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Overview

Last lecture: Reputation and social learning.

• Each short-run player observes a bounded number of the long-run
player’s action, and at least one short-run player’s action.

• Proof: A mixed-strategy equilibrium in which learning is slow.

This lecture:

• Reputation effects with limited memory w/o social learning.

• Critique of mixed-strategy equilibria in extensive-form games with
limited memories.
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Primitives

• Long-lived player 1 vs short-lived player 2s.
• Player 1’s action x ∈ [0, 1]. Player 2’s action y ∈ [0, 1].

• Player 1’s stage-game payoff u1(x, y) satisfies:
1. u1(x, y) is strictly decreasing in x,
2. u1(x, y) is strictly increasing in y,
3. u1(x, y) has strictly decreasing differences in (x, y).

• P2’s stage-game payoff u2(x, y) has strictly increasing differences,

P2 has a unique best reply to any of P1’s mixed actions.
• P2’s best reply y∗ : ∆[0, 1] → [0, 1] is continuous and strictly

increasing under FOSD.
• Let us normalize y∗(0) = 0.

• P1’s dominant action is 0. Unique stage-game NE is (0, 0).
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Long-Run Player’s Type

Player 1 has two types:

• With prob µ∗ ∈ (0, 1), P1 is a commitment type who plays c > 0.

• With prob 1 − µ∗, P1 is rational and maximizes discounted payoff.

We assume that commitment to c is valuable:

u1(c, y∗(c)) > u1(0, 0).

We also assume that δ is large enough such that:

u1(c, y∗(c))︸ ︷︷ ︸
P1’s commitment payoff from c

> (1−δ) u1(0, y∗(c))︸ ︷︷ ︸
P1’s payoff from deviating to 0

+δ u1(0, 0)︸ ︷︷ ︸
P1’s stage-game NE payoff

.
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Monitoring Structure

P2t only observes P1’s action in the last K periods.

• (amax{0,t−K}, ..., at−1).

Important things to emphasize:

• Player 2 cannot observe the actions of previous short-run players.

• Player 2 cannot observe calendar time.

No social learning.

Player 2’s prior assigns prob (1 − δ)δt to calendar time being t, and updates
her belief according to Bayes rule after observing (amax{0,t−K}, ..., at−1).
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Strategies & Stationary Perfect Bayesian equilibrium

The set of P2’s histories H ≡
⋃K

k=0[0, 1]k.

• Sequences of player 1’s actions with length no more than K.

P2’s strategy σ2 : H → [0, 1].

Focus on stationary equilibria s.t. P1’s strategy depends only on H.
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Sufficient Statistics Result

Partition the set of length K histories into K + 1 subsets:

• h ∈ HK if the last K actions were c. Call them clean histories.

• For every h ∈ H\HK , let I(h) ∈ {0, 1, ...,K − 1} be
the number of periods since the most recent action that is not c.

Intuitively, if I(h) is larger, then h is closer to a clean history.

Let Hk be the set of histories with I(h) = k, for k ∈ {0, 1, ...,K − 1}.

Proposition: Sufficient Statistics Result

In any stationary equilibrium, (i) players’ actions after period K are
measurable with respect to the above partition, and (ii) player 1 will only
play 0 and c with positive probability.

This depends on the submodularity of P1’s payoff.
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Proof Sketch: Sufficient Statistics Result

Consider two histories h and h′ s.t.

• P1’s actions were the same in the last K − 1 periods,

P1’s action K periods ago was not c under h and h′.

Lemma

P2’s actions at h and h′ are the same.
P1’s continuation values at h and h′ are the same.

Suppose by way of contradiction that a2(h) > a2(h′) ≥ 0.

• Since h and h′ are not clean, P1 is known to be rational.

• a2(h) depends only on a1(h), a2(h′) depends only on a1(h′).

Hence, there exist a∗
1 and a′1 with a∗1 > a′1 s.t.

• P1 plays a∗
1 with positive prob at h.

• P1 plays a′
1 with positive prob at h′.
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Proof Sketch: Sufficient Statistics Result

Suppose by way of contradiction that a2(h) > a2(h′) ≥ 0.

P1 plays a∗1 at h, and plays a′
1(< a∗

1) at h′.

P1’s incentive constraint at h:

(1 − δ)u1(a∗1 , a2(h)) + δV(h, a∗
1) ≥ (1 − δ)u1(a′1, a2(h)) + δV(h, a′1).

P1’s incentive constraint at h′:

(1 − δ)u1(a′1, a2(h′)) + δV(h′, a′
1) ≥ (1 − δ)u1(a∗1 , a2(h′)) + δV(h′, a∗1).

Since h and h′ differ only in action K periods ago, we have
V(h, a∗1) = V(h′, a∗1) and V(h, a′1) = V(h′, a′1). Hence,

u1(a∗1 , a2(h))− u1(a′1, a2(h)) ≥
δ

1 − δ
(V(h, a′1)− V(h, a∗1))

=
δ

1 − δ
(V(h′, a′1)− V(h′, a∗1)) ≥ u1(a∗1 , a2(h′))− u1(a′1, a2(h′))
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Proof Sketch: Sufficient Statistics Result

Therefore, a2(h) > a2(h′), a∗1 > a′1, but

u1(a∗1 , a2(h))− u1(a′1, a2(h)) ≥ u1(a∗1 , a2(h′))− u1(a′
1, a2(h′)).

This leads to a contradiction since u1 has strictly decreasing differences.

Hence, P2’s actions at h and h′ must be the same.

P1’s continuation values at h and h′ must be the same as well.

• Why? P2’s actions are the same, and P1’s continuation value in the
next period does not depend on whether the current history is h or h′.
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Proof Sketch: Sufficient Statistics Result

We have just shown that at any two histories h and h′ s.t.

• P1’s actions were the same in the last K − 1 periods,

P1’s action K periods ago was not c under h and h′.

then

• P2’s actions are the same at h and h′.

• P1’s continuation values at the same at h and h′.

What about h and h′ s.t.

• P1’s actions were the same in the last K − 2 periods,

P1’s action K − 1 periods ago was not c under h and h′?

What can we say about V(h, a1) and V(h′, a1)?
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Proof Sketch: Sufficient Statistics Result

Therefore, for any k ∈ {1, 2...,K}, if h and h′ are such that:

• P1’s actions were the same in the last k − 1 periods,

P1’s action k periods ago was not c under h and h′.

At h and h′, P1’s continuation values and P2’s actions are the same.

Recall the definition of I(h).

• If I(h) = I(h′), then either h = h′ or

there exists k ∈ {1, 2, ...,K} such that P1’s actions were the same in
the last k − 1 periods and their actions k periods ago were not c.

Hence, P2’s action and P1’s continuation value depend only on I(h).

• This implies that P1 plays either 0 or c.

• Hence, P1’s mixed actions can be ranked according to FOSD.

• If a2(h) = a2(h′) while h and h′ are not clean,

then P1’s action at h and h′ must be the same.
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Characterize Stationary PBE

• µK : Prob P2’s belief assigns to the commitment type at clean histories.

• βk: Prob that rational-type P1 plays c at Hk, for every k ∈ {0, 1, ...,K}.

• yk: P2’s action at Hk, for every k ∈ {0, 1, ...,K}.

Theorem 1

Under any δ > δ, memory length K ∈ N, and prior belief µ∗ > 0. Every
stationary PBE takes the following form:

• The rational type P1 plays 0 for sure at clean histories.

• Prob of c increases with the index 0 < β0 < β1 < ... < βK−1 < µK .

• Trust increases with the index y0 < y1 < ... < yK−1 < yK ,
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Long-Run Player’s Equilibrium Actions (in red)
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The Short-Run Players’ Actions and Beliefs
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Characterize Stationary PBE

Takeaway from their characterization result:

1. P2’s trust increases with the index I(h).

2. P1 betrays for sure at clean histories.

3. At non-clean histories, P1’s prob of playing c increases with I(h).

Intuition: u1(a, b) has strictly decreasing differences.

• P1 has stronger incentive to betray when he is trusted more.

Caveat: Supermodularity/submodularity in the stage game usually do not
imply much in the repeated game.

• Why? My action today affects your observation tomorrow.

e.g., in the proof of the sufficient statistics result, we only use
submodularity at specific pairs of histories.
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Lower Bound on P1’s Equilibrium Payoff

Theorem 2

For any ε > 0 and µ∗ ∈ (0, 1), there exists K(ε, µ∗) ∈ N such that for any

K > K(ε, µ∗), P1’s payoff at any history of any stationary PBE is at least

(1 − δK)g1(c, 0) + δKg1(c, y∗(c))− ε.

When K is large enough,

• as long as P1 is sufficiently patient, he can secure his commitment
payoff g1(c, y∗(c)) in all stationary PBEs.

This stands in contrast to Fudenberg and Levine (1989,1992):

• No meaningful payoff lower bound that applies to all histories.
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Proof Sketch

The proof is different from the one in Fudenberg and Levine:

• Fudenberg and Levine’s technique requires P2 observing everything
her predecessors observed.

• This is not the case when memories are bounded.

Key step of the proof:

Lemma

For any η ∈ (0, 1), ∃ K(η) such that when K > K(η), µ(K) > 1 − η.

Intuition: Suppose µ(K) ≤ 1 − η. Since β(k) < µ(K) for every k ≤ K − 1,
the rational type reaches the clean history with prob no more than (1 − η)K .

• If K is large, then (1 − η)K is small,

which implies that P2’s belief at clean histories assigns a high prob to
the commitment type. This contradicts µ(K) ≤ 1 − η.
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Dynamic Games with Limited Memories

Some of the results rely on constructing mixed-strategy equilibria:

• Liu (2011), Liu and Skrzypacz (2014), Pei (2023).

Mixed-strategy equilibria are also used to show folk theorems in repeated
games with private monitoring.

• Most notably, the literature on belief-free equilibria, e.g.,

Ely and Välimäki (2002), Ely, Hörner and Olzewski (2005).

How robust are these mixed-strategy equilibria?
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Background: Mixed Strategies & Harsanyi Purification

Battle of sexes game:

– L R
T 2, 1 0, 0
B 0, 0 1, 2

There exists one mixed-strategy Nash equilibrium:

• P1 chooses 2
3 T + 1

3 B. P2 chooses 1
3 L + 2

3 R.

How to pin down players’ mixing probabilities?

• P1’s mixing prob is pinned down by P2’s indifference condition.

• P2’s mixing prob is pinned down by P1’s indifference condition.

This logic sounds weird.
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Background: Mixed Strategies & Harsanyi Purification

Harsanyi: What if players privately observe private payoff shocks?

– L R
T 2, 1 0, 0
B 0, 0 1, 2

Suppose P1’s payoff from T equals his payoff in the matrix plus ξ.

• ξ is drawn from a continuous distribution U[0, ε].

Only P1 observes the realization of ξ.

Suppose P2’s payoff from L equals his payoff in the matrix plus η.

• η is drawn from a continuous distribution U[0, ε].

Only P2 observes the realization of η.

P1 chooses T when ξ is high and chooses B when ξ is low.

• From P2’s perspective, he faces a distribution of P1’s actions.
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Background: Mixed Strategies & Harsanyi Purification

Harsanyi: What if players’ observe some private payoff perturbations?

– L R
T 2, 1 0, 0
B 0, 0 1, 2

Suppose P1’s payoff from T equals his payoff in the matrix plus ξ.

• ξ is drawn from a continuous distribution U[0, ε].

Only P1 observes the realization of ξ.

Suppose P2’s payoff from L equals his payoff in the matrix plus η.

• η is drawn from a continuous distribution U[0, ε].

Only P2 observes the realization of η.

P2 chooses L when η is high and chooses R when η is low.

• From P1’s perspective, he faces a distribution of P2’s actions.
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Background: Mixed Strategies & Harsanyi Purification

Let’s solve for the Bayes Nash equilibrium in the perturbed game:

– L R
T 2+ξ, 1+η ξ, 0
B 0, η 1, 2

Let ξ∗, η∗ ∈ [0, ε] be such that:

• P1 chooses B iff ξ < ξ∗ ⇒ P1 chooses B with prob ξ∗

ε .

• P2 chooses R iff η < η∗ ⇒ P2 chooses R with prob η∗

ε .

Type ξ∗ player 1’s indifference between T and B requires that(
1 − η∗

ε

)
(2 + ξ∗) =

η∗

ε
.

⇒ ε(2 + ξ∗) = η∗(3 + ξ∗).
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Background: Mixed Strategies & Harsanyi Purification

Let’s solve for the equilibrium in the perturbed game:

– L R
T 2+ξ, 1+η ξ, 0
B 0, η 1, 2

Let ξ∗, η∗ ∈ [0, ε] be such that:

• P1 chooses B iff ξ < ξ∗ ⇒ P1 chooses B with prob ξ∗

ε .

• P2 chooses R iff η < η∗ ⇒ P2 chooses R with prob η∗

ε .

Type η∗ player 2’s indifference between L and R requires that:(
1 − ξ∗

ε

)
(1 + η∗) = 2

ξ∗

ε
.

⇒ ε(1 + η∗) = ξ∗(3 + η∗).
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Background: Mixed Strategies & Harsanyi Purification

Let’s solve for the equilibrium in the perturbed game:

– L R
T 2+ξ, 1+η ξ, 0
B 0, η 1, 2

These two equations lead to a unique positive solution (ξ∗, η∗):

ε(1 + η∗) = ξ∗(3 + η∗) ε(2 + ξ∗) = η∗(3 + ξ∗).

As ε → 0, ξ∗/ε → 1/3 and η∗/ε → 2/3.

• As ε → 0, players’ action distribution in the perturbed game converge
to the mixed-strategy equilibrium in the unperturbed game.
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Harsanyi Purification Theorem

• N player finite normal-form game G ≡ (I,A, u), with A ≡
∏n

i=1 Ai.

• Perturbation for player i: ηi ∈ R|Ai| drawn according to continuous
distribution µi s.t. player i’s payoff from a is ui(a) + ηi(a).

• Only player i observes ηi, ηi is independent of ηj for every i ̸= j.

Purification Theorem

For every regular Nash equilibrium σ ∈ ∆(A) of G and for every

{µk
1, ..., µ

k
n}k∈N with limk→+∞ µk

i = 0 for every i.

For every ε > 0 there exists k ∈ N such that for every k > k, the perturbed

game {G, µk
1, ..., µ

k
n} has a Bayes Nash equilibrium s.t.

• each player has a strict incentive almost surely,

• this BNE induces a distribution that is within ε of σ.
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Harsanyi Purification Theorem

Purification Theorem

For every regular Nash equilibrium σ ∈ ∆(A) of G and for every

{µk
1, ..., µ

k
n}k∈N with limk→+∞ µk

i = 0 for every i.

For every ε > 0 there exists k ∈ N such that for every k > k, the perturbed

game {G, µk
1, ..., µ

k
n} has a Bayes Nash equilibrium s.t.

• each player has a strict incentive almost surely,

• this BNE induces a distribution that is within ε of σ.

Regular Nash equilibrium is a refinement of Nash equilibrium.

• In generic finite normal-form games, every Nash equilibrium is a
regular Nash equilibrium (Van Damme 1991).
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Definition of Regular Equilibrium

Fix a strategy profile a∗ ≡ (a∗1 , ..., a∗n). For every p ∈ ∆(A), let

Fk
i (p|a∗) ≡ pk

i

{
ui(p−i, ak

i )− ui(p−i, a∗i )
}

for every i ∈ I and ak
i ̸= a∗i ,

Fi(p|a∗) =
|Ai|∑
k=1

pk
i − 1

Let

J(p∗, a∗) ≡ ∂F(p|a∗)

∂p

∣∣∣
p=p∗

An equilibrium p∗ is regular if and only if there exists a∗ ∈ A such that
J(p∗, a∗) is not a singular matrix.
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From Normal Form to Extensive Form

Can we generalize this insight to extensive-form games?
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Bhaskar: Overlapping Generation Repeated Games

• Time t = 0, 1, 2, ... One agent born in each period.

• The agent who is born is period t:
• Receives K ∈ N units of endowment in period t.
• He shares at ∈ {0, 1, ...,K} with his predecessor.
• He may receive transfers from his successor in period t + 1.

• Agent t’s payoff is u(at, at+1), which is strictly increasing in at+1 and
is strictly decreasing in at.

• The efficient level of transfer:

k∗ ∈ arg max
k∈{0,1,...,K}

{
u(K − k, k) + u(k,K − k)

}
.

• We assume that k∗ is strictly positive.

• We also assume that u(K − k∗, k∗) > u(K, 0).
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Benchmark: Unbounded Memories

Benchmark: Sustaining Cooperation with Perfect Information

If every agent can perfectly observe all previous agents’ actions, then there
exists a pure-strategy equilibrium that sustains transfer level k∗.

Proof: Grim-trigger strategies.



Liu and Skrzypacz Results Purification in Normal Form Games Purification in Dynamic Games

Introducing Limited Memories

For every j > i, agent j’s info about agent i’s action is a partition Bj,i of Ai.

• Assumption 1: For every k > j > i, Bk,i is weakly coarser than Bj,i.

• Assumption 2: There are infinitely many agents whose actions are no
longer visible after a certain period.

Can we sustain cooperation via pure-strategy equilibria?

Theorem

Suppose u(at, at+1) ̸= u(a′
t , a′t+1) for any (at, at+1) ̸= (a′t , a′

t+1).

All agents choose 0 in every pure-strategy equilibrium.
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Proof

Theorem

Suppose u(at, at+1) ̸= u(a′
t , a′t+1) for any (at, at+1) ̸= (a′t , a′

t+1).
All agents choose 0 in every pure-strategy equilibrium.

Suppose agent i’s action is not visible starting from period j + 1.

• Will agent j’s action depend on agent i’s action?

• Suppose hj and h′j differ only in agent i’s action, and agent j plays a at
hj and plays a′ at h′

j . Then agent j’s incentive constraints imply that:

u(a, aj+1(hj, a)) ≥ u(a′, aj+1(hj, a′))

and
u(a′, aj+1(h′j , a′)) ≥ u(a, aj+1(h′j , a)).

Not true since aj+1(hj, a) = aj+1(h′j , a) and aj+1(hj, a′) = aj+1(h′j , a′).
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Proof

Theorem

Suppose u(at, at+1) ̸= u(a′
t , a′t+1) for any (at, at+1) ̸= (a′t , a′

t+1).
All players choose 0 in every pure-strategy equilibrium.

Suppose agent i’s action is not visible starting from period j + 1.

• Agent j’s action does not depend on agent i’s action.

• Can agent j − 1’s action depend on agent i’s action?

• Can agent i + 1’s action depend on agent i’s action?

What will agent i choose when no agent’s action depends on his?
What will agent i − 1 choose when agent i chooses 0 no matter what?
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Sustaining Cooperation via Mixed Strategies

Theorem

Suppose u(K − k∗, k∗) > u(K, 0) and agent t + 1 observes the action of
agent t. There exists a mixed strategy equilibrium that sustains transfer level
k∗.

Consider an equilibrium in which

• Agent 0 chooses k∗.

• Agent i chooses k∗ if agent i − 1 chooses k∗, and mixes between 0 and
k∗ if agent i − 1 chooses any other action.

Agent i is indifferent between 0 and k∗,

• Their mixing probability depends on agent i − 1’s action, and is chosen
in order to make agent i − 1 indifferent.

• Agent i’s incentive to mix is provided by agent i + 1’s mixed action.
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Are These Mixed-Strategy Equilibria Robust?

Suppose agents’ payoffs are perturbed so that agent t’s payoff from (at, at+1)
equals:

u(at, at+1) + ηt(at, at+1),

where ηt ≡ {ηt(at, at+1)}(at,at+1)∈A2 is drawn according to continuous
distribution Fn, and the support of ηt(at, at+1) is close to 0.

• ηt is independent of ηs for every t ̸= s,

• ηt is independent of the history of play.

Theorem
When the support of the perturbations are close to 0, all agents choose 0 in
every equilibrium of every perturbed game.
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Proof Sketch

Theorem
All agents choose 0 in every equilibrium of every perturbed game.

Suppose agent i’s action is not visible starting from period j + 1.

• Will agent j’s action depend on agent i’s action?

• Agent j strictly prefers a to a′ at hj iff:

u(a, aj+1(hj, a))+ηj(a, aj+1(hj, a)) > u(a′, aj+1(hj, a′))+ηj(a′, aj+1(hj, a′)).

or equivalently,

ηj(a, aj+1(hj, a))−ηj(a′, aj+1(hj, a′)) > u(a′, aj+1(hj, a′))−u(a, aj+1(hj, a)).
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Proof Sketch

Theorem
All agents choose 0 in every equilibrium of every perturbed game.

Suppose agent i’s action is not visible starting from period j + 1.

• Suppose h′
j and hj differ only in agent i’s action

• Agent j strictly prefers a to a′ at h′j iff:

u(a, aj+1(h′j , a))+ηj(a, aj+1(h′
j , a)) > u(a′, aj+1(h′

j , a′))+ηj(a′, aj+1(h′j , a′)).

or equivalently,

ηj(a, aj+1(h′j , a))−ηj(a′, aj+1(h′j , a′)) > u(a′, aj+1(h′j , a′))−u(a, aj+1(h′j , a)).
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Proof Sketch

Theorem
All agents choose 0 in every equilibrium of every perturbed game.

Suppose agent i’s action is not visible starting from period j + 1.

• Suppose h′
j and hj differ only in agent i’s action.

Then aj+1(hj, a) = aj+1(h′
j , a) and aj+1(hj, a′) = aj+1(h′

j , a′).

• Agent j strictly prefers a to a′ at hj iff:

ηj(a, aj+1(hj, a))−ηj(a′, aj+1(hj, a′)) > u(a′, aj+1(hj, a′))−u(a, aj+1(hj, a)).

• Agent j strictly prefers a to a′ at h′j iff:

ηj(a, aj+1(h′j , a))−ηj(a′, aj+1(h′j , a′)) > u(a′, aj+1(h′j , a′))−u(a, aj+1(h′j , a)).

• Prob that agent j chooses each action is independent of agent i’s action.


	Liu and Skrzypacz
	Results
	Purification in Normal Form Games
	Purification in Dynamic Games

