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A Extension: Robust Implementation with a Continuum of States

This appendix extends Theorems 1 and 2 to environments in which (i) there is a continuum of

states, (ii) the state space Θ is compact, and (iii) agents’ payoff functions in the unperturbed

environment and the social choice function f are all continuous with respect to θ.

Formally, let Θ be a compact set in some normed vector space with norm || · ||. Let q ∈ ∆(Θ)

denote the objective distribution of θ, which we assume to have full support and no atom. A

social choice function f : Θ → ∆(Y ) is continuous if for every ε > 0, there exists δ > 0 such that

||f(θ) − f(θ′)||TV ≤ ε for every ||θ − θ′|| ≤ δ. This definition corresponds to uniform continuity,

which is equivalent to continuity since Θ is compact. The same comment applies to the continuity

of agents’ payoff functions introduced below.

Agent i ∈ {1, 2} can observe the realization of θ at cost ci ∈ [0,+∞). Agent i’s payoff function

in the unperturbed environment is ui(θ, y) + ti − cidi.

We say that ui(θ, y) is continuous with respect to θ if for every y ∈ Y and ε > 0, there exists

δ > 0 such that |ui(θ, y) − ui(θ
′, y)| ≤ ε for every ||θ − θ′|| ≤ δ. The notion of η-perturbation

remains the same as in the baseline model, that is, agents’ payoff functions coincide with those in

the unperturbed environment with probability at least 1− η, and with complementary probability,

they can have arbitrary preferences over state-contingent outcomes ũi(ω, θ, y), arbitrary costs of

learning c̃i(ω), and arbitrary beliefs and higher-order beliefs about each other’s preferences over

outcomes and costs of learning as long as these beliefs can be derived from a common prior.
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We emphasize that we do not require agent i’s payoff in the perturbed environment ũi(ω, θ, y)

to be continuous with respect to θ when type Qi(ω) of agent i is not a normal type.

Corollary 1. Suppose Θ is compact, q has full support and has no atom, and both f and

(u1, u2) are continuous with respect to θ. For every ε > 0, there exist η > 0 and a finite mechanism

M such that for every η-perturbation G, there exists an equilibrium σ under (M,G) such that

maxθ∈Θ ||gσ(θ)− f(θ)|| ≤ ε.

When there is a continuum of states and the objective state distribution has no atom, we can

dispense the generic assumption on q in the case where Θ is a finite set. Intuitively, this is because

we can always partition Θ into several connected subsets such that the probability of one of these

subsets is strictly greater than the probability of every other subset.

We explain how to modify the proof of Theorem 2 to show this corollary. For simplicity, we

focus on the case in which u1(θ, y) = u2(θ, y) = 0. The generalization to general utility functions

u1(θ, y) and u2(θ, y) follows the same steps as those of Appendix A. Since the state space Θ is

compact and the desired social choice function f is continuous, for every ε > 0 one can construct

a finite partition of Θ using the finite cover theorem that satisfies the following three conditions:

1. Every partition element occurs with positive probability under q.

2. There exists a partition element that occurs with strictly higher probability compared to

every other partition element.

3. For every pair θ, θ′ that belong to the same partition element, we have ||f(θ)−f(θ′)||TV ≤ ε
2 .

1

Fix any partition that satisfies the above requirements. Denote the partition elements by {Θ1, ...,Θn}.

For every j ∈ {1, 2, ..., n}, let θj be an arbitrary element in Θj . We introduce a new social choice

function f̃ : Θ → ∆(Y ) such that f̃(θ) = f(θj) for every θ ∈ Θj and j ∈ {1, 2, ..., n}.

Consider the mechanism constructed in the proof of Theorem 2, in which every agent has 2n−1

messages. With a continuum of states, each agent is asked to report which element of the partition

the realized θ belongs to. The proof of Theorem 2 implies that there exists a mechanism M such

that for every η-perturbation G, there exists an equilibrium σ∗(G) such that maxθ∈Θ ||gσ∗(G)(θ) −

f̃(θ)||TV < ε/2. Since ||f̃(θ)−f(θ)||TV = ||f(θj)−f(θ)||TV ≤ ε/2, the triangular inequality implies

that maxθ∈Θ ||gσ∗(G)(θ)− f(θ)||TV < ε. Hence, the said mechanism robustly implements f .

1For general u1(θ, y) and u2(θ, y) that are continuous with respect to θ, we can find a partition that satisfies the
above requirements while also making sure that |ui(θ, y) − ui(θ

′, y)| < ε/2 for every y ∈ Y , i ∈ {1, 2}, and θ, θ′

belonging to the same partition element.
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Remark: When there is a continuum of states, in order to implement a social choice function that

is ε-close to f , our mechanism requires each agent to have more messages as ε goes to zero. This is

because there are two sources of approximation errors: one of them is caused by the perturbation on

agents’ preferences and beliefs, and the other one is caused by approximating f via f̃ . The second

source of approximation error vanishes to zero when the partition on Θ becomes finer. In another

word, the number of messages in the mechanism depends on our tolerance of approximation errors

ε. This stands in contrast to environments with a finite number of states, in which the designer

can robustly implement the desired social choice function using a mechanism where each agent has

2|Θ| − 1 messages, regardless of the required approximation error.

B General Information Acquisition Technologies

We extend our main result to environments in which the agents can choose any partition of the

state space Θ as their information structures, and different partitions of the state space may have

different costs. We start from describing the general environment.

Let Θ be a finite set of states and q ∈ ∆(Θ) denote the prior distribution of θ. Let Y denote

the set of outcomes. The designer commits to a mechanism M ≡ {M1,M2, t1, t2, g}, where Mi

is a finite set of messages for agent i ∈ {1, 2}, ti : M1 × M2 → R is the transfer to agent i, and

g : M1 ×M2 → ∆(Y ) is the implemented outcome.

After observing M, agents simultaneously and independently decide what information to ac-

quire. Each agent can choose any partition of Θ as his information structure. Let P be the set

of partitions of Θ. Let Pi ∈ P denote the partition chosen by agent i. Let P ∗ denote the finest

partition. Agent i ∈ {1, 2} observes the element of Pi the realized θ belongs to and sends a message

mi ∈ Mi. The designer makes transfers and implements an outcome according to M. Agent i’s

payoff is:

ui(θ, y) + ti − ci(Pi), (B.1)

where ci : P → [0,+∞) is agent i’s information acquisition cost function. A perturbation is

characterized by

G ≡
{
Ω,Π, (Qi)i∈{1,2}, (ũi)i∈{1,2}, (c̃i)i∈{1,2}

}
,

where Ω is a countable set of circumstances, whose typical element is denoted by ω ∈ Ω, Π ∈ ∆(Ω)

is the distribution of ω, and is assumed to be independent of θ, and Qi is agent i’s information
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partition on Ω. For every ω ∈ Ω, let Qi(ω) denote the partition element of Qi that contains ω.

Agent i’s payoff function is given by

ũi(ω, θ, y) + ti − c̃i(ω, Pi). (B.2)

Type Qi(ω) is a normal type if ũi(ω
′, θ, y) = ui(θ, y) and c̃i(ω, Pi) = ci(Pi) for every ω′ ∈ Qi(ω).

For every η > 0, we say that G is an η-perturbation if the probability of the event that both agents

are normal is at least 1−η. For every η > 0 and c > 0, we say that G is a c-bounded η-perturbation

if it is an η-perturbation where c̃i(ω, P
∗) ≤ c for every i ∈ {1, 2} and ω ∈ Ω.

For any f : Θ → ∆(Y ), we describe a mechanism where each agent has n messages that can

robustly implement f for all c-bounded perturbations. We focus on the case where u1 = u2 = 0

since generalizing the proof to arbitrary u1 and u2 resembles the arguments in Appendix A.

Let M1 = M2 = {1, 2, ..., n}. The outcome function g : M1 ×M2 → ∆(Y ) is given by:

� g(j, j) = f(θj) for every j ∈ {1, 2, ..., n}.

� g(i, j) = g(j, i) for every i, j.

� For every j > i, g(j, i) =
∑j−1

k=1
1

j−1g(k, i), i.e., when agent 2 reports i, agent 1 reporting j

and reporting 1 to j − 1 uniformly at random lead to the same distribution over outcomes.

The last step of the construction also implies that for every j > i, when agent 2 reports i, agent 1

reporting j and reporting 1 to i uniformly at random lead to the same distribution over outcomes.

The transfer function to agent i ∈ {1, 2} is given by

ti(m1,m2) =

 0 if mi ̸= m−i

Rj
i if mi = m−i = j,

where R1
i , ..., R

n
i satisfy Rj

i > Rj−1
i + 2ci(P

∗)
q(θj)

for every j ≥ 2, and R1
i ≥ (n−1)c

minθ∈Θ q(θ) .

Step 1: Let Σ ≡ Mn be the set of strategies, with (1, 2, ..., n) ∈ Σ the truthful strategy. Let

Σ∗ ≡
{
(m1, ...,mn) ∈ Σ such that mj ≤ j for every j ∈ {1, 2, ..., n}

}
. (B.3)

Intuitively, Σ∗ is the set of strategies where agent’s report does not exceed the index of the state.

We show that there exists γ < 1/2 such that in the auxiliary game where agents’ payoffs are
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{t1 − c1(P1), t2 − c2(P2)} and both agents are only allowed to choose strategies supported in Σ∗,

then both agents being truthful is a γ-dominant equilibrium. To see this, for every i ∈ {1, 2},

suppose agent i believes that

1. agent −i’s strategy is supported in Σ∗,

2. agent −i plays his truthful strategy (1, 2, ..., n) with probability at least 1/2.

Since Rj
i > Rj−1

i > ... > R1
i and Rj

i > Rj−1
i + 2ci(P

∗)
q(θj)

, we know that conditional on the state

being θj , agent i’s expected transfer from reporting message j is strictly greater than his expected

transfer from reporting any message strictly lower than j, and this difference in expected transfer

is strictly greater than ci(P
∗). When agent i is only allowed to report truthfully or to report a

lower state, he strictly prefers his truthful strategy (1, 2, ..., n) to any other strategy in Σ∗. Since

Θ is finite, there exists γ < 1/2 such that both agents being truthful is a γ-dominant equilibrium

in the auxiliary game.

Step 2: For any perturbation G, consider a perturbed auxiliary game where agent i’s payoff is

ũi(ω, θ, y) + ti − c̃i(ω, Pi) and both agents are only allowed to use strategies supported in Σ∗. The

critical path lemma in Kajii and Morris (1997) implies that for very ε > 0, there exists η > 0, such

that for every η-perturbation G, there exists an equilibrium σ(G) in the perturbed auxiliary game

where the probability with which both agents using the truthful strategy is at least 1 − ε. Since

g(j, j) = f(θj) for every j ∈ {1, 2, ..., n}, social choice function f is implemented with probability

more than 1− ε when agents behave according to σ(G).

Step 3: We show that σ(G) remains an equilibrium when both agents are allowed to choose

any strategy supported in Σ, not only strategies that are supported in Σ∗. Suppose by way of

contradiction that type Q1(ω) strictly prefers some strategy (m1, ...,mn) /∈ Σ∗ to all strategies

supported in Σ∗. Assuming that agent 2 behaves according to σ(G), which means that his strategy

is supported in Σ∗, we compare type Q1(ω)’s expected payoff from (m1, ...,mn) to his expected

payoff from the following mixed strategy (m1
† , ...,m

n
† ), where

� if mj ≤ j, then mj
† = mj ;

� if mj > j, then m† is the mixed strategy of reporting {1, 2, ..., j} each with probability 1
j .

One can verify that (m1
† , ...,m

n
† ) is supported in Σ∗, and furthermore, as long as player 2’s strategy

is supported in Σ∗, the implemented outcome is the same no matter whether agent 1 uses strategy

5



(m1, ...,mn) or strategy (m1
† , ...,m

n
† ). In addition, for every j such that mj > j, mj

† attaches strictly

positive probability to every element in the set {1, 2, ..., j}. Hence, by reporting mj
† instead of mj in

state θj , agent 1’s expected transfer increases by at least
q(θj)R

1
1

n−1 . Type Q1(ω) prefers (m
1
† , ...,m

n
† )

to (m1, ...,mn) if
q(θj)R

1
1

n−1 > c. Hence, for every perturbation G, the equilibrium in the auxiliary

perturbed game σ(G) remains an equilibrium when both agents are allowed to choose any strategy

supported in Σ, which implies that our mechanism robustly implements f .

C Robustness to Trembles and Noisy Information

The proofs of Theorems 1 and 2 construct equilibria in which no type uses any strategy that does

not belong to ∆(Σ∗). One may wonder whether our results are robust when agents tremble with

small probability or when agents cannot perfectly observe θ even after paying their costs of learning,

in which case agents may not know each others’ private beliefs. This section shows that our results

are robust when the trembling probabilities and the noise in agents’ private signals are small.

Trembles: For any mechanism M, suppose for every i ∈ {1, 2}, when agent i intends to send

message mi ∈ Mi, the designer receives mi with probability 1 − τ and receives a message that is

drawn according to Fi ∈ ∆(Mi) with probability τ , where τ ∈ (0, 1) is the probability with which

agents tremble. Throughout this section, we distinguish between an agent’s intended message and

his realized message. We suppress the dependence of Fi on M in order to simplify notation.

Imperfect Signals about the State: Suppose q ∈ ∆(Θ) is generic. Let Θ ≡ {θ1, ..., θn} such

that q(θ1) > q(θ2) ≥ ... ≥ q(θn) > 0. For every i ∈ {1, 2}, let Si ≡ {s1i , ..., s
|Si|
i } be agent i’s signal

space. Note that |Si| can be any finite number, i.e., we do not impose any upper bound on the

number of signal realizations. Let π ∈ ∆(Θ × S1 × S2) be the joint distribution of the state and

agents’ private signals. For every τ > 0, we say that π is of size τ if

(a) The marginal distribution of π on Θ is q ∈ ∆(Θ).

(b) There exists a mapping hi : Si → {1, 2, ..., n} for every i ∈ {1, 2} such that

π
(
h−i(s−i) = hi(si)

∣∣∣si) ≥ 1− τ for every si ∈ Si, (C.1)
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and
n∑

j=1

∑
si∈{hi(si)=j}

π(θj , si) ≥ 1− τ . (C.2)

Our first requirement is that the marginal distribution on θ be consistent with the objective

state distribution q. Our second requirement is that every signal that can be observed by agent

i ∈ {1, 2} is linked to a particular state, given by the mapping hi. One can think about hi as

endowing each of agent i’s realized signal with a meaning, where each meaning corresponds to a

state. According to requirement (b), the mappings from realized signal to their meanings satisfy

(i) no matter which signal an agent observes, he believes that the other agent receives a signal with

the same meaning with probability close to 1, and (ii) the meaning of each agent’s signal coincides

with the state with probability close to 1.

The designer knows neither G nor {τ, F1, F2, π}. She would like to design a mechanism M that

can approximately implement f for all small enough perturbations, small enough trembles, and

small enough noise in agents’ private signals. Agent i knows the mechanism M, the perturbation

G, his information about ω under G, as well as {τ, F1, F2, π}. He decides whether to pay a cost ci

in order to learn si and, after this decision and possibly the observation of si, which message in Mi

he intends to send. The designer observes the realized messages but not the intended messages.

Proposition 1. Suppose q is generic. For every f : Θ → ∆(Y ), there exists a mechanism

with 2|Θ| − 1 messages for each agent, such that for every ε > 0, there exist η > 0 and τ > 0

such that for every trembling probability τ < τ , every (F1, F2), every π that is of size τ , and every

η-perturbation G, there exists an equilibrium σ(G) such that maxθ∈Θ ||gσ(G)(θ)− f(θ)||TV < ε.

When there are two states, our Augmented Status Quo Rule with Ascending Transfers can

robustly implement f when agents tremble with small probability and there is a small amount of

noise in their private signals about the state, and the proof is similar to that of Theorem 2. When

there are three or more states, we propose a new mechanism that has the same outcome function

as the mechanism in the proof of Theorem 2 but has a different transfer function.

C.1 Proof of Proposition 1

First, we prove Proposition 1 when u1 = u2 = 0 and c1 = c2. We explain later how to extend our

proof to arbitrary (u1, u2, c1, c2). We rank the states according to their ex ante probabilities, i.e.,

q(θ1) > q(θ2) ≥ ... ≥ q(θn) > 0, where the first strict inequality comes from our generic assumption.
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Each agent has 2n−1 messages with their message space given byM ≡ {−n, ...,−2}∪{1}∪{2, ..., n}.

The outcome function is given by:

g(m1,m2) =

 f(θ|m1|) if |m1| = |m2|

f(θ1) otherwise
(C.3)

The transfer functions when u1 = u2 = 0 and c1 = c2 = c are given by:

t1(m1,m2) =



Rj if m1 = m2 = j ≥ 1

R0 if m1 ≤ 1 but (m1,m2) ̸= (1, 1)

R0 − x if m1 ≥ 2 and m2 ≤ 1

0 otherwise

(C.4)

t2(m1,m2) =



Rj if m1 = m2 = j ≥ 1

R0 if m2 ≤ 1 but (m1,m2) ̸= (1, 1)

R0 − x if m2 ≥ 2 and m1 ≤ 1

0 otherwise

(C.5)

where Rn, ..., R0 > x > c
q(θn) satisfy

R1 −R0 >
2c

q(θ1)
, Rj −R1 − x >

2c

q(θj)
for every j ∈ {2, 3, ..., n}, (C.6)

and
x

Rj −R0
>

q(θj)

1− q(θj)
for every j ∈ {2, 3, ..., n}. (C.7)

When there are two states, our Augmented Status Quo Rule with Modified Transfers is given by:

g −2 1 2

−2 f(θ2) f(θ1) f(θ2)

1 f(θ1) f(θ1) f(θ1)

2 f(θ2) f(θ1) f(θ2)

t1, t2 −2 1 2

−2 R0, R0 R0, R0 R0, R0−x

1 R0, R0 R1, R1 R0, R0−x

2 R0−x,R0 R0−x,R0 R2, R2

When there are three states, our Augmented Status Quo Rule with Modified Transfers is given by:
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g −3 −2 1 2 3

−3 f(θ3) f(θ1) f(θ1) f(θ1) f(θ3)

−2 f(θ1) f(θ2) f(θ1) f(θ2) f(θ1)

1 f(θ1) f(θ1) f(θ1) f(θ1) f(θ1)

2 f(θ1) f(θ2) f(θ1) f(θ2) f(θ1)

3 f(θ3) f(θ1) f(θ1) f(θ1) f(θ3)

t1, t2 −3 −2 1 2 3

−3 R0, R0 R0, R0 R0, R0 R0, R0−x R0, R0−x

−2 R0, R0 R0, R0 R0, R0 R0, R0−x R0, R0−x

1 R0, R0 R0, R0 R1, R1 R0, R0−x R0, R0−x

2 R0−x,R0 R0−x,R0 R0−x,R0 R2, R2 0, 0

3 R0−x,R0 R0−x,R0 R0−x,R0 0, 0 R3, R3

Since M ≡ {−n, ...,−2} ∪ {1} ∪ {2, 3, ..., n}, agent i’s pure strategy is an |Si|-dimensional vector

(m1, ...,m|Si|) where mk ∈ M represents agent i’s intended message when his private signal about

the state is ski . Hence, conditional on si = ski , agent i’s realized message is mk with probability

1− τ and is randomly drawn according to Fi ∈ ∆(Mi) with probability τ . This implies that agent

i prefers m to m′ as his intended message if and only if he receives a higher expected payoff when

m is his realized message compared to when m′ is his realized message. Let

Σ∗
i ≡

{
(m1, ...,m|Si|) ∈ Σ such that for every k ∈ {1, ..., |Si|}, mk ∈ {−n, ...,−2, 1} ∪ {hi(ski )}

}
.

In words, Σ∗
i is the set of pure strategies of agent i such that, conditional on each of agent i’s

private signal ski , agent i intends to send either a negative message, or the status quo message 1, or

message hi(s
k
i ) that matches the meaning of his private signal. Agent i intends to be truthful if his

strategy (m1, ...,m|Si|) satisfies mk = hi(s
k
i ) for every k ∈ {1, ..., |Si|}, i.e., agent i intends to send

the message that matches the meaning of his private signal for each of his private signals.

First, we show that there exists γ < 1
2 such that both agents intending to be truthful is a

γ-dominant equilibrium in the restricted unperturbed game where agents are only allowed to use

strategies in ∆(Σ∗
1) and ∆(Σ∗

2). Suppose agent 2 intends to be truthful with probability at least 1
2 .

� For every j ≥ 2, conditional on every s1 ∈ S1 with h1(s1) = j, if agent 1’s realized message
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is j, then he receives an expected transfer of

Pr(m2 = j|s1)Rj + Pr(m2 ≤ 1|s1)(R0 − x),

and if agent 1’s realized message is no more than 1, then he receives an expected transfer of

Pr(m2 = 1|s1)R1 + Pr(m2 ̸= 1|s1)R0.

Since π(h2(s2) = h1(s1)|s1) ≥ 1 − τ when π is of size τ , and agent 2 intends to be truthful

with probability at least 1
2 , we know that Pr(m2 = j|s1) ≥ 1−τ

2 (1− τ) and Pr(m2 ≤ 1|s1) ≤

1− 1−τ
2 (1− τ). When Rj −R1 − x > 2c

q(θj)
, τ is close to 0, and τ ≤ τ , we have

q(θj)
{
Pr(m2 = j|s1)Rj+Pr(m2 ≤ 1|s1)(R0−x)

}
> q(θj)

{
Pr(m2 = 1|s1)R1+Pr(m2 ̸= 1|s1)R0

}
+c.

Therefore, if agent 1 believes that agent 2’s strategy belongs to ∆(Σ∗
2) and that agent 2 intends

to be truthful with probability at least 1
2 , then agent 1 strictly prefers sending message j over

sending the status quo message or any negative message whenever he receives a signal s1 that

satisfies h1(s1) = j. Moreover, this statement holds even after taking into account agent 1’s

cost of learning the state.

� Conditional on agent 1 receiving a signal s1 such that h1(s1) = 1, his expected transfer when

his realized message is 1 is Pr(m2 = 1|s1)R1 + Pr(m2 < 0|s1)R0 and his expected transfer

when his realized message is negative is R0. When R1 −R0 > 2c
q(θ1)

and τ is close enough to

0, Pr(m2 = 1|s1)R1 + Pr(m2 < 0|s1)R0 is at least R1+R0

2 given that agent 2 is truthful with

probability at least 1
2 . Since q(θ1)

(
R1+R0

2 −R0
)
> c, agent 1 strictly prefers to send message

1 to any negative message when agent 2’s strategy belongs to ∆(Σ∗
2) and agent 2 intends to

be truthful with probability at least 1
2 , even taking into account his cost of learning c.

Since agent 1 strictly prefers to be truthful when agent 2’s strategy belongs to ∆(Σ∗
2) and agent

2 intends to be truthful with probability at least 1
2 , there exists γ < 1

2 , such that both agents

intending to be truthful is a γ-dominant equilibrium in the restricted game without perturbation.

The second step uses the critical path lemma. We can show that for every ε > 0, there exists

η > 0 such that for every η-perturbation G, there exists an equilibrium σ(G) in the restricted game

with perturbation G where both agents intend to be truthful with probability more than 1 − ε
2 .
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Under the outcome function g of our mechanism, if both agents behave according to σ(G) and τ is

small compared to ε, then for every θ, outcome f(θ) is implemented with probability at least 1− ε.

In the third step, we show that σ(G) remains an equilibrium in the game induced by our

mechanism and perturbation G where agents can use any strategy, not restricted to strategies in

∆(Σ∗
1) and ∆(Σ∗

2). We consider two cases.

First, for any of agent 1’s strategy (m1, ...,m|S1|) /∈ Σ∗
1 that is non-constant, let us define a new

strategy (m1
∗, ...,m

|S1|
∗ ) that belongs to Σ∗

1:

mk
∗ ≡

 mk if mk ∈ {−n, ...,−2, 1} ∪ {h1(sk1)}

−mk if mk /∈ {−n, ...,−2, 1} ∪ {h1(sk1)}
for every k ∈ {1, 2, ..., |S1|}.

Intuitively, for every signal realization sk1, m
k
∗ = mk if mk is no more than 1 or mk coincides with

the meaning of sk1; otherwise, m
k
∗ = −mk. According to the mechanism’s outcome function (C.10),

(m1, ...,m|S1|) and (m1
∗, ...,m

|S1|
∗ ) induce the same joint distribution of (θ, y). We compare agent 1’s

expected transfer from (m1, ...,m|S1|) and from (m1
∗, ...,m

|S1|
∗ ). When agent 1’s private signal s1 is

such that h1(s1) = j, his expected transfer when his realized message m /∈ {−n, ...,−2} ∪ {1, j} is:

Pr(m2 = m|s1)Rm + Pr(m2 ≤ 1|s1)(R0 − x). (C.8)

Agent 1’s expected transfer when his realized message is −m is R0. When agent 2’s strategy belongs

to ∆(Σ∗
2), he intends to send message m only if the meaning of his signal is m. When π is of size

τ , we have Pr(m2 = m|s1) ≤ 2τ . If this is the case, the value of (C.8) is strictly less than R0 when

τ is close to 0. This implies that every type of agent 1 prefers (m1
∗, ...,m

|S1|
∗ ) to (m1, ...,m|S1|).

Second, for any strategy (m1, ...,m|S1|) /∈ Σ∗
1 that is a constant vector, there exists k ∈

{2, 3, ..., n} such that (m1, ...,m|S1|) = (k, ..., k). Compare any given type of agent 1’s expected

payoff from strategies (k, ..., k) and (−k, ...,−k). These strategies induce the same joint distribution

over (θ, y) and neither of them requires any cost of learning. In terms of the transfers, when agent

1’s realized message is k, he receives an expected transfer of Pr(m2 = k)Rk +Pr(m2 ≤ 1)(R0 − x).

When his realized message is −k, he receives an expected transfer of R0. When agent 2’s strategy

belongs to ∆(Σ∗
2), agent 2 intends to send message k only when his signal has meaning k. Therefore,

Pr(m2 = k)Rk + Pr(m2 ≤ 1)(R0 − x)

11



≤
(
π(h2(s2) = k) +

(
1− π(h2(s2) = k)

)
τ
)
Rk +

(
1− π(h2(s2) = k)

)
(1− τ)(R0 − x) (C.9)

When π is of size τ and τ converges to zero, the right-hand-side of (C.9) converges to q(θk)Rk +

(1 − q(θk))(R0 − x), which is strictly smaller than R0 given our condition on the transfers (C.7).

Therefore, the right-hand-side of (C.9) is strictly smaller than R0 for all τ close enough to 0. This

implies that when agent 2 behaves according to σ(G), every type of agent 1 receives a strictly

greater transfer from strategy (−k, ...,−k) to strategy (k, k, ...k) for every k ≥ 2.

Extension to Arbitrary (u1, u2, c1, c2) : We extend the proof of Proposition 1 to general utility

functions u1 and u2 and general learning costs c1 and c2. Consider the mechanism whose outcome

function is given by:

g(m1,m2) =

 f(θ|m1|) if |m1| = |m2|

f(θ1) otherwise,
(C.10)

and whose transfer functions are given by:

t1(m1,m2) =



Rj if m1 = m2 = j ≥ 1

R0 if m1 ≤ 1 but (m1,m2) ̸= (1, 1)

R0 − x if m1 ≥ 2 and m2 ≤ 1

0 otherwise

(C.11)

t2(m1,m2) =



Rj if m1 = m2 = j ≥ 1

R0 if m2 ≤ 1 but (m1,m2) ̸= (1, 1)

R0 − x if m2 ≥ 2 and m1 ≤ 1

0 otherwise

(C.12)

where the parameters {Rn, ..., R1, R0, x} satisfy Rn, ..., R0 > x > max{c1,c2}
q(θn)

R1 −R0 >
2max{c1, c2}

q(θ1)
+ 2 max

i∈{1,2}

{
max
y∈Y

ui(θ
1, y)−min

y∈Y
ui(θ

1, y)
}
, (C.13)

Rj −R1 − x >
2max{c1, c2}

q(θj)
+ 2 max

i∈{1,2}

{
max
y∈Y

ui(θ
j , y)−min

y∈Y
ui(θ

j , y)
}
for every j ∈ {2, 3, ..., n},

(C.14)

and
x

Rj −R0
≥ q(θj)

1− q(θj)
for every j ∈ {2, 3, ..., n}. (C.15)

12



We modify the first step of our proof in which we show that both agents being truthful is a γ-

dominant equilibrium for some γ < 1
2 .

Recall that each agent has 2n − 1 messages and that we are considering a restricted game

without perturbation where for every i ∈ {1, 2}, agent i is only allowed to use strategies that belong

to ∆(Σ∗
i ) where

Σ∗
i ≡

{
(m1, ...,m|Si|) ∈ Σ such that for every k ∈ {1, ..., |Si|}, mk ∈ {−n, ...,−2, 1} ∪ {hi(ski )}

}
.

Suppose agent 1 believes that agent 2 intends to be truthful with probability at least 1
2 ,

� For every j ≥ 2, conditional on agent 1 receiving a signal s1 ∈ S1 that satisfies h1(s1) = j, if

agent 1’s realized message is j, then he receives an expected transfer of

Pr(m2 = j|s1)Rj + Pr(m2 ≤ 1|s1)(R0 − x),

and if agent 1’s realized message is no more than 1, then he receives an expected transfer of

Pr(m2 = 1|s1)R1 + Pr(m2 ̸= 1|s1)R0.

Since π(h2(s2) = h1(s1)|s1) ≥ 1−τ when π is of size τ , we have Pr(m2 = j|s1) ≥ 1−τ
2 (1−τ) and

Pr(m2 = 1|s1) ≤ 1− 1−τ
2 (1−τ). When inequality (C.14) is satisfied, τ is close to 0, and τ ≤ τ ,

we have q(θj)
(
Pr(m2 = j|s1)Rj+Pr(m2 ≤ 1|s1)(R0−x)

)
−q(θj)

(
Pr(m2 = 1|s1)R1+Pr(m2 ̸=

1|s1)R0
)
> max{c1, c2}+ q(θj)

{
maxy,y′∈Y u1(θ

j , y)− u1(θ
j , y′)

}
. Therefore, agent 1 strictly

prefers to send message j when he receives any signal s1 ∈ S1 that satisfies h1(s1) = j when

he believes that agent 2 intends to be truthful with probability at least 1
2 .

� Conditional on agent 1 receiving a message s1 that satisfies h1(s1) = 1, his expected transfer

when his realized message is 1 is Pr(m2 = 1|s1)R1 + Pr(m2 < 0|s1)R0 and his expected

transfer when his realized message is negative is R0. When inequality (C.13) is satisfied and

τ is close enough to 0, agent 1 prefers to message 1 as his intended message to any negative

message as his intended message when he believes that agent 2’s strategy belongs to ∆(Σ∗
2)

and agent 2 intends to be truthful with probability at least 1
2 , even taking into account his

cost of learning c.

Since agent 1 has a strict incentive to be truthful when he believes that agent 2 intends to be

13



truthful with probability at least 1
2 , there exists γ < 1

2 such that he also has a strict incentive to

do so when he believes that agent 2 intends to be truthful with probability at least γ. Therefore,

both agents intending to be truthful is a γ-dominant equilibrium.

D Uncertainty about the State Distribution

Our earlier proofs assume that the designer knows the objective state distribution and that this

prior distribution is equal to both agents’ prior belief before they take their actions—including their

decision of whether to learn the state. In some applications, the designer may face uncertainty about

the state distribution or about agents’ beliefs about the state. This situation may arise, for instance,

if the designer faces Knightian uncertainty about the state, or if each agent privately and freely

observes a noisy signal about the state before deciding whether to pay an additional cost to learn

θ and the designer does not know agents’ information structures.

To model this situation, suppose that agent i’s belief is qi ∈ ∆(Θ) when he decides whether

to pay cost ci in order to fully learn θ. We assume these beliefs are obtained as follows: agents

have a prior belief q about θ, and form their respective interim beliefs q1 and q2 after receiving

some informative signals. Intuitively, agent i ∈ {1, 2} privately observes a signal si for free and his

interim belief qi is derived according to Bayes rule.

The designer knows neither q nor the realizations of q1 and q2. She only knows that q, q1,

and q2 belong to a subset q ⊂ ∆(Θ). Our baseline model from earlier sections corresponds to the

special case in which q is a singleton. In the more general formulation, the designer need not know

the exact state distribution. Rather, she knows that this distribution belongs to some subset. This

formulation also allows agents to have more information about the state relative to the designer,

even before they decide whether to pay the cost and to learn the state. The designer does not

know the agents’ information structures but knows that their interim beliefs belong to a certain

range. The designer’s objective is to design a mechanism M that can robustly implement f for all

(q1, q2) ∈ q× q and for all small enough (c-bounded) perturbations.

Whether the designer can achieve her objective depends on q, i.e., on the extent to which she

knows the agents’ interim beliefs. When q is larger, the robust implementation problem becomes

harder. We say that q is interior if there exists τ > 0 such that q(θ) > τ for every θ ∈ Θ and

q ∈ q. Let B(q, τ) ≡
{
q′ ∈ ∆(Θ)

∣∣∣||q′ − q||TV ≤ τ
}
denote the τ -neighbourhood of q.

Proposition 2. For any given social choice function f : Θ → ∆(Y ):
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1. Suppose q is interior. For every c > 0, there exists a mechanism with n messages for each

agent that robustly implements f for all c-bounded perturbations.

2. For every generic q ∈ ∆(Θ), there exists τ > 0 such that if q ⊂ B(q, τ), then there exists a

mechanism with 2n− 1 messages for each agent that robustly implements f .

Proposition 2 implies that even when (i) the designer does not know precisely what the objective

state distribution is and (ii) agents may know more about the state than the designer does even

before they pay the cost of learning, the desired social choice function is still robustly implementable

as long as one of the two conditions is satisfied:

1. The designer is confident that agents’ interim beliefs are not arbitrarily precise (i.e., assign

probability close to 0 to some states) and agents’ costs of learning are bounded from above.

2. The designer knows what the ex ante most likely state is and is confident that the signals

freely received by the agents are sufficiently noisy.

Proposition 2 can be extended to the case in which q includes degenerate beliefs that assign

probability 1 to some particular state. Nevertheless, we do need to rule out situations such as the

following one: (i) Θ = {θ1, θ2, θ3}, (ii) the designer knows that the agents can rule out one state

for free before paying the information acquisition cost but, (iii) the designer does not know which

state the agents rule out.

D.1 Proof of Proposition 2

We show statement 1 focusing on the case where u1 = u2 = 0 and c1 = c2 = c. Extending the proof

to general (u1, u2) and heterogeneous learning costs is analogous to the generalization in Appendix

A of the main text, and modifying the proof of Theorem 2 to show Statement 2 follows a similar

argument to the one given here. The details are available upon request.

Our proof uses Proposition 5.5 in Oyama and Tercieux (2010), that generalizes the critical path

lemma in Kajii and Morris (1997) to environments with non-common priors. Let qi denote the set

of interim beliefs of player i ∈ {1, 2}. Player i’s pure strategy is

{m1
i (qi), ...,m

n
i (qi)}qi∈qi , (D.1)

where mj
i (qi) is the message he sends when his interim belief is qi and the state is θj . Let Σi

denote the set of pure strategies for agent i. Let Σ∗
i ⊂ Σi be such that a strategy belongs to Σ∗

i
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if and only if mj
i (qi) ∈ {1, j} for every j ∈ {1, 2, ..., n} and qi ∈ qi. Agent i’s strategy is truthful

if mj
i (qi) = j for every j ∈ {1, 2, ..., n} and qi ∈ qi. Consider the status quo rule with ascending

transfers constructed in Section 4.1 of the main text where the parameters Rn, ..., R1 satisfy

Rj > R1 for every j ≥ 2, (D.2)

n∑
j=2

(Rj −R1)q(θj) > 2c and R1q(θ1) ≥ c for every q ∈ q. (D.3)

Such Rn, ..., R1 exist when q is interior. The rest of the proof is similar to that of Theorem 1.

First, let us examine the restricted game without any perturbation where for every i ∈ {1, 2},

agent i is only allowed to choose strategies in ∆(Σ∗
i ). If agent i believes that agent j is truthful

with probability at least 1
2 , then conditional on each qi, the expected transfer he receives is strictly

greater when he uses his truthful strategy. Hence, there exists γ < 1
2 such that both agents being

truthful is a γ-dominant equilibrium. Next, let us consider the restricted game with perturbation

G. The critical path lemma implies that for every ε > 0, there exists η > 0 such that for every

η-perturbation G, there exists an equilibrium σ(G) induced by (M,G) in which both agents use

their truthful strategies with probability more than 1 − ε. In this equilibrium, f is implemented

with probability more than 1 − ε. In the last step, let us consider the unrestricted game with

perturbation. Similar to the proof of Theorem 1, the second part of (D.3) implies that σ(G)

remains an equilibrium when agents can use any strategies in Σi, not just those in Σ∗
i . This verifies

that our mechanism can robustly implement f for every (q1, q2) ∈ q× q.

E Failure of Majority Rule

Consider an example with three agents. Let Θ = {θ1, θ2}. Players’ prior belief about θ is q(θ1) =

2/3 and q(θ2) = 1/3. Let Y = {y1, y2} and ui(θ, y) = 0 for every i ∈ {1, 2, 3} and (θ, y) ∈ Θ × Y .

Let c > 0 be agents’ costs of learning. The designer would like to implement yj in state θj .

A mechanism is a majority rule if there exists T > 0 such that (i) M1 = M2 = M3 = {1, 2},

(ii) g(m1,m2,m3) = yi if and only if there exist 1 ≤ k < j ≤ 3 such that mk = mj = i, and

(ii) ti(m1,m2,m3) = T · 1{mi = mj for some j ̸= i}. Intuitively, each agent votes for the two

alternatives. The alternative that receives at least two votes gets implemented and an agent is

given a transfer T if and only if he voted for the alternative favored by the majority.

First, if there is no robustness concern, then for every c > 0, there exists T > 0 such that a
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majority rule with T > T can partially implement the desired social choice function. This is because

there exists an equilibrium where all agents learn the state and report their findings truthfully.

Next, we show that no majority rule can robustly implement the desired social choice function.

For any majority rule parameterized by T , consider a perturbation where Ω ≡ {ω0, ω1, ...} with

Π(ωn) = (1−δ)δn. Agents 1 and 2’s information partitions are the same, given by {ω0}, {ω1, ω2}, {ω3, ω4},...

and agent 3’s information partition is {ω0, ω1}, {ω2, ω3}, ... Agents are normal types except for type

{ω0} of agents 1 and 2, in which case their utility functions are ui(ω0, θ, y) = B1{y = y1} and their

cost of learning is C, where B is large enough relative to T such that

( B + T

B + 2T

)2
> δ (E.1)

and C >> B. Since C >> B, types {ω0} of agents 1 and 2 will not learn the state, so their

strategies in any equilibrium must be supported in {(1, 1), (2, 2)}. Type {ω0} of agent 1 strictly

prefers (1, 1) to (2, 2) as long as he believes that type {ω0} of agent 2 plays (1, 1) with probability

more than T
B+2T . The same is true for type {ω0} of agent 2. This implies that in any equilibrium,

either types {ω0} of agents 1 and 2 play (1, 1) for sure, or both types {ω0} of agents 1 and 2 play

(2, 2) with probability at least B+T
B+2T . We consider these two cases separately.

First, consider the case in which types {ω0} of agents 1 and 2 play (1, 1) for sure. Type {ω0, ω1}

of agent 3 strictly prefers (1, 1) to all other strategies since the probability that his report matches

the majority is strictly more than 1/2 when he reports 1, conditional on every state. Type {ω1, ω2}

of agent i ∈ {1, 2} strictly prefers (1, 1) to all other strategies since the probability that his report

matches the majority is strictly more than 1/2 when he reports 1, conditional on every state...

Iterate this process, we know that in equilibrium, all types of all agents play (1, 1) and outcome y1

is implemented regardless of the state.

Second, consider the case in which types {ω0} of agents 1 and 2 play (2, 2) with probability

at least B+T
B+2T . Given inequality (E.1), type {ω0, ω1} of agent 3 strictly prefers (2, 2) to all other

strategies since the probability that his report matches the majority is strictly more than 1/2 when

he reports 1, conditional on every state. Type {ω1, ω2} of agent i ∈ {1, 2} strictly prefers (2, 2)

to all other strategies since the probability that his report matches the majority is strictly more

than 1/2 when he reports 1, conditional on every state... Iterate this process, we know that in

equilibrium, all normal types of all agents play (2, 2) and outcome y2 is implemented regardless of

the state conditional on all agents being the normal type.
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