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Community Enforcement Models with Complete Info

A large group of players randomly matched to play game G.

• Each player only observes the actions in his own match.

• They cannot observe their partners’ identities and cannot observe
what’s going on in other matches.

A special class of repeated games with private monitoring.

• Each player’s private signal is the actions in his match.

• The folk theorem in Sugaya (2021) does not apply since the private
signals cannot statistically identify the (entire) action profile.

Kandori (1992), Ellison (1994), Deb and Gonzalez-Diaz (2019), Deb (2020),
and Deb, Sugaya and Wolitzky (2020):

• Folk theorems in community enforcement with complete info.

Question: What happens when there is incomplete info?
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Community Enforcement with Incomplete Information

To fix ideas, consider a large population of players playing the prisoner’s
dilemma:

• A fraction of the population are bad types who always play D,

e.g., each player is normal w.p. 1 − ε and is bad w.p. ε.

• In each period, players are randomly matched and can only observe the
actions in their own match.

Two key findings:

• Sugaya and Wolitzky (2020): Anti-folk theorem.

• Sugaya and Wolitzky (2021): Folk theorem when players can
communicate via cheap talk messages.
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A General Anonymous Repeated Game with Bad Types

• Discrete time t = 0, 1, 2, ....

• N players with discount factor δ.

• Each player’s action set A, with at ∈ AN the action profile at t.

• Player i’s type θi ∈ {R,B}, with type B taking a∗ in every period.

• Type distribution p ∈ ∆
(
{R,B}N

)
.

• Player i’s private signal yi,t ∼ F(·|(aτ , yτ )t−1
τ=0, at).

• Public randomization device ξt ∼ U[0, 1].

• Player i’s private history in period t consists of θi and (ai,τ , yi,τ , ξτ )
t−1
τ=0.

• Players’ stage-game payoffs (u1, ..., uN) : AN → [0, 1]N .
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Symmetry Assumptions

Assumption: Symmetric Type Distribution

p(θ1, ..., θn) depends only on the number of bad types in (θ1, ..., θn).

Assumption: Symmetric Payoff Function

Fix i, j ∈ {1, 2, ...,N}. We have ui(ai, a−i) = uj(a′j , a′−j) if

• ai = a′j ,

• the number of other players playing each action is the same under a−i

and under a′−j.
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Prisoner’s Dilemma with Uniform Random Matching

Leading example: N = 2n players are uniformly matched into pairs in each
period to play the prisoner’s dilemma.

• Payoffs are symmetric since matching is uniform and anonymous.

Each opponent’s action matters for your payoff with prob 1
N−1 .

• The private signal yi,t is the action profile in agent i’s match, i.e., agent
i perfect observes each opponent’s action with prob 1

N−1 .

• The type distribution is symmetric when each player is bad w.p. ε.
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Analysis

• With symmetry and public randomization, focusing on symmetric
equilibrium is w/o loss of generality.

• Let Bn be the event that there are n bad players, with pn ≡ Pr(Bn).

• Let qn ≡ Pr
(

n out of N − 1 other players are bad
∣∣∣player i is rational

)
.

• Let q−
n ≡ qn−1. Let qN ≡ 0 and q−0 ≡ 0.

Both q ≡ (q0, ..., qN) and q− ≡ (q−0 , ..., q−N ) are prob distributions.

• The total variation distance between q and q− is:

∆ ≡ max
N⊂{0,1,...,N}

∣∣∣ ∑
n∈N

(qn − q−n )
∣∣∣.
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Analysis

Interpretations of the two distributions q and q−:

• Let qn ≡ Pr
(

n out of N − 1 other players are bad
∣∣∣player i is rational

)
.

• Let q−
n ≡ qn−1.

Suppose the rational type’s equilibrium strategy is not a∗ in every period.

• If I am rational and play my equilibrium strategy, then q is my belief
about the total number of people playing a∗ in every period.

• If I am rational but I deviate to a∗ in every period, then q− is my belief
about the total number of people playing a∗ in every period.

• Therefore, ∆ measures the detectability of a rational type’s deviation to
the bad type’s strategy.
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Lower Bound on Rational Type’s Payoff

Let Ui(θ) be player 1’s equilibrium payoff conditional on type profile θ.

Let
uR

n ≡ E[Ui(θ)|θi = R,Bn] and uB
n ≡ E[Ui(θ)|θi = B,Bn].

Lemma
In every equilibrium of the repeated game, we have

N−1∑
n=0

qnuR
n ≥

N−1∑
n=0

qnuB
n −∆.

What is the rational type’s expected payoff when he plays his equilibrium
strategy?

• ∑N−1
n=0 qnuR

n .
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Lower Bound on Rational Type’s Payoff

Let Ui(θ) be player 1’s equilibrium payoff conditional on type profile θ.

Let
uR

n ≡ E[Ui(θ)|θi = R,Bn] and uB
n ≡ E[Ui(θ)|θi = B,Bn].

Lemma
In any equilibrium,

N−1∑
n=0

qnuR
n ≥

N−1∑
n=0

qnuB
n −∆.

What is the rational type’s expected payoff when he deviates and plays a∗ in
every period?

• ∑N−1
n=0 qnuB

n+1 =
∑N

n=0 q−n uB
n .

(comes directly from q−n = qn−1)
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Proof: Lower Bound on Payoff

Let
uR

n ≡ E[Ui(θ)|θi = R,Bn] and uB
n ≡ E[Ui(θ)|θi = B,Bn].

Lemma
In any equilibrium,

N−1∑
n=0

qnuR
n ≥

N−1∑
n=0

qnuB
n −∆.

Rational type’s payoff from deviating to a∗ in every period is given by∑N−1
n=0 qnuB

n+1 =
∑N

n=0 q−n uB
n . Therefore,

N−1∑
n=0

qnuB
n+1 =

N−1∑
n=0

qnuB
n −

N∑
n=0

(qn − q−
n )uB

n ≥
N−1∑
n=0

qnuB
n −∆

The blue term is no more than his equilibrium payoff
∑N−1

n=0 qnuR
n .
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Pairwise Dominant Action

This lemma is useful in games where a∗ is a pairwise dominant action:

Assumption: Pairwise Dominance

Action a∗ ∈ A is a pairwise dominant action if there exists c > 0 such that
for every a ̸= a∗ and a−ij ∈ AN−2, we have

ui(ai = a∗, aj = a, a−ij)− uj(aj = a, ai = a∗, a−ij) > c.

This neither implies nor is implied by a∗ being a dominant action.

• Find two counterexamples to convince yourself.

In the prisoner’s dilemma game with uniform random matching:

• D is a pairwise dominant action since

x + 1
N − 1

(1 + g) ≥ x
N − 1

− l · N − 1 − x
N − 1

+min{g, l}︸ ︷︷ ︸
≡c

,

where x is the number of people playing C other than i and j.
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Upper Bound on Rational Type’s Payoff

Fix an equilibrium. When the rational type plays his equilibrium strategy,

• let γn be the occupation measure with which he plays actions other
than a∗ conditional on there are n bad types in the population.

Recall that

uR
n ≡ E[Ui(θ)|θi = R,Bn] and uB

n ≡ E[Ui(θ)|θi = B,Bn].

Lemma

If a∗ is a pairwise dominant action, then uB
n ≥ uR

n + γnc for every n.

This follows from the definition of pairwise dominant actions.



Model Results Related Literature

Lower Bound on the Occupation Measure of a∗

Combining the two lemmas:

Lemma

In any equilibrium,
∑N−1

n=0 qnuR
n ≥

∑N−1
n=0 qnuB

n −∆.

Lemma

If a∗ is a pairwise dominant action, then uB
n ≥ uR

n + γnc for every n.

we obtain the following inequality:

∆ ≥
N−1∑
n=0

qn(uB
n − uR

n ) ≥ c ·
N−1∑
n=0

qnγn.

The expected occupation measure of actions other than a∗,
∑N−1

n=1 qnγn, is no
more than ∆

c , i.e., the expected occupation measure of a∗ is at least 1 − ∆
c .
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Anti-Folk Theorem

Recall that the expected occupation measure of actions other than a∗,∑N−1
n=1 qnγn, is no more than ∆

c .

If ∆ → 0, then:

• In every equilibrium, the rational type plays a∗ in almost all periods.

• Social welfare is close to the case in which everyone is bad.

This leads to an anti-folk theorem, i.e., all payoffs are close to U(a∗).
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When is it the case that ∆ → 0 as N → +∞?

Leading example: Each player is bad with prob ε, and players’ types are
independently drawn from the same distribution.

Fix ε > 0.

• qn =
(N−1

n

)
(1 − ε)N−nεn.

• q−n = qn−1 =
(N−1

n−1

)
(1 − ε)N−n+1εn−1.

Since qn is single-peaked in n, the total variation distance is

∆ = q0 + (q1 − q0) + ...+ (qk − qk−1) = qk

where qk ≡ maxn∈{0,1,..,N} qn.

As N → +∞, maxn∈{0,..,N}
(N−1

n

)
(1 − ε)N−nεn → 0.

Therefore, ∆ → 0 as N → +∞.
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Conclusion: Anti-Folk Theorem under Incomplete Info

Sugaya and Wolitzky (2020)’s result implies that:

• In a repeated prisoner’s dilemma with uniform random matching and
each player is a bad type who always defects with prob ε,

all equilibrium payoffs converge to the minmax payoff as N → +∞.

Hence, it is impossible to sustain cooperation in large populations.

Sugaya and Wolitzky (2021) focus on this specific setting.

• Theorem 1 in Sugaya and Wolitzky (2021): Extend the anti-folk
theorem to when players can observe their partners’ identities.

• As (1 − δ)N → +∞, every NE payoff is close to 0.
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The Role of Communication

Sugaya and Wolitzky (2021) also do the following:

• Repeated prisoner’s dilemma with uniform random matching.

• Players can observe their partner’s identities.

• Each player is bad with prob ε > 0.

• Players can exchange cheap-talk messages with their partners.

As long as (1 − δ) logN → 0, there exist equilibria where players’ payoffs
are arbitrarily close to their payoffs under (C,C).

• Their proof uses a clever information theory argument.

• With complete info, communication can be replaced via actions and
contagion (Horner and Olzewski 2009, Deb, et al 2020).

• With incomplete info, communicating via actions and contagion is too
slow to sustain cooperation ⇒ cheap talk is needed.
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