∗
1 ∈ argmaxm1∈M1 E

[
u1(θ, g(m1,m2))+ t1(m1,m2)

]
, then t1(m

∗
1,m2) ≥ T (m2)−

X(u1, u2). This implies that the value of (C.1) is no more than 2X(u1, u2), and therefore, agent 1
has no incentive to learn θ when c1 > 2X(u1, u2). In addition, when agent 1 believes that agent 2’s

message is m2, sending a message that belongs to argmaxm1∈M1 E
[
u1(θ, g(m1,m2)) + t1(m1,m2)

]
regardless of the state is one of agent 1’s best replies.

Similarly, suppose c2 > 2X(u1, u2). For every m1 ∈ ∆(M2), when agent 2 believes that agent 1’s

message is m1, sending a message that belongs to argmaxm2∈M2 E
[
u2(θ, g(m1,m2)) + t2(m1,m2)

]
regardless of the state is one of agent 2’s best replies.

Fix any finite mechanism M and consider an auxiliary two-player normal-form game where

agent i ∈ {1, 2} has a finite set of pure strategies Mi and his payoff is Eθ

[
ui(θ, g(m1,m2)) +

ti(m1,m2)
]
when he uses strategy mi and his opponent uses strategy m−i. Since this auxiliary

game is finite, a Nash equilibrium (m1,m2) ∈ ∆(M1) × ∆(M2) exists. By construction, agent 1
sendingm1 regardless of θ and agent 2 sendingm2 regardless of θ is an equilibrium under mechanism
M. This equilibrium implements a constant social choice function. For every non-constant social
choice function f , there exists β > 0 such that for every constant social choice function g, there
exists θ ∈ Θ such that ||f(θ)− g(θ)||TV > β. This implies that f is not virtually implementable.
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D Proof of Theorem 5

If f is constant, then robust-fully implementing f is straightforward. The rest of the proof focuses on
the case where f is non-constant. Consider a mechanism where Mi = Θ, M−i = {1}, g(mi,m−i) =
f(mi), ti(m1,m2) depends only on m1, and t−i(m1,m2) = 0. Since f and ui satisfy strict cyclical
monotonicity, there exists ti : Θ → R such that

1. ti(θ) = ti(θ
′) for every θ, θ′ ∈ Θ such that f(θ) = f(θ′),

2. ui(θ, f(θ)) + ti(θ) > ui(θ, f(θ
′)) + ti(θ

′) for every θ, θ′ ∈ Θ such that f(θ) ̸= f(θ′).

Under such a mechanism, agent i chooses an outcome in {f(θ)}θ∈Θ and receives a transfer ti(θ)
for implementing f(θ). Under every η-perturbation G, every normal type of agent i has a strict
incentive to learn θ and to choose f(θ) in state θ for every θ ∈ Θ, provided that his cost of learning
ci is small enough. This implies that the above mechanism can robust-fully implement f .

E Proof of Theorem 6

As shown in the proof of Theorem 4, for every (u1, u2), there exists c > 0 such that for all finite
mechanisms (even when transfers can be arbitrarily large), when ci > c, agent i finds it strictly
suboptimal to learn θ when he believes that agent −i’s message does not depend on θ. Suppose

c1, c2 > c. For every finite mechanism M, let U ≡ 2max{i,θ,y,m1,m2}

∣∣∣ui(θ, y) + ti(m1,m2)
∣∣∣. We

construct a sequence of types that converge to (z∗1 , z
∗
2) under the product topology but for which

the implemented outcome is bounded away from f . Let z2[0] be a type that assigns probability 1
to ω′ where ũ1(ω

′, ·, ·) = u1(·, ·), ũ2(ω′, ·, ·) = u2(·, ·), c̃1(ω′) = c1, and c̃2(ω
′) > U . Let z1[0] be a

type that assigns probability β to player 2 being type z2[0] and probability 1− β to ω = ω∗, where
β is close enough to 1 such that it is strictly suboptimal for type z1[0] to learn the state, regardless
of his belief about type z2[0]’s message. For every j ≥ 1, let z2[j] be a type who knows that ω = ω∗

but assigns probability β to player 1 being type z1[j − 1] and probability β to player 1 being type
z1[j], and let z1[j] be a type who knows that ω = ω∗ but assigns probability β to player 2 being
type z2[j] and probability 1− β to player 2 being type z2[j + 1]. These sequence of types converge
to (z∗1 , z

∗
2) under the product topology. By construction, type z2[0] finds it strictly suboptimal to

learn θ, so his message is independent of θ. Type z1[j] finds it strictly suboptimal to learn θ since
type z2[j]’s message is independent of θ with probability at least β. Type z2[j] finds it strictly
suboptimal to learn θ since type z1[j − 1]’s message is independent of θ with probability at least
β. Therefore, the implemented outcome under this sequence of types is independent of θ, which is
bounded away from f since f is non-constant.

Counterexample: We show by counterexample that our requirement that c be large enough
is not redundant for the result. Consider an environment where Θ = {θ1, θ2}, Y = {y1, y2},
f(θj) = yj for every j ∈ {1, 2}, and ui(θ

j , yk) = 1{j = k} for every i, j, k ∈ {1, 2}. Suppose that
the agents’ learning costs c1 and c2, are strictly lower than 1/4. The following mechanism can
robustly implement f in an interim sense:

outcome 1 2

1 y1 y1 with prob 1/2

2 y1 with prob 1/2 y2

transfers 1 2

1 0, 0 0, 0

2 0, 0 0, 0
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This is because for each agent type whose payoff is ui(θ
j , yk) = 1{j = k} and whose cost of

learning is less than 1/4, he has a strict incentive to learn the state and to report truthfully since
his report affects the implemented outcome with probability 1/2 regardless of the other agent’s
report. Therefore, robust implementation in the interim sense fails in our setting only when the
agents’ learning costs are greater than some cutoff.
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