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Abstract

I study a repeated communication game between a patient sender and a sequence of myopic receivers. The 
sender has persistent private information about his cost of lying. Each period, the sender privately observes 
an i.i.d. state and recommends an action. The receiver takes an action after observing this recommendation 
and the full history of states and recommendations. I provide conditions under which a sufficiently patient 
sender can attain his optimal commitment payoff in the repeated game. My results provide justifications for 
the commitment assumption in Bayesian persuasion models using a repeated communication game without 
any commitment. My results also imply that the sender’s equilibrium payoff is not monotone with respect 
to the receiver’s belief about his lying cost.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

The commitment power of informed experts affects communication outcomes. In Crawford 
and Sobel (1982)’s seminal model, an expert’s temptation to mislead his audience undermines 
his credibility. When an expert can commit to a disclosure policy, as in the model of Kamenica 
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and Gentzkow (2011), his messages are more credible and can have more influence over others’ 
decisions.

In practice, experts often face credibility issues when committing to disclosure policies. For 
example, real estate agents receive high commissions when their clients purchase overpriced 
properties, and pharmaceutical lobbyists have incentives to recommend policies that benefit phar-
maceutical companies but hurt social welfare. These experts’ optimal disclosure policies require 
them to reveal unfavorable information, such as that the property they are selling is overpriced 
or the policy they are lobbying for is socially harmful. However, if they are aware of such unfa-
vorable information, honoring their commitment to reveal it is against their own interests.

A plausible foundation for an expert’s commitment is that he communicates with a sequence 
of receivers, one in each period. Each receiver observes the optimal actions of previous periods 
and is able to compare them to the expert’s recommendations. However, when the expert’s op-
timal disclosure policy is stochastic, which is the case in the leading example of Kamenica and 
Gentzkow (2011), the result in Fudenberg et al. (1990) implies that the expert can never attain 
his optimal commitment payoff in the repeated communication game, no matter how patient he 
is.

Several insightful papers bypass the above problem by introducing alternative forms of com-
mitment, under which a patient expert can attain his optimal commitment payoff in the repeated 
game. For example, Best and Quigley (2022) assume that there is a third-party who can commit 
to a public record system that determines which information the receivers can observe about the 
past history. Mathevet et al. (2022) assume that with positive probability, the expert is a commit-
ment type who uses his optimal disclosure policy in every period.

I examine the extent to which patient experts can restore their commitment power when it is 
common knowledge that they cannot honor any promise against their own interests. I focus on 
a repeated version of the leading example in Kamenica and Gentzkow (2011). Each period, a 
patient sender privately observes an i.i.d. state, which is either good or bad, and recommends a 
good action or a bad action. He may also send a cheap talk message that has no intrinsic meaning 
together with his action recommendation. A myopic receiver chooses an action after observing 
the sender’s recommendation and message, together with the history of states, recommendations, 
and messages.

The receiver prefers to match her action with the state. The sender prefers the good action 
regardless of the state. My modeling innovation is that the sender incurs a psychological cost of 
lying whenever his action recommendation does not match the realized state.2 I assume that this 
lying cost is fixed over time and is the sender’s private information, which I call his type.

I start from a setting where the lying costs of all types are lower than the sender’s benefit 
from the good action, i.e., every type prefers to mislead the receiver in the bad state when his 
recommendation is taken at face value. Theorem 1 characterizes the highest equilibrium payoff
for each sender type in the limit where the sender is arbitrarily patient. This payoff depends only 
on his own lying cost and the highest lying cost in the support of the receivers’ prior belief. Intu-
itively, when a sender type decides which of the other types to imitate, he prefers to imitate types 
that occur with higher probabilities, since it takes fewer periods to build reputations for behaving 

2 The relevance and significance of lying costs have been established experimentally by Gneezy (2005). They have 
been incorporated into models of strategic information transmission (Kartik et al., 2007; Chen et al., 2008; Kartik, 2009) 
and mechanism design (Ortner, 2015). See Sobel (2020) for a detailed discussion of lying costs in economic models. I 
assume that the sender does not incur any lying cost regardless of the cheap talk message he sends given that cheap talk 
messages have no intrinsic meaning.
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like those types; he also prefers to imitate types that have higher lying costs, since those types 
are more trustworthy and reputations for behaving like them are more valuable. When the sender 
is more patient, he puts more weight on his long-term payoff after he has established a reputation 
and puts less weight on his stage-game payoff in periods where he builds his reputation. As a 
result, only the sender’s true lying cost as well as the lying cost of the highest-cost type affect his 
highest equilibrium payoff.

My result implies that senders of all types except for the highest-cost one can benefit from their 
persistent private information, in the sense that their highest equilibrium payoff in the repeated 
incomplete information game is strictly greater than their highest equilibrium payoff in a repeated 
game where their lying cost is common knowledge. This is because the highest-cost type is the 
most trustworthy type, so he has no good candidate to imitate in the incomplete information 
game.

My result also implies that the highest equilibrium payoff for every type converges to his 
optimal commitment payoff as the highest lying cost converges to the sender’s benefit from the 
good action. This can be viewed as a justification for the commitment assumption in Bayesian 
persuasion models: Even though it is common knowledge that no type can commit and every 
type prefers to mislead the receivers in the stage game, all types of the sender can approximately 
attain their optimal commitment payoffs in the repeated communication game as long as the set 
of types is rich enough.

Next, I allow for ethical types whose lying costs exceed their benefits from the good action. 
Theorem 2 shows that there exist equilibria where all ethical types attain their optimal commit-
ment payoffs and all non-ethical types attain the payoffs described in Theorem 1. This is because 
in the first period, the sender can credibly reveal whether he is ethical via a cheap talk message. 
After he claimed to be ethical, he always recommends the receiver-optimal action and the re-
ceivers follow his recommendation. After he claimed to be non-ethical, players coordinate on 
the sender-optimal equilibrium in the game without ethical types. Theorem 2 implies that all 
types can approximately attain their optimal commitment payoffs as the set of types becomes 
rich enough.

In the case where the sender can only recommend actions but cannot send cheap talk mes-
sages, Theorem 3 shows that all the non-ethical types can attain their optimal commitment 
payoffs if and only if the lying cost of the highest type is below some cutoff. This suggests 
that the presence of types with high lying costs can lower the non-ethical types’ equilibrium pay-
offs. This observation is driven by a novel outside option effect. Suppose there is a type who has 
an infinite lying cost. In equilibrium, this type will never lie, so the other ethical types can secure 
their full disclosure payoffs by imitating his behavior. As a result, the non-ethical types cannot lie 
while pooling with the ethical types and hence cannot obtain their optimal commitment payoffs. 
More generally, each ethical type’s lowest equilibrium payoff increases with the highest lying 
cost in the support of the receivers’ prior belief, and the non-ethical types cannot attain their op-
timal commitment payoffs when every ethical type’s payoff from imitating the highest-cost type 
exceeds some threshold.

Related literature: My paper is related to the literature on repeated communication games pio-
neered by Aumann and Maschler (1965), Sobel (1985), and Benabou and Laroque (1992).3 Best 

3 Recent contributions to the repeated communication game literature include those of Renault et al. (2013), Margaria 
and Smolin (2018), Meng (2021), and Kuvalekar et al. (2022).
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and Quigley (2022) and Mathevet et al. (2022) use this framework to provide justifications for 
the sender’s commitment power in Bayesian persuasion models.4

Best and Quigley (2022) show that the sender can attain his optimal commitment payoff if a 
third party can commit to a particular public record system that determines the receiver’s infor-
mation about the game’s history. Mathevet et al. (2022) show that a patient sender can attain his 
optimal commitment payoff whenever there is a positive probability that he is a commitment type
who uses his optimal disclosure policy in every period. In contrast to those papers, I provide a 
justification for the commitment assumption using a repeated communication game where it is 
common knowledge that the sender cannot honor any promise against his own interest.

One limitation of my approach is that it restricts attention to a special class of games. Although 
my upper bound on the sender’s payoff can be extended to more general settings, to establish that 
these bounds are attainable, one needs to construct equilibria in repeated communication games 
with persistent private information, which is an intractable problem.5 Hence, I view my main 
result as a proof of concept rather than a general lesson. It demonstrates that it is possible for a 
patient sender to obtain his optimal commitment payoff even when it is common knowledge that 
(i) he cannot commit to disclosure policies and that (ii) he has a strict incentive to deceive the 
receivers.

I also characterize the extent to which the sender can partially overcome his lack-of-
commitment problem in environments where he cannot attain his optimal commitment payoff. 
This is related to Lipnowski et al. (2022), who characterize the sender’s highest equilibrium pay-
off in a one-shot game when he can commit to a disclosure policy with positive probability. In 
Guo and Shmaya (2021) and Nguyen and Tan (2021), the sender faces a lying cost, chooses 
an information structure, and receives information about the state according to that information 
structure. By contrast, the sender in my model cannot commit to receiving coarser information 
about the state.

This paper is also related to the literature on repeated games with incomplete information, 
pioneered by Aumann and Maschler (1965). Hart (1985), Shalev (1994), and Pȩski (2014) char-
acterize the set of equilibrium payoffs when all players are patient. When the uninformed player 
is impatient, Cripps and Thomas (2003) show that every equilibrium payoff must satisfy the 
conditions in Shalev (1994), although some of the payoffs that satisfy this necessary condition 
cannot be attained in any equilibrium. By contrast, I characterize a patient informed sender’s 
highest equilibrium payoff when his opponents’ discount factor is either zero or close to zero. 
This paper is also related to Pei (2021) who characterizes a patient seller’s highest equilibrium 
payoff when he has private information about his production cost. I elaborate on the differences 
between the two papers in Section 6.

2. Model

Time is indexed by t = 0, 1, 2, .... A patient sender with discount factor δ ∈ (0, 1) interacts 
with a different short-lived receiver in each period. In period t , the sender privately observes a 
state ωt ∈ � ≡ {g, b}, where {ωt }t∈N are drawn i.i.d. from a distribution where the probability of 

4 Titova (2022) provides a justification of the commitment assumption in Bayesian persuasion models using a static
communication game where the sender cannot commit but can disclose verifiable evidence.

5 The challenges of constructing equilibria in repeated incomplete information games are also explained in Section 4 of 
Mathevet et al. (2022). That section focuses on the 2 × 2 × 2 example in Kamenica and Gentzkow (2011) and computes 
players’ equilibrium behaviors in a reputation model with a mixed-strategy commitment type.
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ωt = g is p. The sender makes an action recommendation rt ∈ R ≡ {g, b} and may also send a 
cheap talk message mt ∈ M that has no intrinsic meaning. The period-t receiver takes an action 
yt ∈ Y ≡ {g, b} after observing (rt , mt) as well as the public history ht ≡ {ys, ωs, rs, ms}t−1

s=0.
The sender’s stage-game payoff is 1{yt = g} − c · 1{rt �= ωt }, where c ∈ C ≡ {c1, ..., cn} ⊂

[0, 1) is his private information (or his type), is constant over time, and is independent of {ωt}t∈N . 
I interpret c as the sender’s cost of lying relative to his benefit from the receiver’s good action, 
which is incurred whenever his action recommendation does not match the realized state. The 
sender incurs no lying cost regardless of the cheap talk message he sends since those messages 
have no intrinsic meaning.

The receiver’s prior belief about c is π ≡ (π1, ..., πn) ∈ �(C), where πj is the probability 
of type cj . The receiver’s payoff is normalized to 0 when yt = b. I assume that the receiver’s 
payoff is 1 when (yt , ωt) = (g, g) and is −1 when (yt , ωt) = (g, b). My results extend as long 
as the receiver’s payoff is strictly positive when (yt , ωt) = (g, g) and is strictly negative when 
(yt , ωt) = (g, b).

Assumption 1. n ≥ 2, π has full support, p ∈ (0, 12 ), and 0 ≤ cn < cn−1 < ... < c2 < c1.

Assumption 1 requires that (i) the receivers face uncertainty about the sender’s type, (ii) the 
receivers have no incentive to take action g under their prior belief about ωt , and (iii) every type 
has a non-negative lying cost. I distinguish between types with lying costs strictly less than 1, 
i.e., non-ethical types, and types with lying costs greater than 1, i.e., ethical types. Intuitively, 
when the receivers always follow the sender’s recommendation, every non-ethical type prefers to 
deceive the receivers in the bad state and every ethical type prefers to recommend the receiver-
optimal action.

The sender’s pure stage-game strategy is a1 : � → R × M , with a1 ∈ A1. The receiver’s 
pure stage-game strategy is a2 : R × M → Y , with a2 ∈ A2. Let a1,t and a2,t denote the 
sender’s and the receiver’s stage-game strategies in period t . Let u1(c, a1, a2) denote type-c
sender’s stage-game payoff. Type-c sender maximizes his discounted average payoff 

∑∞
t=0(1 −

δ)δtu1(c, a1,t , a2,t ). Since there are n types, the sender’s payoff is an n-dimensional vector 
v ≡ (v1, v2, ..., vn) ∈ Rn, where the j th entry vj represents the discounted average payoff of type 
cj . Let u2(a1, a2) denote the receiver’s stage-game payoff. Let H denote the set of public histo-
ries ht ≡ {ys, ωs, rs, ms}t−1

s=0. The repeated-game strategy of type-c sender is σc : H → �(A1), 
and that of the receiver’s is σ2 :H → �(A2).

The solution concept is Nash equilibrium, which is a strategy profile σ ≡ (
(σc)c∈C, σ2

)
. My 

results extend to Perfect Bayesian equilibrium defined in Fudenberg and Tirole (1991), where 
players’ beliefs satisfy no-signaling-what-you-don’t-know and respect Bayes rule at every on-
path history.

I present several useful benchmarks. First, suppose the sender can commit to a disclosure 
policy α : � → �(R × M) before he observes ωt . His payoff is p if he commits to always 
recommend the receiver-optimal action. If he chooses a disclosure policy in order to maximize 
his payoff, then (i) for every ethical type, it is optimal to recommend the receiver-optimal action; 
(ii) for every non-ethical type, it is optimal to recommend the good action in the good state, 
and to recommend the good action with probability ρ∗ ≡ p

1−p
in the bad state, which makes the 

receiver indifferent when the sender recommends the good action. Therefore, type-cj sender’s 
optimal commitment payoff is

v∗∗
j ≡

{
p + p(1 − cj ) if cj < 1,

p if c ≥ 1.
(2.1)
j

5
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For future reference, I write the sender’s optimal disclosure policy as a distribution over his pure 
stage-game strategies. I define the sender’s honest strategy aH

1 and lying strategy aL
1 as:

aH
1 (ω) ≡

{
g if ω = g,

b if ω = b,
and aL

1 (ω) ≡
{

g if ω = g,

g if ω = b.
(2.2)

I define the receiver’s trusting strategy aT
2 and non-trusting strategy aN

2 as:

aT
2 (r) ≡

{
g if r = g,

b if r = b,
and aN

2 (r) ≡
{

b if r = g,

b if r = b.
(2.3)

It is optimal for every ethical type to commit to aH
1 . For every non-ethical type, it is optimal to 

commit to ρ∗aL
1 + (1 − ρ∗)aH

1 , under which the receiver is indifferent between aT
2 and aN

2 .
Next, in a repeated game where the sender cannot commit and his lying cost is common 

knowledge, the sender’s equilibrium payoff is no more than p no matter how patient he is. This 
is because when p < 1/2, every on-path history of every equilibrium belongs to one of the 
following two classes:

1. The receiver has a strict incentive to take action b regardless of (r, m).
2. The receiver has an incentive to take action g after observing some (r, m). Since p < 1/2, 

there exists (r ′, m′) such that (i) the sender sends (r ′, m′) with positive probability when the 
state is b and (ii) the receiver has a strict incentive to take action b upon receiving (r ′, m′).

For any equilibrium, consider a deviation for the sender in which (i) at any history that be-
longs to the first class, he follows his equilibrium strategy, and (ii) at any history that belongs to 
the second class, he uses his equilibrium strategy in state g and sends (r ′, m′) with probability 1
in state b. This deviation is the sender’s best reply in the repeated game, from which his expected 
stage-game payoff at every history is no more than p. This implies that the sender’s equilibrium 
payoff is no more than p. As a corollary, when δ is close to 1, the sender’s equilibrium pay-
off cannot exceed p in reputation games with one rational type and one or more pure-strategy 
commitment types.

Remark: In my model, the sender can only recommend one of the two actions (which have 
intrinsic meaning and may incur lying costs) and may also send a cheap talk message together 
with his action recommendation. My assumption on the message space is not without loss since 
it is well-known from Green and Laffont (1986) that the standard revelation principle does not 
apply in settings where messages are costly. For example, including an additional message m∗
where the lying cost of sending m∗ in state ω being c(m∗, ω) may affect the sender’s equilibrium 
payoffs.

3. Upper bound on the sender’s equilibrium payoff

This section establishes two necessary conditions that every Nash equilibrium must satisfy. 
These conditions lead to an upper bound on each type of the patient sender’s equilibrium pay-
off.

First, I show that type c1’s equilibrium payoff cannot exceed his highest equilibrium payoff 
in a repeated game where his lying cost is common knowledge. Intuitively, type c1 has no good 
candidate to imitate, so he cannot benefit from having persistent private information about his 
lying cost.
6
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Proposition 1. Fix any equilibrium σ under any discount factor δ. For any history ht that oc-
curs with positive probability under σ , suppose ci is the highest lying cost in the support of the 
receiver’s belief at ht , then type-ci sender’s continuation value at ht is no more than p.

The proof uses an induction argument on the number of types in the support of the receiver’s 
belief. If there is only one type, the conclusion follows from the argument in Fudenberg et al. 
(1990). I explain how the inductive step works focusing on the case where (i) the sender can only 
recommend actions but cannot send cheap talk messages, and (ii) the sender always recommends 
the good action in the good state. The general argument can be found in Appendix A.

Suppose that the highest-cost type in the support of the receiver’s belief obtains a continuation 
value of at most p at every history where there are no more than k types in that support.

Consider an on-path history ht such that there are k + 1 types in the support of the receiver’s 
belief, where the highest lying cost among those k + 1 types is denoted by ci . I construct strategy 
σ̃ci

based on type ci ’s equilibrium strategy σci
. For every hs � ht , if σci

recommends the bad 
action with positive probability when the state is bad, then ̃σci

recommends the bad action with 
probability 1 when the state is bad; if σci

recommends the good action for sure when the state is 
bad, then ̃σci

recommends the good action with probability 1 when the state is bad. By construc-
tion, σ̃ci

is type ci ’s best reply to the receiver’s equilibrium strategy, from which he obtains his 
equilibrium payoff.

When type ci uses ̃σci
, his stage-game payoff is no more than p except at histories where (i) 

he recommends the good action in the bad state, and (ii) the receiver takes the good action with 
positive probability after he recommends the good action. At every such history, the receiver’s 
incentive to take the good action together with Bayes rule implies that there exist types who 
recommend the bad action in the bad state. Since type ci does not recommend the bad action 
in the bad state, there are at most k types in the support of the receivers’ posterior belief after 
they observe (ωs, rs) = (b, b). By induction hypothesis, the highest type in the support of their 
posterior, denoted by cj , receives payoff no more than p. Type ci’s continuation value at hs is 
no more than p, since (i) type cj ’s continuation value at hs is no more than p if he deviates to 
type ci ’s equilibrium strategy, and (ii) type ci’s payoff from any strategy is no more than that of 
type cj ’s given that ci > cj .

Next, I derive an upper bound on the frequency with which the sender plays aL
1 when the 

receivers play aT
2 . Fix an equilibrium σ ≡ (

(σc)c∈C, σ2
)
. Let γ j ≡ {γ j (a1, a2)}(a1,a2)∈A1×A2 , 

where

γ j (a1,a2) ≡ E(σcj
,σ2)

[ ∞∑
t=0

(1− δ)δt1{(a1,t ,a2,t )=(a1,a2)}
]

for every (a1,a2) ∈ A1 ×A2.

(3.1)

Intuitively, γ j (a1, a2) is the discounted frequency of (a1, a2) when the sender uses type cj ’s 
equilibrium strategy σcj

and the receivers play their equilibrium strategy σ2. By definition, for ev-
ery c ∈ C and j ∈ {1, 2, ..., n}, type-c sender’s stage-game payoff from γ j equals his discounted 
average payoff in the repeated game when he plays σcj

and the receivers play σ2. For every 
γ ∈ �(A1 × A2) and a2 ∈ A2, let γ (·|a2) ∈ �(A1) be the conditional distribution of the sender’s 
stage-game strategy when the joint distribution is γ and the receiver’s stage-game strategy is 
a2. Proposition 2 implies that when the sender is patient, he cannot lie too frequently in periods 
where the receivers play aT .
2

7
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Proposition 2. For every ε > 0, there exists δ ∈ (0, 1) such that for every δ > δ, every Nash equi-
librium 

(
(σc)c∈C, σ2

)
under δ, every j ∈ {1, 2, ..., n}, and every a2 ∈ A2, if γ j assigns probability 

more than ε to a2, then a2 is an ε-best reply to γ j (·|a2).

The proof is in Appendix B. The intuition follows from the payoff upper bound result in 
Fudenberg and Levine (1992) and Gossner (2011). Since the receivers can observe the history 
of (ω, r, m), they can statistically identify the sender’s stage-game strategy. If the sender plays 
σcj

, then in all except for a bounded number of periods, the receivers’ predictions about the 
sender’s stage-game strategy are close to type cj ’s equilibrium stage-game strategy. Therefore, 
the receivers will play a best reply to some α1 ∈ �(A1) that is close to type cj ’s equilibrium 
stage-game strategy. When the receivers’ predictions are sufficiently precise, their stage-game 
strategy is an ε-best reply to type cj ’s equilibrium stage-game strategy. This implies that as 
δ → 1, periods where the receivers do not play any ε-best reply have negligible impact on the 
discounted frequencies. Therefore, every a2 that occurs with probability bounded away from zero 
in equilibrium must be an ε-best reply to γ j(·|a2).

The two necessary conditions lead to an upper bound on every type of the sender’s equilibrium 
payoff. For every j , if type c1 uses type cj ’s equilibrium strategy, then his discounted average 
payoff is 

∑
(a1,a2)∈A1×A2

γ j (a1, a2)u1(c1, a1, a2). Since type c1’s equilibrium payoff is no more 
than p and he prefers his equilibrium strategy to that of any other type’s, we have:∑

(a1,a2)∈A1×A2

γ j (a1,a2)u1(c1,a1,a2) ≤ p, for every j ∈ {1,2, ..., n}. (3.2)

This together with Proposition 2 implies that for every ε > 0, there exists δ ∈ (0, 1) such that 
when δ > δ, type cj ’s equilibrium payoff is no more than the value of the following constrained 
optimization problem:

vε
j ≡ max

γ j ∈�(A1×A2)

∑
(a1,a2)∈A1×A2

γ j (a1,a2)u1(cj ,a1,a2), (3.3)

subject to (3.2) and a2 being an ε-best reply to γ j (·|a2) for every a2 such that 
∑

a1∈A1
γ j (a1, a2)

> ε.
Let

v∗
j ≡ max

γ j ∈�(A1×A2)

∑
(a1,a2)∈A1×A2

γ j (a1,a2)u1(cj ,a1,a2), (3.4)

subject to (3.2) and a2 being a best reply to γ j (·|a2) for every a2 that satisfies 
∑

a1∈A1
γ j (a1, a2)

> 0.
Compared to the constrained optimization problem that defines v∗

j , the one that defines vε
j

relaxes the best reply constraint by requiring the constraint to hold only for a2 that occurs with 
probability greater than ε instead of for every a2 in the support; and by requiring a2 be an ε-best 
reply instead of a best reply. Therefore, vε

j ≥ v∗
j . The next proposition shows that vε

j converges 
to v∗

j as ε → 0.

Proposition 3. For every j ∈ {1, 2, ..., n}, we have limε↓0 vε
j = v∗

j .

The proof is in Appendix C. Propositions 1, 2, and 3 together imply that for every j ∈
{1, 2, ..., n}, type cj ’s equilibrium payoff cannot exceed v∗ in the limit where δ → 1.
j
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Type c1’s payoff

Type c2’s payoff

u1(aH
1 ,aT

2 )

u1(aL
1 ,aT

2 )

u1(aH
1 ,aN

2 )

u1(aL
1 ,aN

2 )

(p,0)

(v∗
1 , v∗

2 )

Fig. 1. An example with two types 0 ≤ c2 < c1 < 1. Let u1(a1, a2) ≡ (
u1(c1, a1, a2), u1(c2, a1, a2)

)
. Constraint (3.2)

is depicted in red, and the constraint that aT
2 best replies to γ j (·|aT

2 ) is depicted in blue. The intersection between the 
two lines is the sender’s highest equilibrium payoff (v∗

1 , v∗
2 ). (For interpretation of the colors in the figure(s), the reader 

is referred to the web version of this article.)

4. Equilibrium payoff without ethical types

This section examines the case where 0 ≤ cn < cn−1 < ... < c1 < 1. That is, it is common 
knowledge that the sender is non-ethical and that he has a strict incentive to deceive the receivers 
when they always follow his action recommendation. I solve for v∗

j defined in (3.4) and obtain:

v∗
j ≡

{
1 + c1 − cj

2p + c1(1 − 2p)

}
p. (4.1)

The binding constraints that pin down v∗
j are (i) type c1’s payoff being no more than p and (ii) at 

histories where the receivers play aT
2 , the discounted frequency with which the sender plays aL

1
being no more than ρ∗ ≡ p

1−p
. Fig. 1 depicts (v∗

1 , v∗
2) in an example with two types C = {c1, c2}.

Theorem 1. Suppose c1 < 1. For every ε > 0, there exists δ ∈ (0, 1) such that when δ > δ, 
there exists an equilibrium in which the sender’s payoff belongs to an ε-neighborhood of 
v∗ ≡ (v∗

1 , ..., v∗
n).

The proof is in Appendix D. Theorem 1 together with Propositions 1, 2, and 3 implies that 
when the sender’s discount factor is close to one, v∗

j is type cj ’s highest equilibrium payoff
and that the highest equilibrium payoffs of all types can be approximately attained in the same 
equilibrium.

Theorem 1 implies that first, type cj ’s highest equilibrium payoff does not depend on the 
probabilities of each type or the lying costs of the other types. Intuitively, when a sender type 
decides which of the other types to imitate, he may face a tradeoff between (i) imitating a type 
that has higher ex ante probability, since it takes fewer periods to convince the receivers that he 
9
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will behave like that type, and (ii) imitating a type that has a higher lying cost, since higher-
cost types are more trustworthy and a reputation for behaving like those types leads to a higher 
continuation value. As δ → 1, the sender puts negligible weight on his stage-game payoffs in 
periods where he builds his reputation and puts almost all weight on his continuation value after 
he has established a reputation. This suggests that the patient sender prefers to build a reputation 
for behaving like the highest-cost type, irrespective of the lying costs of the other types or the 
probability of each type.

Second, every type’s highest equilibrium payoff is strictly less than his optimal commitment 
payoff. This is because the receivers can observe (ω, r, m), which can statistically identify the 
sender’s stage-game strategy. Therefore, the receivers’ predictions about the sender’s stage-game 
strategies must be arbitrarily precise in all except for a bounded number of periods. This im-
plies that when the sender is patient, each type’s equilibrium payoff cannot exceed his optimal 
commitment payoff.

Third, v∗
j > p for every j ≥ 2. The intuition is that, except for the type that has the highest 

lying cost, every type can strictly benefit from his persistent private information, in the sense that 
he can obtain a payoff that is strictly greater than his payoff from full disclosure. The argument 
in Fudenberg et al. (1990) does not apply in my setting since different types of the sender may 
use different strategies. Hence, it could be the case that at some history ht , some types have no 
incentive to play aH

1 yet the receiver has an incentive to play aT
2 . This will happen if the receiver’s 

belief assigns positive probability to sender-types who will play aH
1 with positive probability at 

ht .
Therefore, in order for a low-cost type to obtain a payoff bounded above p, he needs to behave 

differently relative to the high-cost type. This inevitably reveals his lying cost to future receivers. 
As δ → 1, the low-cost type needs to reveal information about his lying cost in an unbounded 
number of periods in order to obtain a discounted average payoff that is bounded above p. This 
is somewhat puzzling since revealing private information undermines the sender’s informational 
advantage, and he cannot benefit from his private information after the receivers learn his type. I 
explain the idea behind my constructive proof in Section 4.1, which sheds light both on how the 
sender can benefit from his persistent private information in the long run and the extent to which 
he can do that.

Fourth, as c1 → 1, v∗
j converges to type cj ’s optimal commitment payoff v∗∗

j ≡ p+p(1 −cj ). 
This provides a microfoundation for the sender’s commitment power in Bayesian persuasion 
models. It implies that even when all sender types have strict incentives to deceive the receivers, 
as long as there exists one type whose lying cost is close to his benefit from the good action, all
types can approximately attain their optimal commitment payoffs in the repeated communication 
game.

When c1 is bounded below 1, v∗
j is bounded below v∗∗

j , and Theorem 1 characterizes the 
extent to which a patient sender can partially restore his commitment power when he communi-
cates with a sequence of myopic receivers. According to (4.1), every type’s highest equilibrium 
payoff is a continuous function of his own lying cost and the highest lying cost in the support 
of the receivers’ prior belief. It is strictly increasing in the lying cost of the highest cost type c1, 
strictly decreasing in his true cost of lying, and strictly increasing in the ex ante probability that 
the state is good.
10
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4.1. Equilibria that approximately attain the highest equilibrium payoff

In order to provide guidance on how to construct equilibria in which the sender’s payoff 
is approximately v∗, I derive a common property of the sender’s behavior that applies to all of 
those equilibria. In particular, I show that no type of the sender plays both aH

1 and aL
1 with positive 

probability at every on-path history. This implies that every type of the sender’s behavior must 
depend non-trivially on the game’s history and no type uses his static optimal disclosure policy 
or anything close to that at every on-path history. This stands in contrast to the commitment type 
in Mathevet et al. (2022), who is assumed to use his optimal disclosure policy at every history.

Proposition 4. Suppose c1 ≤ 1. There exists ε > 0 such that for every ε ∈ (0, ε), there exists 
δ ∈ (0, 1) such that for every δ > δ and every Nash equilibrium where the sender attains a payoff 
within ε of v∗, no sender type plays both aH

1 and aL
1 with positive probability at every on-path 

history.

The proof is in Appendix E. This result extends to a type whose lying cost is exactly 1. 
Even though this type is indifferent between aH

1 and aL
1 in the one-shot communication game, he 

cannot mix between aH
1 and aL

1 in every period in any sender-optimal equilibrium of the repeated 
game.

This is because a rational type benefits from the good action regardless of his lying cost, 
which stands in contrast to a commitment type who does not care about his payoff. Therefore, 
even when a sender is indifferent between aH

1 and aL
1 in the stage game, his indifference between 

aH
1 and aL

1 at a given history of a repeated game introduces constraints on the receiver’s strategies 
after that history. This further introduces constraints on the incentives and payoffs of the other 
sender types.

For example, let C ≡ {c1, c2} with c1 = 1 and c2 = 0. Suppose type c1 mixes between aH
1 and 

aL
1 at every history. Then playing aH

1 in every period and playing aL
1 in every period are both type 

c1’s best replies to the receivers’ equilibrium strategy, from which his payoff is p. As a result, 
type c2’s payoff from playing aL

1 in every period is

p︸︷︷︸
type c1’s payoff from playing aL

1 in every period

+ 1︸︷︷︸
difference in the two types’ lying costs

× (1 − p)︸ ︷︷ ︸
probability of the bad state

= 1,

which is strictly greater than his optimal commitment payoff 2p. This contradicts our earlier 
conclusion that no type of the sender can obtain any payoff that exceeds his optimal commitment 
payoff.

4.2. Constructing equilibria that attain v∗

Following the guidance provided by Proposition 4, I explain how my constructive proof 
works using an example with two types, i.e., C = {c1, c2}. I explain how the sender can use 
non-stationary strategies to benefit from his persistent private information in the long run.

Let vN ≡ ( − c1(1 − p), −c2(1 − p)
)

be the sender’s payoff from (aL
1 , aN

2 ), vL ≡ (
p + (1 −

c1)(1 − p), p + (1 − c2)(1 − p)
)

be his payoff from (aL, aT ), and vH ≡ (p, p) be his payoff 
1 2

11
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Type c1’s payoff

Type c2’s payoff

vH = u(0)

vL

vN

v∗ = u(ρ∗)

v

v

Fig. 2. An example with two types C = {c1, c2}. The blue line segment is the set of u(ρ) for all ρ ∈ [0, ρ∗], v is the 
intersection between line segment [v∗, vN ] and the vertical axis, and v is the intersection between line segment [vH , vN ]
and the vertical axis.

from (aH
1 , aT

2 ). Recall that ρ∗ ≡ p
1−p

as well as the two constraints that pin down v∗. I depict the 

line segment that connects v∗ and vH in Fig. 2. Since each payoff vector on that line belongs to 
the convex hull of {vH , vL, vN } and the first entry of each payoff vector on that line equals p, 
we have:

u(ρ) ≡ (1 − ρ)c1

ρ(1 − c1) + c1
vH + ρc1

ρ(1 − c1) + c1
vL + ρ(1 − c1)

ρ(1 − c1) + c1
vN for ρ ∈ [0, ρ∗].

(4.2)

By definition, u(0) = vH , u(ρ∗) = v∗, and the second entry of u(ρ) is strictly increasing in ρ.
For every ρ ∈ [0, ρ∗), I construct equilibria such that as δ → 1, (i) the sender’s payoff is 

approximately u(ρ), (ii) type-c1 sender’s payoff is exactly p, and (iii) the receivers always ignore 
the sender’s cheap talk message. One can use my argument to construct equilibria in which the 
sender attains any payoff that belongs to the interior of the yellow region of Fig. 2 as δ → 1.

At every history, either the receiver plays aT
2 and both types of the sender play only aH

1 and 
aL

1 with positive probability, or the receiver plays aN
2 and both types of the sender play aL

1 for 
sure. As a result, the sender’s stage-game payoff in every period belongs to the convex hull of 
{vH , vL, vN }. Since the sender’s continuation value in period 0, u(ρ), also belongs in this convex 
hull, his promised continuation value at every history can be written as a linear combination of 
vH , vL, and vN .

Let η(ht ) ∈ [0, 1] be the probability of type c1 at ht , which I call the sender’s reputation at ht . 
Let η(ht , (ωt , rt )) be the probability of type c1 in period t + 1 after observing (ωt , rt ) at ht .

Active learning phase: The constructed equilibrium starts from an active learning phase, in 
which the receivers play the trusting strategy aT

2 for sure and both sender types mix between the 
honest strategy aH

1 and the lying strategy aL
1 . The low-cost type c2 plays aH

1 with lower prob-
ability than the high-cost type c1. This implies that the sender’s reputation remains unchanged 
12
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when the realized state is good, his reputation increases when he recommends the bad action in 
the bad state, and his reputation decreases when he recommends the good action in the bad state.

In order to make the sender’s reputation easy to compute, I construct the sender’s mixing 
probabilities in the active learning phase such that his reputation depends only on the number of 
times that he truthfully reveals the bad state and the number of times that he lies about the bad 
state. The sender’s mixing probabilities also need to satisfy the receiver’s incentive constraint. 
Since the receivers play aT

2 , the unconditional probability that the sender plays aH
1 is no less than 

1 − ρ∗.
I show that both objectives can be achieved when type c1 plays aH

1 at ht with probability 
η(ht )−η(ht ,(b,g))

η(ht ,(b,b))−η(ht ,(b,g))
· η(ht ,(b,b))

η(ht )
, and type c2 plays aH

1 at ht with probability η(ht )−η(ht ,(b,g))
η(ht ,(b,b))−η(ht ,(b,g))

·
1−η(ht ,(b,b))

1−η(ht )
, where η(ht , (b, g)) and η(ht , (b, b)) can be computed from η(ht ) via the following 

two equations:

η(ht , (b, g)) − η∗ = (
1 − λ(1 − ρ∗)

)
(η(ht ) − η∗), (4.3)

η(ht , (b, b)) − η∗ = (1 + λρ∗)(η(ht ) − η∗), (4.4)

for some constant η∗ > 0 that is strictly less than the prior probability of type c1 and some 
constant λ > 0 that is close to 0. One can verify using Bayes rule that the receivers’ posterior 
beliefs are indeed given by (4.3) and (4.4) when the two types mix according to the probabilities 
I constructed.

I verify the receiver’s incentive to play aT
2 at ht . Since the receivers’ belief is a martingale, we 

have E[η(ht , (ωt , rt ))|ht ] = η(ht ). Equations (4.3) and (4.4) imply that η(ht ,(b,b))−η(ht )
η(ht )−η(ht ,(b,g))

= ρ∗
1−ρ∗ . 

Therefore, the probability that the sender reveals the bad state, i.e., (ωt, rt ) = (b, b), divided by 
the probability that the sender lies about the bad state, i.e., (ωt, rt ) = (b, g), is 1−ρ∗

ρ∗ . This implies 

that the unconditional probability that the sender plays his honest strategy aH
1 is 1 − ρ∗.

The sender’s reputation is easy to compute. Recall that η∗ is a constant that is strictly less than 
the sender’s reputation in period 0. According to (4.3) and (4.4), if the sender revealed the bad 
state K1 times and lied about the bad state K2 times before reaching ht , then his reputation at ht

satisfies:

η(ht ) − η∗ =
(
η(h0) − η∗) ·

(
1 + λρ∗)K1 ·

(
1 − λ(1 − ρ∗)

)K2
. (4.5)

The active learning phase ends in two circumstances. First, when the sender revealed the bad 
state many times before, in the sense that according to (4.5), his reputation will be greater than 
1 if he reveals the bad state again. Second, when the sender lied about the bad state many times 
before, in which case the receivers cannot always trust him as they did in the active learning 
phase. This is because in order to provide the sender an incentive to reveal the bad state, he must 
be punished for lying and the only way to punish him is by trusting him with lower frequency in 
the future.

Perfect reputation phase: When η(ht ) is close enough to 1 that (1 +λρ∗)(η(ht ) −η∗) ≥ 1 −η∗, 
i.e., the sender’s reputation in the next period will exceed 1 after he reveals the bad state again, 
then the receiver plays aT

2 , the low-cost type c2 plays aL
1 for sure, and the high-cost type c1 mixes 

between aL
1 and aH

1 . Hence, the receiver’s posterior belief after the sender reveals the bad state 
satisfies:

η(ht , (b, b)) − η∗ = 1 − η∗ ≤ (1 + λρ∗)(η(ht ) − η∗). (4.6)
13
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I choose the probability with which type c1 plays his lying strategy aL
1 so that after the receiver 

observes the sender lying about the bad state at ht , her belief in period t + 1 satisfies (4.3).
Hence, the sender’s reputation remains unchanged if the realized state is good, his reputation 

reaches 1 after he truthfully reveals the bad state, and his reputation decreases after he lies about 
the bad state. Since belief is a martingale, we have E[η(ht, (ωt , rt ))|ht ] = η(ht ). According to 
(4.3) and (4.6), η(ht ,(b,b))−η(ht )

η(ht )−η(ht ,(b,g))
≤ ρ∗

1−ρ∗ . Hence, the probability that the sender reveals the bad 
state, i.e., (ωt , rt ) = (b, b), divided by the probability with which the sender lies about the bad 
state, i.e., (ωt , rt ) = (b, g), is no less than 1−ρ∗

ρ∗ . This implies that the probability that the sender 

plays aH
1 at this history is no less than 1 − ρ∗. Thus, the receiver has an incentive to play aT

2 at 
ht .

If the sender lies about the bad state at such a history, his reputation can be computed via 
(4.5), which is the same formula as in the active learning phase. If the sender truthfully reveals 
the bad state at such a history, his reputation reaches 1 and the continuation play consists only 
of two stage-game strategy profiles: (aH

1 , aT
2 ) and (aL

1 , aN
2 ). Under such a continuation play, the 

receivers’ myopic incentive constraints are satisfied, and the sender’s continuation value after his 
reputation reaches 1 belongs to the convex hull of {vN, vH }, which is depicted as the red line in 
Fig. 2.

Since the sender’s continuation value in the active learning phase belongs to the convex hull 
of {vN, vL, vH }, there exists a continuation value that belongs to the convex hull of {vN, vH } so 
that (i) type c1 is indifferent between lying about the bad state and truthfully revealing the bad 
state, and (ii) type c2 prefers to lie about the bad state. This is because when type c1 is indifferent 
between a payoff that belongs to the convex hull of {vN, vH } and a payoff that belongs to the 
convex hull of {vN, vH , vL}, type c2 prefers the latter since it is higher in the vertical dimension.

Low value phase: The active learning phase also ends if the sender lied about the bad state too 
many times in the past. In order to determine when to stop the active learning phase, we need 
to keep track of the sender’s continuation value v(ht ). Since the sender’s equilibrium payoff 
belongs to the convex hull of {vN, vH , vL} and the sender’s stage-game payoff in each period is 
either vN , vH , or vL, his promised continuation value at ht , denoted by v(ht ), can be written as 
a linear combination of vH , vL, and vN . Hence, there exist real numbers pH(ht ), pL(ht ), and 
pN(ht ) which sum up to one such that:

v(ht ) = pH (ht )vH + pL(ht )vL + pN(ht )vN.

Therefore, keeping track of the sender’s continuation value is equivalent to keeping track of the 
weights pH (ht ), pL(ht ), and pN(ht ). I set v(h0) ≡ u(ρ) since u(ρ) is the sender’s equilibrium 
payoff. Equation (4.2) implies that pH(h0) = (1−ρ)c1

ρ(1−c1)+c1
, pL(h0) = ρc1

ρ(1−c1)+c1
, and pN(h0) =

ρ(1−c1)
ρ(1−c1)+c1

.
In the active learning phase, the sender’s continuation value in period t + 1 depends on his 

continuation value in period t and the realization of (ωt , rt ). I list some requirements that the 
sender’s continuation value in period t + 1 needs to satisfy. First, since both types mix between 
aH

1 and aL
1 , they must be indifferent between revealing and lying about the bad state. Second, 

when the realized state is good, the sender’s continuation value remains unchanged given that his 
reputation remains unchanged. Third, the sender’s stage-game payoff in period t and his contin-
uation value in period t + 1 must deliver him payoff v(ht ) in period t . These three requirements 
pin down the sender’s continuation value in period t +1, which is given by v(ht , (g, g)) = v(ht ),
14
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v(ht , (b, g)) = pH (ht )

δ̂
vH + pL(ht ) − (1 − δ̂)

δ̂
vL + pN(ht )

δ̂
vN,

v(ht , (b, b)) = pH (ht ) − (1 − δ̂)

δ̂
vH + pL(ht )

δ̂
vL + pN(ht )

δ̂
vN,

where ̂δ ≡ δ
1−p
1−δp

. Intuitively, when the sender’s lying cost is common knowledge, his equilibrium 

payoff belongs to the convex hull of {vH , vN }, i.e., the red line segment in Fig. 2. When the 
sender has private information about his lying cost, he can attain payoffs strictly above the red 
line, i.e., payoffs where the weight of vL, denoted by pL(ht ), is bounded away from zero. Each 
time the sender lies about the bad state, the weight of vL in his continuation value decreases, and 
he should not be allowed to lie while obtaining the receiver’s trust after the weight on vL is close 
to or equal to 0.

Formally, the active learning phase ends at history ht as long as pL(ht ) ≤ 1 − δ̂. After pL(ht )

reaches 0,6 in every period of the continuation game, either the receiver plays aT
2 and all types 

of the sender play aH
1 , or the receiver plays aN

2 and all types of the sender play aL
1 . Whether 

(aH
1 , aT

2 ) or (aL
1 , aN

2 ) will be played in each period depends on the sender’s continuation value. In 
particular, the sender’s continuation value in the beginning of this phase is a convex combination 
of vH and vN . Since his stage-game payoff is vH when (aH

1 , aT
2 ) is played and is vN when 

(aL
1 , aN

2 ) is played, one can determine the play in each period using the algorithm in Fudenberg 
and Maskin (1991). The idea is that players play (aH

1 , aT
2 ) if the continuation value is too low 

and play (aL
1 , aN

2 ) if the continuation value is too high, so that the sender’s continuation value is 
always close to his continuation value when play first enters the low-value phase.

Verifying incentive constraints: I have verified the receiver’s incentive constraints when con-
structing the sender’s mixing probabilities. The construction of the sender’s continuation value 
ensures that his incentive constraints in recursive form are satisfied at every history.

What remains to be verified is the promise-keeping constraint, that type cj ’s discounted aver-
age payoff equals the j th entry of u(ρ) when players play according to the constructed strategies. 
This is implied by the sender’s incentive constraints in sequential form. In order to verify the 
sender’s incentive constraints in sequential form, I only need to show that the continuation value 
promised to the sender belongs to the convex hull of {vN, vH , vL}. When the promised continu-
ation values are bounded, Theorem 9.2 in Stokey et al. (1989) shows that the sender’s incentive 
constraints in recursive form is sufficient for his incentive constraints in sequential form.

Intuitively, in the active learning phase, the sender’s promised continuation value increases 
every time he truthfully reveals the bad state. Two arrangements in my construction prevent 
the sender’s promised continuation value from exploding. First, the sender’s continuation value 
belongs to the convex hull of {vN, vH } after his reputation reaches 1. Second, the sender’s con-
tinuation value belongs to the convex hull of {vN, vH } after he lied about the bad state too 
frequently in the past. Therefore, in order to make sure that the sender’s continuation value is 
bounded, his reputation needs to reach 1 before his promised continuation value escapes the 

6 In the main text, I only describe players’ behaviors at histories that satisfy either pL(ht ) ≥ 1 − δ̂ or pL(ht ) = 0. I 
refer the technical details to Appendix D which discusses players’ strategies at histories where 0 < pL(ht ) < 1 − δ̂, i.e., 
the remaining convex weight on vL is strictly positive but is strictly less than the weight of the current period 1 − δ̂. 
Appendix D also discusses technical details when the sender’s continuation value reaches the vertical axis, that is, type 
c1’s individual rationality constraint will be violated if the receiver trusts the sender in the current period.
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convex hull of {vN, vH , vL}. How fast can the sender build his reputation and how fast can his 
promised continuation value increase?

1. In order to provide the receivers an incentive to trust the sender in the active learning phase, 
the sender needs to play aH

1 with probability at least 1 − ρ∗. This implies that the ratio 
between the magnitude of reputation increase after the sender truthfully reveals the bad state 
and the magnitude of reputation decrease after the sender lies about the bad state must be 
no more than ρ∗

1−ρ∗ . For example, when the sender’s reputation in the active learning phase 
satisfies (4.3) and (4.4) with λ > 0 small enough, the sender’s reputation increases over time 
when he lies about the bad state with frequency less than ρ∗.

2. Suppose the sender’s continuation value in period 0 satisfies pL(h0)

pH (h0)
<

ρ∗
1−ρ∗ . As long as 

the ratio between the frequency of outcome (ωt , rt ) = (b, g) and the frequency of outcome 
(ωt , rt ) = (b, b) is more than ρ∗

1−ρ∗ , the weight of vL divided by the weight of vH in the 

sender’s promised continuation value must be no more than ρ∗
1−ρ∗ , as implied by the sender’s 

incentive constraints in recursive form. Hence, the sender’s continuation value decreases 
over time if he lies about the bad state with frequency more than ρ∗.

The above argument also provides a heuristic explanation for why one cannot use my techniques 

to construct equilibria in which the sender’s equilibrium payoff satisfies pL(h0)

pH (h0)
>

ρ∗
1−ρ∗ . This is 

because when the sender lies about the bad state with frequency slightly above ρ∗, his reputation 
declines over time but the convex weight of vL in his continuation value increases. If this is the 
case, the sender’s continuation value explodes, which cannot be delivered by any equilibrium in 
the continuation game.

Long-run dynamics: The receivers may not learn the sender’s type in the long run. This is 
because when play enters the low value phase, the sender’s reputation is strictly between η∗ and 
1. After that, both types of the sender will use the same strategy in the continuation game. This 
does not contradict the conclusion of Cripps et al. (2004) since their impermanent reputation 
result requires full support monitoring, which is violated in my model.

The sender’s continuation value will belong to the convex hull of {vH , vN } in the long run, 
regardless of the frequency with which he lies about the bad state. This is because when he lies 
with frequency less than ρ∗, his reputation will reach 1, and when he lies with frequency more 
than ρ∗, the weight of vL in his continuation value will reach 0. This, together with the fact 
that the sender’s payoff is close to v∗, implies that (i) the active learning phase will terminate 
almost surely in finite time, (ii) only outcomes (aH

1 , aT
2 ) and (aL

1 , aN
2 ) occur in the long run and 

in expectation, outcome (aL
1 , aT

2 ) will disappear in finite time, and (iii) the length of the active 
learning phase goes to infinity as δ → 1, so that the sender can obtain payoff strictly greater than 
p from outcome (aL

1 , aT
2 ).

5. Equilibrium payoffs with ethical types

This section allows some types to be ethical. Let k ∈ {1, 2, ..., n} be such that ci < 1 if and 
only if i ≥ k. By definition, types ck, ..., cn are called non-ethical types and types c1, ..., ck−1
are called ethical types. Section 5.1 shows that when the sender can send cheap talk messages 
in addition to recommending an action, there exists an equilibrium in which all sender types 
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approximately attain their optimal commitment payoffs when the set of types is rich enough. 
Section 5.2 shows that when the sender cannot send cheap talk messages, there exists an equi-
librium where the non-ethical types attain their optimal commitment payoffs if and only if the 
ethical types’ lying costs are not too high.

5.1. Attaining commitment payoff with cheap talk communication

Let

v
†
j ≡

{
1 + ck − cj

2p + ck(1 − 2p)

}
p for every j ∈ {k, ..., n}. (5.1)

Compared to v∗
j defined in (4.1), the formula for v†

j replaces the highest lying cost c1 with the 

highest lying cost among the non-ethical types ck . The properties of v†
j are similar to those of v∗

j . 

First, v†
k = p. Second, v†

j > p for every j > k. Third, v†
j converges to v∗∗

j as ck converges to 1.

Theorem 2. Suppose |M| ≥ 2. For every ε > 0, there exists δ ∈ (0, 1) such that for every δ > δ, 
there exists an equilibrium in which the non-ethical types’ payoffs are within an ε-neighborhood
of (v†

k , ..., v
†
n) and the ethical types attain their optimal commitment payoff p.

Theorem 2 implies that when the set of types is rich enough in the sense that for every ε > 0, 
there exists a type whose lying cost belongs to the interval [1 − ε, 1], then all types of the sender 
can approximately attain their optimal commitment payoffs as their discount factor approaches 
1.

The constructive proof of Theorem 2 follows from the proof of Theorem 1. Consider an equi-
librium such that in period 0, the receiver follows the sender’s recommendation, and all types of 
the sender recommend the receiver-optimal action and use the cheap talk message to truthfully 
communicate whether he is ethical. The receivers ignore the sender’s cheap talk messages after 
period 0.

If the sender reports that he is ethical in period 0, then starting from period 1, players coordi-
nate on a continuation equilibrium in which the sender recommends the receiver’s optimal action 
and the receivers follow the sender’s recommendation on the equilibrium path. If the sender’s 
recommendation does not match the realized state, then players coordinate on the equilibrium in 
which the sender’s continuation value is close to v. A patient sender has no incentive to lie since 
his equilibrium payoff p is bounded above his continuation value after he deviates.

If the sender reports that he is non-ethical in period 0, then starting from period 1, players 
coordinate on the equilibrium constructed in Theorem 1 with type ck being the highest-cost type. 
Type ck’s payoff is p, which implies that he is indifferent between reporting that he is ethical and 
reporting that he is non-ethical in period 0. Non-ethical types with lying cost strictly lower than 
ck receives a continuation value that is strictly greater than p, which implies that they strictly 
prefer to report that they are non-ethical. The ethical types have no incentive to report that they 
are non-ethical since their equilibrium payoff p equals their optimal commitment payoff.

5.2. Attaining commitment payoff without cheap talk messages

This section examines the case where |M| = 1, which is equivalent to a model where the 
sender can only make an action recommendation in each period but cannot send cheap talk 
messages.
17



H. Pei Journal of Economic Theory 210 (2023) 105668
Unlike the case with only non-ethical types, there is no equilibrium in which all types attain 
their highest equilibrium payoffs when ethical and non-ethical types coexist. Intuitively, the eth-
ical types can attain their highest equilibrium payoff if and only if they always recommend the 
receiver-optimal action. In every such equilibrium, the non-ethical types cannot lie while pooling 
with the ethical types, in which case the non-ethical types’ payoffs cannot exceed p.

My subsequent analysis focuses on the payoffs of the non-ethical types. The motivation for 
this is twofold. First, the incentives of these types are similar to the sender’s incentive in the 
leading example of Kamenica and Gentzkow (2011): They have a conflict of interest with the 
receiver and strictly prefer one action regardless of the state, even taking their costs of lying into 
account. Second, the non-ethical types cannot attain their optimal commitment payoffs in the 
repeated communication game without any private information about their lying costs. Hence, 
it is important to provide a foundation for the commitment assumption in Bayesian persuasion 
models for these types.

My next result provides a necessary and sufficient condition under which all non-ethical types 
can attain their optimal commitment payoffs. I also show that when my condition is violated, no 
non-ethical type can attain his optimal commitment payoff in any Nash equilibrium.

I start from listing these conditions and explain intuitively why they are necessary. First, if any 
non-ethical type can attain his optimal commitment payoff, then there exists an ethical type c ∈
C ∩ [1, +∞) whose payoff is no more than the value of the following constrained optimization 
problem:

v(c) ≡ max
γ∈�(A1×A2)

∑
(a1,a2)∈A1×A2

γ (a1,a2)u1(c,a1,a2), (5.2)

subject to the constraint that there exists ̂c ∈ C ∩ [0, 1) such that:∑
(a1,a2)∈A1×A2

γ (a1,a2)u1(̂c,a1,a2) ≥ p + p(1 − ĉ). (5.3)

Intuitively, Theorem 1 implies hat in a repeated game without any ethical type, every non-ethical 
type’s equilibrium payoff must be bounded below his optimal commitment payoff. In order to 
attain his optimal commitment payoff, every non-ethical type needs to imitate some ethical type, 
so he can attain his optimal commitment payoff when he plays some ethical type’s best reply.

Second, for every ethical type c ∈ C ∩ [1, +∞), his equilibrium payoff is no less than v(c), 
which is defined as his payoff from imitating the type who has the highest lying cost c1:

v(c) ≡ min
γ∈�(A1×A2)

∑
(a1,a2)∈A1×A2

γ (a1,a2)u1(c,a1,a2), (5.4)

subject to ∑
(a1,a2)∈A1×A2

γ (a1,a2)u1(c1,a1,a2) ≥ 0, (5.5)

a2 ∈ arg max
a′

2∈A2

u2(γ (·|a2),a′
2) for every a2 ∈ A2 in the support of γ. (5.6)

The first constraint is necessary since the ethical type can secure payoff 0 by recommending 
the receiver-optimal action, regardless of the receiver’s response. The second constraint comes 
from Propositions 2 and 3, that under type c1’s equilibrium strategy, the receiver’s stage-game 
strategy must be a best reply to the conditional distribution over the sender’s stage-game strategy.
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Therefore, in order for some non-ethical type to attain his optimal commitment payoff in 
some equilibrium, there must exist an ethical type c such that his payoff is no more than v(c)

and is no less than v(c). Hence, it is necessary that v(c) ≥ v(c) for some c ∈ C ∩ [1, +∞). 
I solve the two constrained optimization problems and obtain that v(c) ≥ v(c) if and only if 
c1(c − 1) ≤ 2. Let c∗ ≡ min

{
C ∩ [1, +∞)

}
, which is the lowest lying cost among the ethical 

types. Then c1(c − 1) ≤ 2 is true for at least one ethical type if and only if c1(c
∗ − 1) ≤ 2. The 

next result shows that c1(c
∗ − 1) ≤ 2 is both necessary and sufficient for (i) at least one non-

ethical type can attain his optimal commitment payoff and (ii) all non-ethical types can attain 
their optimal commitment payoffs.

Theorem 3. Suppose C contains at least one ethical type and at least one non-ethical type.

1. If c1(c
∗ − 1) > 2, then there exist η > 0 and δ ∈ (0, 1) such that if δ > δ, then in every 

equilibrium, each non-ethical type ck ∈ C ∩ [0, 1) obtains a payoff of no more than v∗∗
k − η.

2. If c1(c
∗ − 1) ≤ 2, then for every ε > 0, there exists δ ∈ (0, 1) such that when δ > δ, there 

exists an equilibrium in which every non-ethical type ck ∈ C ∩ [0, 1) obtains a payoff of at 
least v∗∗

k − ε.

Theorem 3 implies that the non-ethical types can attain their optimal commitment payoffs if 
and only if the highest lying cost c1 is no more than 2

c∗−1 . In the case where there is only one 
ethical type, i.e., c1 ≥ 1 and cj < 1 for every j ≥ 2, the non-ethical types c2, ..., cn can attain 
their optimal commitment payoffs if and only if c1 = c∗ ∈ [1, 2] (Fig. 3).

This leads to a somewhat interesting observation that the highest equilibrium payoffs of the 
non-ethical types is non-monotone with respect to the receiver’s belief about the sender’s lying 
cost. Moreover, introducing another ethical type who has a high lying cost can lower the non-
ethical types’ equilibrium payoffs. For example, suppose there are two types with c2 ∈ (0, 1) and 
c1 ∈ (1, 2). Then Theorem 3 implies that a type-c2 sender can attain his optimal commitment 
payoff v∗∗

2 in some equilibria. Next, let us introduce another type c1 with c1 > c1 and c1(c1 −
1) > 2. According to Theorem 3, the payoff for type c2 is bounded below v∗∗

2 in all equilibria.
The above observation is driven by an outside option effect that hinges on the ethical types’ 

incentive constraints. Intuitively, when type c1 exists, type c1 has an outside option of deviating 
to the equilibrium strategy of type c1. Since type c1 receives at least his minmax payoff 0 from his 
equilibrium strategy, type c1’s outside option leads to a lower bound on his equilibrium payoff. 
Since type c1 is ethical, his payoff from sending message g when ωt = b is strictly less than his 
minmax payoff. This implies that his outside option leads to an upper bound on the equilibrium 
frequency with which he can lie about the bad state. An increase in c1 increases the outside 
option for type c1 sender, which reduces the frequency with which he is willing to lie about 
the bad state in equilibrium. This reduces the equilibrium payoff for type c2, since it lowers the 
frequency with which he can lie about the bad state and induces the receiver to choose the good 
action while pooling with type c1.

The proof is in a working paper version (Pei, 2022). I explained the proof of the first part 
when I introduce the linear programs. For the rest of this section, I explain the constructive proof 
of the second part using an example with two types where type c2 is non-ethical and type c1 is 
ethical.

I construct an equilibrium in which the sender’s payoff is u(ρ) ≡ ρvL + (1 − ρ)vH for some 
ρ ∈ (0, ρ∗). Similar to the proof of Theorem 1, the equilibrium starts from an active learning 
phase. Learning will stop either when the sender’s reputation, defined as the probability of the 
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Type c1’s payoff

Type c2’s payoff

vH

vL

vN

Fig. 3. An example where 0 < c2 < 1 < c1 and c1(c1 − 1) ≤ 2. The goal is to attain the payoff represented by the blue 
dot in an equilibrium where the sender’s stage-game payoff at every history is either vL , vH , or vN .

ethical type, reaches 1, or when his continuation value reaches the red line, i.e., the convex hull 
of {vN, vH }.

In the active learning phase, the receivers play aT
2 and both types of the sender mix between 

aH
1 and aL

1 . The probability with which type θ1 plays aH
1 is slightly higher compared to type θ2. 

As a result, the sender’s reputation remains unchanged when the realized state is good, increases 
when he reveals the bad state, and decreases when he lies about the bad state. The sender’s 
continuation value is u(ρ) in period 0, does not change if the realized state is good, moves 
toward vH if he lies about the bad state, and moves toward vL if he reveals the bad state.

The active learning phase ends when the sender’s continuation value reaches vH , which is the 
case when he lied about the bad state too many times before. When the sender’s continuation 
value reaches vH , both types of the sender play aH

1 and the receiver plays aT
2 .

The active learning phase also ends when the sender’s reputation reaches 1, after which the 
sender’s continuation value is the projection of his current continuation value to the red line. 
This ensures that type θ1 is indifferent between acquiring a perfect reputation by revealing the 
bad state and remaining in the active learning phase by lying about the bad state, while type θ2

strictly prefers to lie about the bad state. After the sender’s reputation reaches one, the continua-
tion play in every period is either (aH

1 , aT
2 ) or (aL

1 , aN
2 ). The sequence of (aH

1 , aT
2 ) and (aL

1 , aN
2 ) is 

constructed using the algorithm in Fudenberg and Maskin (1991) in order to deliver the promised 
continuation value when the sender enters the perfect reputation phase.

One thing to note is that in the active learning phase, (i) the non-ethical type is rewarded when 
he truthfully reveals the bad state and is punished when he lies about the bad state, and (ii) the 
ethical type is penalized for truthfully revealing the bad state and is rewarded for lying about the 
bad state. This is inevitable in every equilibrium where the non-ethical type attains his optimal 
commitment payoff. The intuition is that the ethical type prefers to reveal the bad state, but the 
non-ethical type can obtain payoff strictly greater than p only when he pools with the ethical type 
while the ethical type lies. Hence, the ethical types need to lie at some histories, and punishments 
after revealing the bad state is required in order to provide them an incentive to lie.
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6. Conclusion & discussions

This paper provides a justification for the commitment assumption in Bayesian persuasion 
models using a repeated communication game where it is common knowledge that the sender 
cannot commit to disclosure policies. When the sender has persistent private information about 
his cost of lying, I show that a sufficiently patient sender can approximately attain his optimal 
commitment payoff as long as the receivers’ prior belief assigns positive probability to a sender-
type whose lying cost is close to the sender’s private benefit from the good action.

This paper is related to Pei (2021) who studies a repeated incomplete information game be-
tween a patient seller and a sequence of myopic consumers where the seller has persistent private 
information about his cost of effort. There are several differences between the current paper and 
Pei (2021), which introduce new challenges to characterize the patient sender’s equilibrium pay-
off.

First, the sender privately observes an i.i.d. state in the current model. There is imperfect 
monitoring since the receiver cannot observe the sender’s behavior in the good state if the realized 
state is bad and vice versa. This introduces new challenges in constructing continuation values 
since they depend not only on the sender’s stage-game strategies but also on the stochastic state. 
Second, in Pei (2021)’s model, there are two pure action profiles that are incentive compatible 
for the consumers, which are (high effort, trust) and (low effort, no trust), both of which lead 
to a payoff that is strictly individually rational for the seller. By contrast, one of the incentive 
compatible pure action profiles in the current model (aL

1 , aN
2 ) is not individually rational for 

the sender. As a result, I need to include a rebounding phase in my constructive proof, which 
ensures that the sender’s continuation value will return to something positive once his promised 
continuation value approaches the vertical axis. Third, the lack-of monotone-supermodularity in 
players’ stage-game payoffs introduces new challenges to show Proposition 4. For example, it is 
not true that when a high-cost type finds it optimal to play aL

1 in every period, then a low-cost 
type will play aL

1 with probability one at every on-path history. This is because there are other 
strategies of the patient player, such as a strategy that lies in every state, that incur higher costs 
of lying. Fourth, the current paper examines the effects of ethical types on the non-ethical types’ 
equilibrium payoffs and shows that the non-ethical types’ highest equilibrium payoffs are not 
monotone with respect to the receiver’s belief about his lying cost. I identify a novel outside 
option effect, which is absent in Pei (2021).
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Appendix A. Proof of Proposition 1

Fix any Nash equilibrium σ ≡ (
(σc)c∈C, σ2

)
. Let Hσ be the set of histories that occur with 

positive probability under σ . Let C(ht ) be the support of the receiver’s posterior belief after 
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observing history ht but before observing (rt , mt). I show Proposition 1 using an induction ar-
gument on |C(ht )|.

Let σc(h
t )(ω) ∈ �(R × M) be the equilibrium distribution over type c’s recommendations 

and messages at history ht when the realized state is ω. Since p < 1/2, there exists (r, m) that is 
sent with positive probability by at least one type such that the receiver has a strict incentive to 
play b after receiving (r.m). For every c ∈ C, I define ̃σc based on type c’s equilibrium strategy 
σc:

σ̃c(h
s)(ω) ≡

⎧⎨⎩
(r,m) if σc(h

s)(ω) assigns positive probability to (r,m)

and σ2(h
s)(r,m) = b

σc(h
s)(ω) otherwise.

(A.1)

By definition, σ̃c is type c’s best reply to σ2, so his payoff from (̃σc, σ2) equals his equilibrium 
payoff.

Step 1: Suppose |C(ht )| = 1. Then C(hs) = C(ht ) for every hs ∈ Hσ that satisfies hs � ht . Let 
c be the only type in C(ht ). If type c plays σ̃c and the receivers play σ2, then by construction, 
type c’s stage-game payoff at every on-path history after ht cannot exceed p. This implies that 
his continuation value at ht cannot exceed p.

Step 2: I show that for every k ∈ {1, 2, ..., n}, if the conclusion holds for every history hτ

that satisfies |C(hτ )| ≤ k, then it also holds for every ht that satisfies |C(ht )| = k + ξ , where 
ξ ∈ {1, ..., n} is the smallest positive integer such that there exists an on-path history ht where 
|C(ht )| = k + ξ . Since there are n types, there exists a unique ξ , which is at most n − 1 and is at 
least 1.

Let ci be the highest lying cost in C(ht ). Suppose by way of contradiction that type ci’s 
continuation value at ht , denoted by v, is strictly greater than p. Since ̃σci

is type ci ’s best reply, 
his discounted average payoff from (̃σci

, σ2) is v at ht . Let H(̃σci
,σ2) be the set of histories that 

occur with positive probability under (̃σci
, σ2). Type ci ’s stage-game payoff from (̃σci

, σ2) is 
no more than p until play reaches history hs(� ht ) where there exists (r∗, m∗) ∈ R × M that 
satisfies:

• under strategy σ2, the receiver plays g with positive probability after receiving (r∗, m∗) at 
hs ,

• σ̃ci
(hs) sends (r∗, m∗) for sure at history hs .

I call such histories special histories. Since p < 1/2, there exists (r, m) �= (r∗, m∗) such that 
(r.m) is sent with positive probability at (hs, ω = b) and the receiver strictly prefers b upon re-
ceiving (r, m). Since σ̃ci

(hs)(ω = b) = (r∗, m∗), type ci sends (r, m) with zero probability at 
(hs, ω = b) under his equilibrium strategy σci

. Hence, |C(hs, r, m, ω = b)| ≤ k. Let cj denote 
the highest lying cost in C(hs, r, m, b). By definition, cj < ci and cj sends (r, m) with positive 
probability at hs when the state is b. The induction hypothesis implies that type cj ’s continua-
tion value after observing b at hs is no more than δp. Since ci > cj , type ci ’s payoff from any 
strategy is weakly lower than type cj ’s payoff from the same strategy. This implies that type ci’s 
continuation value after observing state b at hs is no more than δp. Hence, type ci’s continuation 
value at hs before observing ωs satisfies:

Vci
(hs) ≤ p

(
(1 − δ) + δVci

(hs,ωs = g)
)

+ (1 − p)δp = p(1 − δp) + δpVci
(hs,ωs = g).
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(A.2)

If Vci
(ht ) = v > p, then there exists a special history hs � ht such that

Vci
(hs) ≥ p + (v − p)δt−s . (A.3)

In order to satisfy (A.3), inequality (A.2) implies that there exists a special history hτ that suc-
ceeds (hs, ωs = g) such that type ci ’s continuation value at hτ is at least p + (v − p)δt−s−1. 
Iterate this process, the required continuation value at special histories will exceed 1. This leads 
to a contradiction since the sender’s highest feasible payoff in the stage game is 1. This contra-
diction implies that type ci’s continuation value at ht is no more than p if there are k + ξ types in 
the support of the receivers’ belief at ht . This together with the induction hypothesis establishes 
Proposition 1.

Appendix B. Proof of Proposition 2

For every hτ ∈ Hσ , let σcj
(hτ ) ∈ �(A1) be the distribution of sender stage-game strategies 

prescribed by σcj
at history hτ , and let α1(h

τ ) ∈ �(A1) be the receiver’s belief about the sender’s 
stage-game strategy at hτ . Theorem 1 in Gossner (2011) implies the following inequality:

E
(σcj

,σ2)
[ +∞∑

τ=0

d(σcj
(hτ )||α1(h

τ ))
]

≤ − logπj , (B.1)

where d(·||·) is the Kullback-Leibler divergence and πj is the prior probability of type cj .
Inequality (B.1) implies that for every ξ > 0, the expected number of periods where 

d(σcj
(hτ )||α1(h

τ )) > ξ is no more than T (ξ) ≡
⌈− logπj

ξ

⌉
. Let σ2(h

τ ) ∈ �(B) be the distribu-

tion over the receiver’s stage-game strategies prescribed by σ2 at hτ . Let Aσ2
2 (hτ ) be the support 

of σ2(h
τ ). Since the receiver plays a stage-game best reply to her expectation over the sender’s 

stage-game strategy, we have:

E(σcj
,σ2)

[ ∞∑
τ=0

(1 − δ)δτ 1
{

a2 ∈ Aσ2
2 (hτ ) but a2 does not best reply to any α1

with ||α1 − σcj
(hτ )|| ≤ √

2ξ
}]

≤ E
(σcj

,σ2)
[ ∞∑

τ=0

(1 − δ)δτ 1
{

b ∈ Bσ2(hτ ) but a2 does not best reply to any α1

with d(σcj
(hτ )||α1) ≤ ξ

}]
≤ E(σcj

,σ2)
[ ∞∑

τ=0

(1 − δ)δτ 1
{
d(σcj

(hτ )||α1(h
τ )) > ξ

}]
≤ 1 − δT (ξ). (B.2)

The first inequality comes from the Pinsker’s inequality. The second inequality holds since a2
best replies to α1(h

τ ), and the third inequality comes from (B.1).
Recall the definition of γ j ∈ �(A1 × A2) in (3.1). Let αj

2 be the marginal distribution of γ j

on A2, and let γ j (·|a2) be the distribution over A2 conditional on a2 when the joint distribution is 
γ j . Let A1(a2) ⊂ �(A1) be the set of sender’s mixed stage-game strategies that a2 best replies 
to. Consider any a2 ∈ A2 with the property that the Hausdorff distance between γ j(·|a2) and 
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A1(a2) is more than ε. I denote this distance by D. For every η > 0, let Aη
1(a2) be the set of 

elements in �(A1) whose Hausdorff distance to A1(a2) is no more than η. Since the Hausdorff 
distance between any two points in �(A1) is at most 1, for any ρ ∈ �(�(A1)) that has countable 
support {αi

1}i∈N , and satisfies 
∑

i∈N ρ(αi
1)α

i
1 = α

j
1(·|a2), we have 

∑
αi

1 /∈Aη
1(a2)

ρ(αi
1) ≥ D−η

1+D−η
. 

This implies that

E(σcj
,σ2)

[ ∞∑
τ=0

(1 − δ)δτ 1
{

a2 ∈ Aσr

2 (hτ ) but a2 doesn’t best reply to α1

with ||α1 − σcj
(hτ )|| ≤ η

}]
≥ α

j

2(a2)(D − η)

1 + D − η
. (B.3)

Let η ≡ D
2 and ξ ≡ D2

8 , we have 
√

2ξ = D
2 . Therefore, (B.2) and inequality (B.3) together imply 

that for every strategy profile that is a Nash equilibrium under discount factor δ, we have:

α
j
2(a2) ≤

(
1 − δT ( D2

8 )
)1 + D/2

D/2
. (B.4)

Since D ≥ ε, there exists δ ∈ (0, 1) such that the right-hand-side of (B.4) is less than ε for every 
δ ∈ (δ, 1). That is to say, for every a2 ∈ A2 such that a2 is not an ε-best reply to γ j (·|a2), the 
marginal distribution αj

2 assigns probability less than ε to a2.

Appendix C. Proof of Proposition 3

Recall that

v∗
j ≡ max

γ j ∈�(A1×A2)

∑
(a1,a2)∈A1×A2

γ j (a1,a2)u1(cj ,a1,a2),

subject to ∑
(a1,a2)∈A1×A2

γ j (a1,a2)u1(c1,a1,a2) ≤ p for every j ∈ {1,2, ..., n}, (C.1)

and

a2 ∈ arg max
a′

2∈A2

u2(γ
j (·|a2),a′

2) for every a2 ∈ A2 in the support of γ j . (C.2)

I only need to show that lim supε↓0 vε
j ≤ v∗

j . This is trivial for the ethical types since vε
j = v∗

j = p

for every cj ≥ 1. I focus on the non-ethical types for the rest of this proof.
Let �ε be the set of γ ∈ �(A1 × A2) that satisfies constraint (C.1) and the ε-relaxed version 

of constraint (C.2). Let � be the set of γ ∈ �(A1 × A2) that satisfies constraints (C.1) and (C.2). 
I show that for every η > 0, there exists ε > 0, such that for every γ ε ∈ �ε , there exists γ ∈ �

that belongs to an η-neighborhood of γ ε. This will imply that lim supε↓0 vε
j ≤ v∗

j .
First, since the number of pure stage-game strategies is finite, for every η > 0, there exists 

ε > 0, such that for every α1 ∈ �(A1) and a2 ∈ A2 satisfying a2 being an ε-best reply to α1, 
there exists α′

1 ∈ �(A1) that belongs to an η-neighborhood of α1 such that a2 best replies to α′
1.

Second, for every γ ε ∈ �ε , let A∗
2 ≡ {

a2 ∈ A2
∣∣ a2 best replies to γ ε(·|a2)

}
. By definition, the 

marginal distribution of γ ε on A2, denoted by αε
2, assigns probability at most ε to every a2 /∈ A∗

2. 
Let us consider another joint distribution γ ′ ∈ �(A1 × A2), which is constructed according to:
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1. For every a2 ∈ A∗
2, there exists γ ∗ that belongs to an η-neighborhood of γ ε(·|a2), with a2

best replies to γ ∗(·|a2).

2. The marginal distribution of γ ′ on A2 assigns probability 
αε

2(a2)

αε
2(A

∗
2)

to a2, and the distribution 

of the sender’s stage-game strategies is γ ∗(·|a2) conditional on a2.

Since 
∑

(a1,a2)∈A1×A2
γ ε(a1, a2)u1(c1, a1, a2) ≤ p, and αε

2 assigns probability less than ε to ev-
ery a2 /∈ A∗

2, there exists X : [0, 1] → N with limη→0 X(η) = 0 such that∑
(a1,a2)∈A1×A2

γ ′(a1,a2)u1(c1,a1,a2) ≤ p + X(η) (C.3)

v∗
j + X(η) ≥

∑
(a1,a2)∈A1×A2

γ ′(a1,a2)u1(cj ,a1,a2) + X(η)

≥
∑

(a1,a2)∈A1×A2

γ ε(a1,a2)u1(cj ,a1,a2) = vε
j . (C.4)

Consider two cases separately,

1. If 
∑

(a1,a2)∈A1×A2
γ ′(a1, a2)u1(c1, a1, a2) ≤ p, then γ ′ satisfies constraints (C.1) and (C.2), 

and attains payoff within X(η) of vε
j .

2. If 
∑

(a1,a2)∈A1×A2
γ ′(a1, a2)u1(c1, a1, a2) > p, then let γ ′′ ∈ �(A1 × A2) be a convex com-

bination of γ ′ and the Dirac measure on (aL
1 , aN

2 ), with the convex weight on γ ′ equals

p∑
(a1,a2)∈A1×A2

γ ′(a1,a2)u1(c1,a1,a2)
.

Since all types’ stage-game payoffs are no more than 0 under (aL
1 , aN

2 ), γ ′′ satisfies constraint 
(C.1). Since aN

2 best replies to aL
1 , γ ′′ satisfies constraint (C.2). The definition of v∗

j implies 
that

v∗
j ≥

∑
(a1,a2)∈A1×A2

γ ′′(a1,a2)u1(cj ,a1,a2). (C.5)

According to (C.3) and (C.4),∑
(a1,a2)∈A1×A2

γ ′′(a1,a2)u1(cj ,a1,a2)

≥ p

p + X(η)

( ∑
(a1,a2)∈A1×A2

γ ′(a1,a2)u1(cj ,a1,a2) − X(η)
)

≥ p

p + X(η)

(
vε
j − X(η)

)
. (C.6)

The expression on the right-hand-side of (C.6) implies that for every ρ > 0, there exists 

η > 0 such that once we pick ε according to η, we have v∗ ≥ p
(
vε − X(η)

)
≥ vε − ρ.
j p+X(η) j j
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Appendix D. Proof of Theorem 1

Let vH ≡ (p, ..., p), vN ≡
(

− c1(1 − p), −c2(1 − p), ..., −cn(1 − p)
)

, and vL ≡
(
p + (1 −

c1)(1 − p), p + (1 − c2)(1 − p), ..., p + (1 − cn)(1 − p)
)

, which are the sender’s stage-game 

payoffs from stage-game strategy profiles (aH
1 , aT

2 ), (aL
1 , aN

2 ), and (aL
1 , aT

2 ), respectively. Let

u(ρ) ≡ (1 − ρ)c1

ρ(1 − c1) + c1
vH + ρc1

ρ(1 − c1) + c1
vL + ρ(1 − c1)

ρ(1 − c1) + c1
vN for every ρ ∈ [0, ρ∗].

(D.1)

Theorem 1 is implied by Proposition 5, which I show in the rest of this appendix.

Proposition 5. For every ε > 0 and ρ ∈ [0, ρ∗), there exists δ ∈ (0, 1) such that for every π ∈
�(C) with π1 ≥ ε and δ > δ, there exists an equilibrium in which the sender’s payoff is u(ρ).

I construct equilibria in which (i) the receiver ignores the sender’s cheap talk message at all 
histories (therefore, I omit mt in the subsequent part of my proof), and (ii) the distribution of 
stage-game strategy profiles at every history is supported in 

{
(aH

1 , aT
2 ), (aL

1 , aT
2 ), (aL

1 , aN
2 )

}
. This 

implies that the sender’s stage-game payoff and his promised continuation value at every history 
ht are convex combinations of vH , vN , and vL. Later on, I verify that the sender’s continuation 
value at every history belongs to V ∗, which is the convex hull of {vH , v∗, v, v}, where v ≡
p∗vH + (1 − p∗)vN with

p∗ ≡ c1(1 − p)

p + c1(1 − p)
, (D.2)

and v ≡ q∗(ρ∗vL + (1 −ρ∗)vH ) + (1 −q∗)vN where q∗ ∈ [0, 1] is pinned down by the condition 
that the first entry of vector v equals 0. I depict these payoff vectors in Fig. 2. By definition,

1. v is the intersection of the vertical axis and the line segment between v∗ and vN ,
2. v is the intersection of the vertical axis and the line segment between vH and vN .

The equilibrium play keeps track of the following state variables:

1. The probability of type c1 in the receivers’ belief at ht , denoted by η(ht ) ∈ [0, 1], which 
I call the sender’s reputation. For future reference, let η(ht , (ωt , rt )) be the probability the 
receivers’ belief assigns to type c1 after observing (ωt , rt ) at ht .

2. The sender’s promised continuation value at ht , denoted by v(ht ) ∈ Rn. Since v(h0) ≡ u(ρ)

is a convex combination of vH , vN and vL, and the sender’s stage-game payoff is also a 
convex combination of vH , vN and vL, so his continuation value at every history must also 
be a convex combination of vH , vN and vL in order to satisfy his promise-keeping constraint. 
Therefore, v(ht ) can be written as v(ht ) = pH (ht )vH + pN(ht )vN + pL(ht )vL.

3. The lowest lying cost in the support of the receivers’ posterior belief c(ht ) and its probability.

The initial values of these state variables are η(h0) = π1, c(h0) = cn,

pH (h0) = (1 − ρ)c1
, pL(h0) = ρc1

, and pN(h0) = ρ(1 − c1)
.

ρ(1 − c1) + c1 ρ(1 − c1) + c1 ρ(1 − c1) + c1
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Since cn is the lowest cost type, the prior probability of type c(h0) is πn.

Defining useful constants: I start from defining several useful constants. Recall that ρ∗ ≡ p
1−p

. 
For every j ≥ 3, let kj be the smallest integer k ∈N such that:(

1 − (1 − ρ∗)π1

) (πj /k)∑j−1
τ=2 πτ + (πj /k)

≤ ρ∗. (D.3)

The value of kj will later be used to in the formulas for the sender’s mixing probabilities. Let 
η∗ ∈ [(1 − ρ∗)π1, π1) be large enough such that for every η ∈ [η∗, π1], we have:

π1 − η

π1(1 − η)
≤ min

j∈{3,...,n}

{ πj/kj

π2 + ... + πj

}
(D.4)

For every ρ ∈ (0, ρ∗), there exist τ̂ , ̂l ∈ N such that τ̂ /̂l is strictly between ρ and ρ∗. By con-
struction, there exists a large enough integer χ ∈ N such that ρ∗ > τ̂

l̂
= τ̂ χ

l̂χ
>

τ̂χ

l̂χ+1
> ρ. Let 

τ ≡ τ̂χ and l ≡ l̂χ . Let

ρ̃ ≡ 1

2

(τ

l
+ τ

l + 1

)
and ρ̂ ≡ 1

2

(τ

l
+ ρ∗). (D.5)

Let δ ∈ (0, 1) to be large enough such that for every δ > δ,

δ + δ2 + ... + δτ

δ + δ2 + ... + δl
> ρ̃ >

δl−τ+1(δ + δ2 + ... + δτ )

δ + δ2 + ... + δl+1 . (D.6)

Let ̂δ ≡ δ
1−p
1−δp

be the sender’s effective discount factor. I require the sender’s discount factor δ to 

be large enough such that ̂δ > δ. In the subsequent proof, I will introduce additional requirements 
on δ. These additional requirements are compatible with (D.6) since the number of restrictions is 
finite and all restrictions require δ to be close enough to 1. By construction, ρ∗ > ρ̂ > τ

l
> ρ̃ >

τ
l−1 > ρ. Let λ > 0 be small enough such that:

(1 + λρ∗)1−ρ̂ (1 − λ(1 − ρ∗))ρ̂ > 1. (D.7)

Since ρ∗ > ρ̂, such a λ exists according to the Taylor’s expansion theorem.

Active learning phase: Play starts from the active learning phase, and belongs to this phase as 
long as pL(ht ) > 0 and the first entry of the following n-dimensional vector is non-negative:

pL(ht ) − (1 − δ̂)

δ̂
vL + pH (ht )

δ̂
vH + pN(ht )

δ̂
vN. (D.8)

That is, type c1’s promised continuation value is non-negative. This is because every type can 
secure payoff 0 by truthfully revealing both states in every period. The receiver plays aT

2 and the 
sender’s behavior depends on the sign of pL(ht ) − (1 − δ̂).

1. If pL(ht ) ≥ 1 − δ̂, then the senders of types c2 to cn play the same stage-game strategy, and 
type c1 behaves differently. All types send message g with probability 1 when ωt = g, which 
implies that η(ht , (g, g)) = η(ht ). The mixing probabilities when ωt = b are pinned down 
by the receiver’s posterior beliefs after observing ωt = b and the sender’s message mt , which 
are given by:
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η(ht , (b, g)) − η∗ =
(

1 − λ(1 − ρ∗)
)
(η(ht ) − η∗), (D.9)

and

η(ht , (b, b)) − η∗ = min
{

1 − η∗, (1 + λρ∗)(η(ht ) − η∗)
}
, (D.10)

where η∗ ∈ (0, π1) and λ > 0 are constants defined in (D.4) and (D.7). One can compute the 
sender’s mixing probabilities from (D.9) and (D.10) according to Bayes rule.
Intuitively, η∗ is a lower bound on the sender’s reputation in the active learning phase, and λ
is a small positive number that measures the speed with which the receivers learn about the 
sender’s type. The sender’s reputation remains unchanged when the state is good, improves 
when he truthfully reveals the bad state, and deteriorates when he lies about the bad state. 
All types mix in the bad state unless the sender’s reputation η(ht) is close enough to 1, in 
which case only type c1 mixes while the other types recommend the good action for sure.
Next, I construct the sender’s continuation values in order to satisfy his incentive constraints 
and promise keeping constraints in recursive form. If ht is such that the sender’s reputation 
does not reach one after truthfully revealing the bad state, i.e., η(ht , (b, b)) < 1, then the 
sender’s continuation values are v(ht , (g, g)) = v(ht ), v(ht , (g, b)) = v,

v(ht , (b, g)) = pH (ht )

δ̂
vH + pL(ht ) − (1 − δ̂)

δ̂
vL + pN(ht )

δ̂
vN, (D.11)

and

v(ht , (b, b)) = pH (ht ) − (1 − δ̂)

δ̂
vH + pL(ht )

δ̂
vL + pN(ht )

δ̂
vN. (D.12)

One can verify that under these promised continuation values in period t + 1, the sender’s 
expected payoff from playing aH

1 and aL
1 at ht are both v(ht ). Therefore, all types are indif-

ferent when ωt = b, and strictly prefer to send message g when ωt = g.
If the sender’s reputation reaches one after truthfully revealing the bad state, i.e., η(ht, (b, b))

= 1, then his continuation values are v(ht , (g, g)) = v(ht ), v(ht , (g, b)) = v, v(ht , (b, g)) =
pH (ht )

δ̂
vH + pL(ht )−(1−δ̂)

δ̂
vL + pN(ht )

δ̂
vN , and

v(ht , (b, b)) = q(ht )vH + (1 − q(ht ))vN, (D.13)

where q(ht ) ∈ [0, 1] is such that the first entry of v(ht , (b, b)) equals the first entry of vector:

pH (ht ) − (1 − δ̂)

δ̂
vH + pL(ht )

δ̂
vL + pN(ht )

δ̂
vN. (D.14)

One can verify that under these promised continuation values in period t + 1, type-c1 sender 
is indifferent between aH

1 and aL
1 at ht since his continuation value after truthfully revealing 

the bad state equals the first entry of (D.14). Types c2 to cn strictly prefer to lie about the bad 
state at ht . Moreover, the sender’s expected payoff by playing aL

1 at ht equals v(ht ).
2. Suppose pL(ht ) ∈ (0, 1 − δ̂). All types of sender in the support of the receiver’s belief except 

for type-c(ht ) sender play stage-game strategy aH
1 . Only type-c(ht ) sender may mix between 

aL
1 and aH

1 . I specify type-c(ht ) sender’s mixing probabilities later on, which depend on c(ht )

and the probability of type c(ht ) in the receiver’s belief at ht .
Under the above strategy for the sender, the receiver’s belief remains unchanged when ωt =
g, the receiver partially rules out type c(ht ) when the sender truthfully reveals the bad state, 
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and the receiver believes that the sender’s type is c(ht ) when the sender lies about the bad 
state.
The sender’s continuation values are such that v(ht , (g, g)) = v(ht ), v(ht , (g, b)) = v,

v(ht , (b, g)) ≡ Q(ht )

δ̂
vH + δ̂ − Q(ht )

δ̂
vN, (D.15)

where

Q(ht ) ≡ pH (ht ) − (1 − δ̂) + pL(ht )

p + (1 − p)c(ht )
. (D.16)

The sender’s continuation value after sending message b after observing ωt = b depends on 
whether η(ht , (b, b)) equals 1. If η(ht , (b, b)) < 1, then the sender’s continuation value at 
(ht , (b, b)) is

v(ht , (b, b)) = pH (ht ) − (1 − δ̂)

δ̂
vH + pL(ht )

δ̂
vL + pN(ht )

δ̂
vN.

If η(ht , (b, b)) = 1, then the sender’s continuation value at (ht , (b, b)) is

v(ht , (b, b)) = q(ht )vH + (1 − q(ht ))vN,

where q(ht ) ∈ [0, 1] is such that the first entry of v(ht , (b, b)) equals the first entry of payoff 
vector:

pH (ht ) − (1 − δ̂)

δ̂
vH + pL(ht )

δ̂
vL + pN(ht )

δ̂
vN.

Under these continuation values, type c(ht ) prefers to send message g when the state is b, 
while other types strictly prefer to send message b when the state is b.

I specify the sender’s mixing probabilities in the active learning phase when pL(ht ) ∈ (0, 1 −
δ̂). Then I verify the receiver’s incentive to play aT

2 at Class 2 histories given the sender’s strategy. 
Recall that all types in the support of the receiver’s belief except for the lowest-cost type c(ht )

play aH with probability 1, and the only type that may mix is type c(ht ). Let

l(ht ) ≡ #
{
hs

∣∣∣hs ≺ ht , hs belongs to Class 2,ωs = b, and c(hs) = c(ht )
}

(D.17)

be the number of history hs that (1) strictly precedes ht , and (2) the lowest lying cost type in the 
support of the receiver’s belief is c(ht ), and (3) the realized state at history hs is ωs = b.

1. If c(ht ) = cj with j ≥ 3, then type-c(ht ) sender plays aL
1 at ht with probability 1

kj −l(ht )
and 

aH
1 with complementary probability, where kj is the integer defined in (D.3). The definition 

of kj in (D.3) implies that the sender plays aH
1 with probability at least 1 − ρ∗ at every such 

history, which implies that the receiver has an incentive to play aT
2 .

2. If c(ht ) = c2, then type-c2 sender plays aL
1 at ht with probability min{1, ρ∗

1−η(ht )
} and plays 

aH
1 with complementary probability. Under these mixing probabilities, the sender plays aH

1
with probability at least 1 − ρ∗, which implies that the receiver has an incentive to play aT .
2
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Rebounding phase: Play reaches the rebounding phase if pL(ht ) �= 0 and the first entry of 
(D.8) is negative. At those histories, the receiver plays aN

2 and all types of sender play aL
1 . 

Hence, the sender’s message reveals no information about his type and the receiver’s incen-
tive constraints are satisfied. The sender’s continuation value after observing (ωt, rt ) = (g, g) at 
ht equals v(ht ), his continuation value after observing (ωt , rt ) = (g, b) at ht equals v(ht ), his 
continuation value after observing (ωt , rt ) = (b, b) at ht equals v, and his continuation value 
after observing (ωt , rt ) = (b, g) at ht equals

v(ht , (b, g)) ≡ pH (ht )

δ̂
vH + pL(ht )

δ̂
vL + pN(ht ) − (1 − δ̂)

δ̂
vN. (D.18)

Under these continuation values, each type of sender has an incentive to send message g when 
the state is g. This implies that

v(ht ) = (1 − p)
{
(1 − δ)0 + δ v(ht , (g, g))︸ ︷︷ ︸

=v(ht )

}
+ p

{
− (1 − δ)c + δv(ht , (b, b))

}
,

where 0 ≡ (0, ..., 0) and c ≡ (c1, ..., cn). Since v(ht ) ≥ 0, we have v(ht ) ≥ (1 − δ)0 + δv(ht ). 
Hence, −(1 − δ)c + δv(ht , (b, g)) > v(ht ) ≥ v, so the sender has an incentive to send g when 
the state is b.

Absorbing phase: Play reaches the absorbing phase when pL(ht ) = 0 after which play remains 
in the absorbing phase forever and learning about the sender’s type stops. I specify the contin-
uation play after reaching this phase by constructing for any pH ≥ p∗ and under any belief, 
a continuation equilibrium in which there is no learning and the sender’s continuation value is 
v = pH vH + pNvN where pN ≡ 1 − pH . Recall the definition of p∗ in (D.2).

1. If pH (ht )−(1−δ)
δ

≥ p∗+1
2 , then all types of sender communicate honestly by playing aH

1 , and 
his continuation values are given by v(ht , (g, g)) = v(ht ),

v(ht , (b, b)) = pH (ht ) − (1 − δ)

δ
vH + pN(ht )

δ
vN, (D.19)

and v(ht , (b, g)) = v(ht , (g, b)) = v. When δ is large enough, every type of sender prefers 
to conform at those histories.

2. If p
H (ht )−(1−δ)

δ
<

p∗+1
2 , then all types of sender play aL

1 , and the sender’s continuation value 

after sending message g is p
H (ht )
δ

vH + pN(ht )−(1−δ)
δ

vN and his continuation value after send-
ing message b is p∗vH + (1 − p∗)vL. One can verify that type-c1 sender weakly prefers to 
conform and types c2 to cm strictly prefer to conform. This continuation equilibrium is in-
centive compatible regardless of the receiver’s belief about the sender’s type.

Verifying incentive constraints: I verify that the sender’s promised continuation value at every 
history belongs to V ∗ ≡ co{vH , v∗, v, v}, where co(·) denotes the convex hull. An outcome path
in period t consists of the states and the sender’s recommendations from period 0 to period 
t − 1, with O(ht ) ≡ (

(ω0, r0), ..., (ωt−1, rt−1)
)
. For every on-path history ht , o(ht ) consists only 

of (g, g), (b, b), and (b, g). A reduced outcome path o(ht ) is derived from O(ht ) by ignoring 
periods where the state is g. Hence, o(ht ) can be summarized by a sequence of recommendations.

Let o(ht ) be the reduced outcome path at ht , which consists of a sequence of g and b with 
the nth element of o(ht ) the sender’s message when state b is realized for the nth time. For 
30



H. Pei Journal of Economic Theory 210 (2023) 105668
every ht � hs , let o(ht\hs) be the reduced outcome path between hs and ht . Since for every 
pair of histories hs and ht with ht � hs , suppose all histories between hs and ht belong to the 
active learning phase, then η(ht ) depends only on η(hs) and the reduced outcomes from hs to 
ht , denoted by o(ht\hs).

• For every r ∈ {h, l}, let Nr(o(ht\hs)) be the number of action recommendation r in reduced 
outcome path o(ht\hs).

• Let |o(ht\hs)| be the number of elements in o(ht\hs), i.e., the number of times with which 
state b is realized between history hs and history ht .

For every ht � hs , suppose all histories from hs to ht belong to Class 1, then according to (D.9)
and (D.10), the probability of type-c1 sender in the receiver’s belief at ht can be computed via

η(ht ) = η∗ + (η(hs) − η∗)
(

1 − λ(1 − ρ∗)
)Ng(o(ht\hs))(

1 + λρ∗)Nb(o(ht\hs))

. (D.20)

Moreover, the convex weights of vN , vH , and vL in the sender’s continuation value are given by:

pN(ht ) = pN(hs)

δ̂|o(ht\hs)| , pH (ht ) =
pH (hs) − (1 − δ̂)

|o(ht\hs)|∑
τ=1

δ̂τ 1{rτ = l}

δ̂|o(ht\hs)| ,

and

pL(ht ) =
pL(hs) − (1 − δ̂)

|o(ht\hs)|∑
τ=1

δ̂τ 1{rτ = h}

δ̂|o(ht\hs)| .

I show that for every sequence of Class 1 histories, as long as play remains in the active learning 
phase by the end of this sequence, the discounted average frequency of action recommendation b
divided by the discounted average frequency of action recommendation g in the reduced outcome 
path (i.e., only counting periods where the state is bad) is below some cutoff. This provides an 
upper bound on the sender’s continuation value.

Lemma D.0. Suppose the sender’s strategy in Class 1 histories is given by (D.9) and (D.10), 
with (η∗, λ) satisfying (D.4) and (D.7). For every η ∈ (η∗, 1), there exist T ∈ N and δ ∈ (0, 1), 
such that when η(hs) ≥ η and ̂δ > δ, if ht � hs and all histories between hs and ht belong to 
Class 1, then:

(1 − δ̂)

|o(ht\hs)|∑
τ=1

δ̂τ−11{rτ = b} ≤ (1 − δ̂T ) + (1 − δ̂)

|o(ht\hs)|∑
τ=1

δ̂τ−11{rτ = g} · 1 − ρ̃

ρ̃
.

(D.21)

The proof follows from that of Lemma A.2 in Pei (2021). The only difference is caused by 
the i.i.d. state ωt . This is being taken care by replacing the discount factor δ with the effective 
discount factor ̂δ, since the sender’s continuation value does not change when the realized state 
is h.
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I provide some intuition on the motivation for showing this lemma. Recall that starting from 
a Class 1 history of the active learning phase, play reaches to absorbing phase either because 
(1) the sender lies about the bad state too frequently, in which case pL(ht ) goes to 0 after which 
learning stops and the continuation value is a convex combination of vH and vN , or (2) the sender 
truthfully reveals the bad state too frequently, in which case his reputation η(ht) reaches 1 after 
which the continuation value is a convex combination of vH and vN such that:

1. Type-c1 sender is indifferent between obtaining a perfect reputation by revealing the bad 
state truthfully (after which his continuation value is the above convex combination of vH

and vN ) and milking his reputation by lying about the bad state,
2. All other types strictly prefer to milk his reputation by lying about the bad state.

In the active learning phase, pL(ht ) increases when the sender reveals the bad state truthfully 
except at histories where his reputation will reach 1 after doing so. Hence, there is a concern 
that pL will become too large if the sender reveals the bad state too frequently, in which case his 
continuation value will escape V ∗. Lemma D.0 alleviates this concern by showing that when the 
sender is patient, his reputation will reach 1 before his continuation value escapes V ∗.

Then I state four lemmas, which imply that Class 2 histories and rebounding phase histories 
have negligible impact on the sender’s continuation value as δ → 1. The proofs are in subse-
quent sections of this appendix. These lemmas together with Lemma D.0 imply that the sender’s 
continuation value belongs to V ∗ at every history. Lemma D.1 establishes a lower bound on the 
receiver’s posterior belief after observing message b in state b at any history that belongs to Class 
2.

Lemma D.1. For any history ht belonging to Class 2,

• If c(ht ) ≤ c3, then η(ht , (b, b)) ≥ η(h0) and η(ht , (b, g)) = 0.

• If c(ht ) = c2, then η(ht , (b, b)) = min{1, η(ht )
1−ρ∗ } and η(ht , (b, g)) = 0.

The next lemma establishes a uniform upper bound on the number histories that belong to 
Class 2 and the realized state in the previous period is b.

Lemma D.2. There exist δ ∈ (0, 1) and M ∈ N , such that when δ > δ and along every on-path 
play, the number of histories that belong to Class 2 while the state in the period before being b
is no more than M .

Lemma D.2 implies that for every on-path history ht , the number of periods that belong to 
Class 2 in the reduced outcome o(ht) is no more than M . This upper bound does not depend on 
the sender’s discount factor δ. Lemma D.2 implies that Class 2 histories have negligible impact 
on the sender’s continuation value when δ is close enough to 1. Lemma D.3 establishes a uniform 
lower bound on pH(ht ) for all histories belonging to the active learning phase.

Lemma D.3. There exist δ ∈ (0, 1) and Q > 0, such that when δ > δ, we have pH(ht ) ≥ Q for 
all ht belonging to the active learning phase.

Lemma D.3 leads to a lower bound on pH(ht ) if ht is the first history that reaches the absorb-
ing phase, i.e., ht is such that pL(ht ) = 0 and pL(hs) > 0 for all hs ≺ ht .
32



H. Pei Journal of Economic Theory 210 (2023) 105668
Lemma D.4. There exist δ ∈ (0, 1) and K ∈ N , such that when δ > δ and along every on-path 
play, the number of histories that belong to the rebounding phase is at most K .

Lemma D.4 implies that rebounding histories have negligible impact on the sender’s contin-
uation value as δ goes to 1. These lemmas imply that when the sender’s continuation value is 
u(ρ) in period 0 and his continuation value at every subsequent history satisfies his incentive 
constraint and promise-keeping constraint, then his continuation value belongs to V ∗ at every 
history.

D.1. Proof of Lemma D.1

Case 1: Consider the case in which c(ht ) ≤ c3. First, suppose η(ht ) ≥ η(h0), then the conclu-
sion of Lemma D.1 follows since η(ht , (b, b)) > η(ht ) ≥ η(h0). Second, suppose η(ht ) < η(h0), 
then the posterior probability with which the sender’s lying cost is c1 is bounded from below by:

η(ht )

η(ht ) + (1 − η(ht ))
π2 + ... + πj−1 + kj −l(ht )−1

kj
πj

π2 + ... + πj−1 + kj −l(ht )

kj
πj

≥ η(ht )

η(ht ) + (1 − η(ht ))
π2 + ... + πj−1 + kj −1

kj
πj

π2 + ... + πj−1 + πj

Let

X ≡ 1 −
π2 + ... + πj−1 + kj −1

kj
πj

π2 + ... + πj−1 + πj

= πj

kj (π2 + ... + πj−1 + πj )
.

The lower bound on posterior belief η(ht )
η(ht )+(1−η(ht ))(1−X)

is greater than π1 if and only if:

X ≥ 1 − (1 − π1)η(ht )

π1(1 − η(ht ))
= π1 − η(ht )

π1(1 − η(ht ))
.

The above inequality is implied by (D.4) since η(ht ) ≥ η∗ at every ht that belongs to Class 2.

Case 2: Consider the case in which c(ht ) = c2. If η(ht ) ≥ 1 − ρ∗, then type-c2 sender plays 
aL with probability min{1, ρ∗

1−η(ht )
} = 1, which implies that η(ht , (b, b)) = 1. If η(ht ) < 1 − ρ∗, 

then type-c2 sender lies in the bad state with probability min{1, ρ∗
1−η(ht )

} = ρ∗
1−η(ht )

, which implies 

that η(ht , (b, b)) = η(ht )/(1 − ρ∗) ≥ (1 − ρ∗)η(h0)/(1 − ρ∗) = η(h0).

D.2. Proof of Lemma D.2

Step 1: If ht belongs to Class 2 and c(ht ) = cj ≤ c3, then type-c(ht ) sender sends message g
in state b with probability 1 when l(ht ) = kj − 1, after which play reaches the absorbing phase. 
Therefore, along every path of play, there are at most kj Class 2 histories satisfying c(ht ) = cj

and the state in the previous period (i.e. period t − 1) is b. This further implies that there are at 
most K ≡ k3 + ... + kn. Class 2 histories that has c(ht ) ≤ c3 and the previous period state being 
b.
33



H. Pei Journal of Economic Theory 210 (2023) 105668
Step 2: Consider the number of Class 2 histories such that (1) c(ht ) = c2, and (2) the state in 
the previous period is b. Let N ≡ � 1

1−γ
�, and recall the integer constant T in Lemma D.1. In 

addition to the requirements on δ specified before, I need require δ to be large enough such that 
δ̂ satisfies

δ̂T +1(1 + δ̂ + ... + δ̂N ) > N and 2̂δT +N+2 > 1. (D.22)

First, I show that after the sender sends message b when the state is b at ht , it takes at most 
T + N such periods for play to reach a history that belongs to either to the absorbing phase or to 
another Class 2 history. According to the continuation value at (ht, (b, b)), we have:

pL(ht , (b, b)) = pL(ht )

δ̂
<

1 − δ̂

δ̂
. (D.23)

The last inequality comes from ht belonging to Class 2, so that pL(ht ) < 1 − δ̂ by definition. 
According to Lemma D.1, for every Class 1 history hs such that hs � (ht , (b, b)) ≡ ht+1 and all 
histories between (ht , (b, b)) and hs belong to Class 1, we have:

(1 − δ̂)

|o(hs\ht+1)|∑
τ=1

δ̂τ−11{rτ = b} ≤ (1 − δ̂T ) + (1 − δ̂)

|o(hs\ht+1)|∑
τ=1

δ̂τ−11{rτ = g} · 1 − ρ̃

ρ̃
.

(D.24)

Moreover, (D.23) and the requirement that all histories between (ht , (b, b)) and hs belong to 
Class 1 imply that

(1 − δ̂)

|o(hs\ht+1)|∑
τ=1

δ̂τ−11{rτ = g} <
1 − δ̂

δ̂
. (D.25)

Given that only (aL, bT ) and (aH , bT ) occur at active learning phase histories (Class 1 and 2):

1 − δ̂|o(hs\ht+1)|−1 = (1 − δ̂)

|o(hs\ht+1)|∑
τ=1

δ̂τ−11{rτ = g} + (1 − δ̂)

|o(hs\ht+1)|∑
τ=1

δ̂τ−11{rτ = b}

≤ (1 − δ̂T ) + 1 − δ̂

δ̂
+ 1 − δ̂

δ̂

1 − ρ̃

ρ̃
≤ (1 − δ̂T ) + 1 − δ̂

δ̂ρ̃
≤ (1 − δ̂T ) + 1 − δ̂

δ̂ρ
(D.26)

Next, I show that |o(hs\ht+1)| ≤ T +N +1. Suppose by way of contradiction that |o(hs\ht+1)| ≥
T + N + 2, then

(1 − δ̂T ) + 1 − δ̂

δ̂
N ≥ (1 − δ̂T ) + 1 − δ̂

δ̂ρ
≥ 1 − δ̂|o(hs\ht+1)|−1 ≥ 1 − δ̂T +N+1,

which yields 1−δ̂

δ̂
N ≥ δ̂T (1 − δ̂N+1). Dividing both sides by 1−δ̂

δ̂
, we have N ≥ δ̂T +1(1 + δ̂ +

... + δ̂N ), which contradicts the first inequality of (D.22).
Second, I focus on history hs that has the following two features:

1. hs belongs to Class 2, and the state in period s − 1 is l,
2. hs � (ht , (b, b)) and all histories between (ht , (b, b)) and hs , excluding hs , belong to Class 

1.
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I show that there exists at most one period from (ht , (b, b)) to hs such that the stage-game 
outcome is such that the sender recommends action g while the state is b. Suppose by way of con-

tradiction that there exist two or more such periods, then (1 − δ̂) 
∑|o(hs\ht+1)|

τ=1 δ̂τ−11{rτ = g} ≥
2(1 − δ̂)̂δT +N+1. The last inequality comes from the previous conclusion that |o(hs\ht+1)| ≤
T + N + 1. According to (D.25),

2(1 − δ̂)̂δT +N+1 < (1 − δ̂)

|o(hs\ht+1)|∑
τ=1

δ̂τ−11{rτ = g} <
1 − δ̂

δ̂
. (D.27)

The above inequality contradicts the second inequality of (D.22) that 2̂δT +N+2 > 1.
Let ht be the first time play reaches a history that belongs to Class 2 with c(ht ) = c2. Ac-

cording to Lemma D.1, η(ht , (b, b)) ≥ η∗
1−ρ∗ ≥ η(h0) = π1. Let hs be the next history that 

belongs to Class 2 with ωs−1 = b. Since we have shown that the receiver takes the bad ac-
tion at most once between (ht , (b, b)) and hs , we know that η(hs, (b, b)) = min{1, η(hs)

1−ρ∗ } ≥
min{1, η(ht ,(b,b))

1−ρ∗ (1 − λ(1 − ρ∗))} Therefore, conditional on (hs, (b, b)) not being an absorbing 
phase history, the receiver’s belief at (hs, (b, b)) assigns probability at least:

η(hs, (b, b)) ≥ η(ht , (b, b))
1 − λ(1 − ρ∗)

1 − ρ∗ ≥ η(ht , (b, b))

√
1

1 − ρ∗ (D.28)

to type c1, where the last inequality comes from λ ∈ (0, 1−√
1−ρ∗

1−ρ∗ ). Let M̂ ≡ log(1/π1)

log
√

1
1−ρ∗

+ 1. Since 

η(ht , (b, b)) ≥ π1 for the first Class 2 history ht satisfying c(ht ) = c2, there can be at most M̂
Class 2 histories with c2 being the highest-cost type along every path of play. This is because 

otherwise, the receiver’s posterior belief assigns probability greater than π1

(
1√

1−ρ∗
)M̂

> 1 at 

the (M̂ + 1)th such history, which leads to a contradiction. Summarizing the conclusions of the 
two parts, we know that along every path of equilibrium play, there exist at most M ≡ K + M̂

histories that belong to Class 2 and the state in the previous period is b.

D.3. Proof of Lemma D.3

Consider any given Class 2 history ht such that no predecessor of ht belongs to Class 2, 
in another word, all predecessors of ht belong to Class 1 or the rebounding phase. There-
fore, pH (ht−1) ≥ Y , which implies that pH(ht ) ≥ Y − (1 − δ̂). As a result Q(ht ) = pH (ht ) −
1−δ̂−pL(ht )

c(ht )
≥ Y − (1 − δ̂) > 0. If play remains at the active learning phase (Class 1 or 2) after ht , 

then player 1 must be sending message b when the state is b at ht , after which

pH (ht , (b, b)) ≥ pH (ht ) − (1 − δ̂) ≥ Y − 2(1 − δ̂) and pL(ht , (b, b)) ≤ 1 − δ̂

δ̂
.

According to Lemma D.1, η(ht , (b, b)) ≥ η(h0) = π1. One can then apply Lemma D.0 again, 
which implies that at every Class 1 history hs such that only one predecessor of hs (1) belongs 
to Class 2 and (2) ωs−1 = b, we have pH(hs) ≥ Z ≡ Y − 2(1 − δ̂) − 1−δ̂

δ̂

1−ρ̃
ρ̃

− (1 − δ̂T ). When 

δ̂ is large enough, Z ≥ Y/2. Therefore, for every Class 2 history hs such that there is only one 

strict predecessor history belongs to Class 2, Q(hs) = pH (hs) − 1−δ̂−pL(hs)
c(hs)

≥ Z − (1 − δ̂) > 0. 
Iterate this process:
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1. The number of Class 2 histories with the state in the previous period being b is bounded 
from above by M along every path of play.

2. For every Class 2 history ht , pL(ht , (b, b)) = 1−δ̂

δ̂
and η(ht , (b, b)) ≥ η(h0).

So there exist δ ∈ (0, 1) and Q > 0 such that when δ > δ, pH (ht ) ≥ Q for every Class 1 history 
ht .

D.4. Proof of Lemma D.4

I construct a constant K ∈ N that is independent of the discount factor δ such that once play 
enters the rebounding phase, it will go back to the active learning phase after at most K periods 
with the realized state ω being b. First, type c1’s continuation value in the rebounding phase 
is at least 0. Second, play goes back to the active learning phase whenever his continuation 
value is above (1 − δ̂)(p + (1 − c1)(1 − p)). After K periods in the rebounding phase with the 
realized state being b, type c1’s continuation value is at least: 1−δ̂K

δ̂K c(1 − p), which is more than 

(1 − δ̂)(p + (1 − c1)(1 − p)) if K ≥
⌈

p+(1−c1)p

c1(1−p)2

⌉
. Lemma D.4 is obtained by setting δ to be 

close enough to 1 such that the corresponding ̂δK satisfies the requirement for δ in Lemma D.0.

Appendix E. Proof of Proposition 4

Suppose by way of contradiction that there exists a type with lying cost cj ∈ C who plays both 
aH

1 and aL
1 with positive probability at every on-path history. Then playing aH

1 at every on-path 
history and playing aL

1 at every on-path history are both type cj ’s best replies to the receiver’s 
equilibrium strategy. Since aH

1 is the sender’s stage-game strategy that minimizes the expected 
lying cost, for every ci > cj , type ci plays aH

1 with probability 1 at every on-path history.
I consider two cases. First, if j ≥ 2, then type-c1 sender plays his honest strategy aH

1 with 
probability 1 at every on-path history. Therefore, type-c2 sender separates from type-c1 sender 
the first time he recommends action g in state b, after which he becomes the highest-cost type in 
the support of the receivers’ posterior belief. According to Proposition 1, type c2’s continuation 
value is no more than p. As a result, type-c2 sender’s expected payoff in period 0 is no more than 
(1 − δ) + δp, which is strictly less than v∗

2 when δ is close to 1. This contradicts the hypothesis 
that type-c2 sender’s equilibrium payoff is more than v∗

2 − ε.
Second, if j = 1, then type-c1 sender finds it optimal to play aL

1 in every period. Since the 
sender’s equilibrium payoff is within ε of v∗, type-c1 sender’s payoff is at least v∗

1 − ε by playing 
aL

1 in every period, and type-c2 sender’s payoff from doing so must be no more than v∗
2 + ε. 

Since p < 1/2, the receiver’s stage-game strategy of choosing yt = g regardless of the sender’s 
message is strictly suboptimal, and hence, it cannot be played at any on-path history. Among the 
remaining three receiver stage-game strategies, the sender’s stage-game payoff is 1 − (1 − p)c

under (aL
1 , aT

2 ), is −(1 − p)c under (aL
1 , aN

2 ) and (aL
1 , aO

2 ), where

aO
2 (r) ≡

{
g if r = b

b if r = g.

Let QL be the discounted probability of the stage-game strategy profile (aL
1 , aT

2 ) when the sender 
plays aL in every period and the receiver plays according to his equilibrium strategy σ2. Type 
1
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c1’s equilibrium payoff is QL

(
1 − (1 − p)c1

)
− (1 − QL)(1 − p)c1. Since type-c1 sender’s 

equilibrium payoff is more than p − ε, we have:

QL ≥ p + (1 − p)c1 − ε. (E.1)

Type-c2 sender’s payoff from playing aL
1 in every period is QL

(
1 − (1 − p)c2

) − (1 − QL)(1 −
p)c2, which is at least p + (1 − p)(c1 − c2) − ε by inequality (E.1). Since p < 1/2, the lower 
bound on type-c2 sender’s equilibrium payoff is strictly greater than v∗

2 + ε. However, type-c2
sender’s equilibrium payoff cannot exceed v∗

2 + ε when δ is close enough to 1. This leads to a 
contradiction.
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