War-of-Attrition

Multiple Types

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lecture 7: Reputational Bargaining I

Harry PEI Department of Economics, Northwestern University

Spring Quarter, 2023

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lessons from Reputation Models

Reputation models lead to sharp predictions on players' payoffs when the uninformed players are impatient.

- Fudenberg and Levine (89,92), Gossner (11).
- Informed player obtains his optimal commitment payoff.

It is hard to deliver sharp predictions when both players are patient.

- Cripps and Thomas (97), Chan (00).
- Folk theorems in reputation models.

- In general, this problem is not tractable.
- Today: "dividing a dollar" bargaining game.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lessons from Reputation Models

Reputation models lead to sharp predictions on players' payoffs when the uninformed players are impatient.

Multiple Types

- Fudenberg and Levine (89,92), Gossner (11).
- Informed player obtains his optimal commitment payoff.

- Cripps and Thomas (97), Chan (00).
- Folk theorems in reputation models.

- In general, this problem is not tractable.

Lessons from Reputation Models

Reputation models lead to sharp predictions on players' payoffs when the uninformed players are impatient.

Multiple Types

- Fudenberg and Levine (89,92), Gossner (11).
- Informed player obtains his optimal commitment payoff.

It is hard to deliver sharp predictions when both players are patient.

- Cripps and Thomas (97), Chan (00).

- In general, this problem is not tractable.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lessons from Reputation Models

Reputation models lead to sharp predictions on players' payoffs when the uninformed players are impatient.

- Fudenberg and Levine (89,92), Gossner (11).
- Informed player obtains his optimal commitment payoff.

It is hard to deliver sharp predictions when both players are patient.

- Cripps and Thomas (97), Chan (00).
- Folk theorems in reputation models.

- In general, this problem is not tractable.
- Today: "*dividing a dollar*" bargaining game.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lessons from Reputation Models

Reputation models lead to sharp predictions on players' payoffs when the uninformed players are impatient.

- Fudenberg and Levine (89,92), Gossner (11).
- Informed player obtains his optimal commitment payoff.

It is hard to deliver sharp predictions when both players are patient.

- Cripps and Thomas (97), Chan (00).
- Folk theorems in reputation models.

- In general, this problem is not tractable.
- Today: "dividing a dollar" bargaining game.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lessons from Reputation Models

Reputation models lead to sharp predictions on players' payoffs when the uninformed players are impatient.

- Fudenberg and Levine (89,92), Gossner (11).
- Informed player obtains his optimal commitment payoff.

It is hard to deliver sharp predictions when both players are patient.

- Cripps and Thomas (97), Chan (00).
- Folk theorems in reputation models.

- In general, this problem is not tractable.
- Today: "dividing a dollar" bargaining game.

1. Division of surplus is sensitive to the *bargaining protocol*.

• What if P1 makes 2 offers in a row and then P2 makes 1 offer?

From War-of-Attrition to Bargaining

▲□▶▲□▶▲□▶▲□▶ □ のQで

Kambe

- What if P1 makes 2 offers in a row and then P2 makes 3 offers?
- 2. Intractable once introducing incomplete info.
 - Sobel and Takahashi (83), Fudenberg, Levine and Tirole (85), Gul, Sonnestein and Wilson (86), Adamati and Perry (87), Chatterjee and Samuelson (87), Ausubel and Deneckere (89,92).
 - Either no robust prediction,

War-of-Attrition

Bargaining Model

0000

or result relies on equilibrium refinements, specific bargaining protocols, or exogenous restrictions on players' strategy spaces.

- 1. Division of surplus is sensitive to the *bargaining protocol*.
 - What if P1 makes 2 offers in a row and then P2 makes 1 offer?

Multiple Types

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Kambe

- What if P1 makes 2 offers in a row and then P2 makes 3 offers?
- 2. Intractable once introducing incomplete info.
 - Sobel and Takahashi (83), Fudenberg, Levine and Tirole (85), Gul, Sonnestein and Wilson (86), Adamati and Perry (87), Chatterjee and Samuelson (87), Ausubel and Deneckere (89,92).
 - Either no robust prediction,

War-of-Attrition

Bargaining Model

0000

or result relies on equilibrium refinements, specific bargaining protocols, or exogenous restrictions on players' strategy spaces.

- 1. Division of surplus is sensitive to the *bargaining protocol*.
 - What if P1 makes 2 offers in a row and then P2 makes 1 offer?

Multiple Types

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Kambe

- What if P1 makes 2 offers in a row and then P2 makes 3 offers?
- 2. Intractable once introducing incomplete info.
 - Sobel and Takahashi (83), Fudenberg, Levine and Tirole (85), Gul, Sonnestein and Wilson (86), Adamati and Perry (87), Chatterjee and Samuelson (87), Ausubel and Deneckere (89,92).
 - Either no robust prediction,

War-of-Attrition

Bargaining Model

0000

or result relies on equilibrium refinements, specific bargaining protocols, or exogenous restrictions on players' strategy spaces.

- 1. Division of surplus is sensitive to the *bargaining protocol*.
 - What if P1 makes 2 offers in a row and then P2 makes 1 offer?

Multiple Types

- What if P1 makes 2 offers in a row and then P2 makes 3 offers?
- 2. Intractable once introducing incomplete info.
 - Sobel and Takahashi (83), Fudenberg, Levine and Tirole (85), Gul, Sonnestein and Wilson (86), Adamati and Perry (87), Chatterjee and Samuelson (87), Ausubel and Deneckere (89,92).
 - Either no robust prediction,

War-of-Attrition

Bargaining Model

0000

or result relies on equilibrium refinements, specific bargaining protocols, or exogenous restrictions on players' strategy spaces.

From War-of-Attrition to Bargaining

Kambe

- 1. Division of surplus is sensitive to the *bargaining protocol*.
 - What if P1 makes 2 offers in a row and then P2 makes 1 offer?

Multiple Types

- What if P1 makes 2 offers in a row and then P2 makes 3 offers?
- 2. Intractable once introducing incomplete info.
 - Sobel and Takahashi (83), Fudenberg, Levine and Tirole (85), Gul, Sonnestein and Wilson (86), Adamati and Perry (87), Chatterjee and Samuelson (87), Ausubel and Deneckere (89,92).
 - Either no robust prediction,

War-of-Attrition

Bargaining Model

0000

or result relies on equilibrium refinements, specific bargaining protocols, or exogenous restrictions on players' strategy spaces.

From War-of-Attrition to Bargaining

Kambe

▲□▶▲□▶▲□▶▲□▶ □ のQで

Myerson (1991), Kambe (1999), Abreu and Gul (2000)

Robust predictions on players' payoffs in bargaining games:

- 1. does not depend on details of the type distribution
- 2. does not depend on details of the *bargaining protocol*.

Incomplete info: Uncertainty about other player's bargaining posture.

• Unlike existing works that focus on uncertainty about the payoff relevant fundamentals (e.g., value, cost, discount factor)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Motivation: Rubinstein Bargaining with Incomplete Info

Multiple Types

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

• If P2 accepts, then the game ends.

• If P2 rejects, then the game moves on to the next period.

• If P1 accepts, then the game ends.

Bargaining Model
00000War-of-Attrition
000000Multiple Types
00000From War-of-Attrition to Bargaining
000000

Motivation: Rubinstein Bargaining with Incomplete Info

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k + 1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

▲□▶▲□▶▲□▶▲□▶ □ のQで

▲□▶▲□▶▲□▶▲□▶ □ のQで

Motivation: Rubinstein Bargaining with Incomplete Info

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k+1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

Bargaining Model War-of-Attrition

Motivation: Rubinstein Bargaining with Incomplete Info

Multiple Types

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k+1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

Motivation: Rubinstein Bargaining with Incomplete Info

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k+1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

Motivation: Rubinstein Bargaining with Incomplete Info

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k+1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

Motivation: Rubinstein Bargaining with Incomplete Info

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k+1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

Motivation: Rubinstein Bargaining with Incomplete Info

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k+1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Motivation: Rubinstein Bargaining with Incomplete Info

Player *i* is rational with prob $1 - z_i$.

Player *i* is committed with prob z_i .

- a set of bargaining postures $C_i \equiv \{\alpha_i^1, \alpha_i^2, ..., \alpha_i^{k_i}\} \subset [0, 1]$
- with prob z_iπ_i(α^j_i), always demands α^j_i, and accepts iff receives ≥ α^j_i.
 π_i(α¹_i) + π_i(α²_i) + ... + π_i(α^{k_i}_i) = 1.

Question: How will players behave and what is the division of surplus?

• As the bargaining friction vanishes, can we say anything that applies to all (or a large class of) bargaining protocols?

Lesson from 80s: Bargaining is hard when informed party can make offers.

Player *i* is rational with prob $1 - z_i$.

Player *i* is committed with prob z_i .

- a set of bargaining postures $C_i \equiv \{\alpha_i^1, \alpha_i^2, ..., \alpha_i^{k_i}\} \subset [0, 1]$
- with prob $z_i \pi_i(\alpha_i^j)$, always demands α_i^j , and accepts iff receives $\geq \alpha_i^j$. $\pi_i(\alpha_i^1) + \pi_i(\alpha_i^2) + \ldots + \pi_i(\alpha_i^{k_i}) = 1.$

Question: How will players behave and what is the division of surplus?

• As the bargaining friction vanishes, can we say anything that applies to all (or a large class of) bargaining protocols?

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lesson from 80s: Bargaining is hard when informed party can make offers.

Player *i* is rational with prob $1 - z_i$.

Player *i* is committed with prob z_i .

- a set of bargaining postures $C_i \equiv \{\alpha_i^1, \alpha_i^2, ..., \alpha_i^{k_i}\} \subset [0, 1]$
- with prob $z_i \pi_i(\alpha_i^j)$, always demands α_i^j , and accepts iff receives $\geq \alpha_i^j$. $\pi_i(\alpha_i^1) + \pi_i(\alpha_i^2) + \ldots + \pi_i(\alpha_i^{k_i}) = 1.$

Question: How will players behave and what is the division of surplus?

• As the bargaining friction vanishes, can we say anything that applies to all (or a large class of) bargaining protocols?

Lesson from 80s: Bargaining is hard when informed party can make offers.

Player *i* is rational with prob $1 - z_i$.

Player *i* is committed with prob z_i .

- a set of bargaining postures $C_i \equiv \{\alpha_i^1, \alpha_i^2, ..., \alpha_i^{k_i}\} \subset [0, 1]$
- with prob $z_i \pi_i(\alpha_i^j)$, always demands α_i^j , and accepts iff receives $\geq \alpha_i^j$. $\pi_i(\alpha_i^1) + \pi_i(\alpha_i^2) + \ldots + \pi_i(\alpha_i^{k_i}) = 1.$

Question: How will players behave and what is the division of surplus?

• As the bargaining friction vanishes, can we say anything that applies to all (or a large class of) bargaining protocols?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lesson from 80s: Bargaining is hard when informed party can make offers.

Player *i* is rational with prob $1 - z_i$.

Player *i* is committed with prob z_i .

- a set of bargaining postures $C_i \equiv \{\alpha_i^1, \alpha_i^2, ..., \alpha_i^{k_i}\} \subset [0, 1]$
- with prob $z_i \pi_i(\alpha_i^j)$, always demands α_i^j , and accepts iff receives $\geq \alpha_i^j$. $\pi_i(\alpha_i^1) + \pi_i(\alpha_i^2) + \ldots + \pi_i(\alpha_i^{k_i}) = 1.$

Question: How will players behave and what is the division of surplus?

• As the bargaining friction vanishes, can we say anything that applies to all (or a large class of) bargaining protocols?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lesson from 80s: Bargaining is hard when informed party can make offers.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

Abreu and Gul (2000)'s Approach

Three steps:

- 1. Continuous-time war-of-attrition with one commitment type for each player. Each player either mimics the commitment type or concedes.
- 2. Extend the results by allowing for multiple commitment types. Which commitment type will the rational type imitate?
- 3. In reputational bargaining games, when players can make offers frequently $(\Delta \rightarrow 0)$, revealing rationality \approx conceding to opponent.

When offers are frequent, players' payoffs in the reputational bargaining game \approx their payoffs in a war-of-attribution game.

- offers are frequent,
- commitment types occur with low probability and players' commitment probabilities are comparable,
- the set of commitment types is rich enough.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

Abreu and Gul (2000)'s Approach

Three steps:

- 1. Continuous-time war-of-attrition with one commitment type for each player. Each player either mimics the commitment type or concedes.
- 2. Extend the results by allowing for multiple commitment types. Which commitment type will the rational type imitate?
- 3. In reputational bargaining games, when players can make offers frequently $(\Delta \rightarrow 0)$, revealing rationality \approx conceding to opponent.

When offers are frequent, players' payoffs in the reputational bargaining game \approx their payoffs in a war-of-attribution game.

- offers are frequent,
- commitment types occur with low probability and players' commitment probabilities are comparable,
- the set of commitment types is rich enough.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

Abreu and Gul (2000)'s Approach

Three steps:

- 1. Continuous-time war-of-attrition with one commitment type for each player. Each player either mimics the commitment type or concedes.
- 2. Extend the results by allowing for multiple commitment types. Which commitment type will the rational type imitate?
- 3. In reputational bargaining games, when players can make offers frequently $(\Delta \rightarrow 0)$, revealing rationality \approx conceding to opponent.

When offers are frequent, players' payoffs in the reputational bargaining game \approx their payoffs in a war-of-attribution game.

- offers are frequent,
- commitment types occur with low probability and players' commitment probabilities are comparable,
- the set of commitment types is rich enough.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Abreu and Gul (2000)'s Approach

Three steps:

- 1. Continuous-time war-of-attrition with one commitment type for each player. Each player either mimics the commitment type or concedes.
- 2. Extend the results by allowing for multiple commitment types. Which commitment type will the rational type imitate?
- 3. In reputational bargaining games, when players can make offers frequently $(\Delta \rightarrow 0)$, revealing rationality \approx conceding to opponent.

When offers are frequent, players' payoffs in the reputational bargaining game \approx their payoffs in a war-of-attribution game.

- offers are frequent,
- commitment types occur with low probability and players' commitment probabilities are comparable,
- the set of commitment types is rich enough.

Abreu and Gul (2000)'s Approach

Three steps:

- 1. Continuous-time war-of-attrition with one commitment type for each player. Each player either mimics the commitment type or concedes.
- 2. Extend the results by allowing for multiple commitment types. Which commitment type will the rational type imitate?
- 3. In reputational bargaining games, when players can make offers frequently $(\Delta \rightarrow 0)$, revealing rationality \approx conceding to opponent.

When offers are frequent, players' payoffs in the reputational bargaining game \approx their payoffs in a war-of-attribution game.

- offers are frequent,
- commitment types occur with low probability and players' commitment probabilities are comparable,
- the set of commitment types is rich enough.

Abreu and Gul (2000)'s Approach

Three steps:

- 1. Continuous-time war-of-attrition with one commitment type for each player. Each player either mimics the commitment type or concedes.
- 2. Extend the results by allowing for multiple commitment types. Which commitment type will the rational type imitate?
- 3. In reputational bargaining games, when players can make offers frequently $(\Delta \rightarrow 0)$, revealing rationality \approx conceding to opponent.

When offers are frequent, players' payoffs in the reputational bargaining game \approx their payoffs in a war-of-attribution game.

- offers are frequent,
- commitment types occur with low probability and players' commitment probabilities are comparable,
- the set of commitment types is rich enough.

Abreu and Gul (2000)'s Approach

Three steps:

- 1. Continuous-time war-of-attrition with one commitment type for each player. Each player either mimics the commitment type or concedes.
- 2. Extend the results by allowing for multiple commitment types. Which commitment type will the rational type imitate?
- 3. In reputational bargaining games, when players can make offers frequently $(\Delta \rightarrow 0)$, revealing rationality \approx conceding to opponent.

When offers are frequent, players' payoffs in the reputational bargaining game \approx their payoffs in a war-of-attribution game.

- offers are frequent,
- commitment types occur with low probability and players' commitment probabilities are comparable,
- the set of commitment types is rich enough.

Abreu and Gul (2000)'s Approach

Three steps:

- 1. Continuous-time war-of-attrition with one commitment type for each player. Each player either mimics the commitment type or concedes.
- 2. Extend the results by allowing for multiple commitment types. Which commitment type will the rational type imitate?
- 3. In reputational bargaining games, when players can make offers frequently $(\Delta \rightarrow 0)$, revealing rationality \approx conceding to opponent.

When offers are frequent, players' payoffs in the reputational bargaining game \approx their payoffs in a war-of-attribution game.

- offers are frequent,
- commitment types occur with low probability and players' commitment probabilities are comparable,
- the set of commitment types is rich enough.

War-of-Attrition with One Commitment Type on Each Side

Two players decide how to divide a dollar.

- Time $t \in [0, +\infty)$. Players' interest rates r_1 and r_2 .
- Player *i*'s commitment demand: α_i^* , with $\alpha_1^* + \alpha_2^* > 1$.
- With prob z_i , player *i* is committed, demands α_i^* , and never concedes.
- With prob $1 z_i$, player *i* is rational and chooses $\tilde{t}_i \in [0, +\infty]$.
 - * \tilde{t}_i is the time at which player *i* concedes,
 - * commitment type chooses $\tilde{t}_i = +\infty$.
- The game ends at $\tilde{t} \equiv \min{\{\tilde{t}_1, \tilde{t}_2\}}$.
- The rational types' payoffs:

* if $\tilde{t}_1 > \tilde{t}_2$, then $\alpha_1^* e^{-r_1 \tilde{t}}$ for P1 and $(1 - \alpha_1^*) e^{-r_2 \tilde{t}}$ for P2.

* if $\tilde{t}_1 < \tilde{t}_2$, then $(1 - \alpha_2^*)e^{-r_1\tilde{t}}$ for P1 and $\alpha_2^*e^{-r_2\tilde{t}}$ for P2.

* if $\tilde{t}_1 = \tilde{t}_2$, then share the surplus equally.

odel War-•00

War-of-Attrition with One Commitment Type on Each Side

Multiple Types

Two players decide how to divide a dollar.

- Time $t \in [0, +\infty)$. Players' interest rates r_1 and r_2 .
- Player *i*'s commitment demand: α_i^* , with $\alpha_1^* + \alpha_2^* > 1$.
- With prob z_i , player *i* is committed, demands α_i^* , and never concedes.
- With prob $1 z_i$, player *i* is rational and chooses $\tilde{t}_i \in [0, +\infty]$.
 - * \tilde{t}_i is the time at which player *i* concedes,
 - * commitment type chooses $\tilde{t}_i = +\infty$.
- The game ends at $\tilde{t} \equiv \min{\{\tilde{t}_1, \tilde{t}_2\}}$.
- The rational types' payoffs:

* if $\tilde{t}_1 > \tilde{t}_2$, then $\alpha_1^* e^{-r_1 \tilde{t}}$ for P1 and $(1 - \alpha_1^*) e^{-r_2 \tilde{t}}$ for P2.

* if $\tilde{t}_1 < \tilde{t}_2$, then $(1 - \alpha_2^*)e^{-r_1\tilde{t}}$ for P1 and $\alpha_2^*e^{-r_2\tilde{t}}$ for P2.

* if $\tilde{t}_1 = \tilde{t}_2$, then share the surplus equally.

War-of-Attrition with One Commitment Type on Each Side

Multiple Types

Two players decide how to divide a dollar.

- Time $t \in [0, +\infty)$. Players' interest rates r_1 and r_2 .
- Player *i*'s commitment demand: α_i^* , with $\alpha_1^* + \alpha_2^* > 1$.
- With prob z_i , player *i* is committed, demands α_i^* , and never concedes.
- With prob $1 z_i$, player *i* is rational and chooses $\tilde{t}_i \in [0, +\infty]$.
 - * \tilde{t}_i is the time at which player *i* concedes,
 - * commitment type chooses $\tilde{t}_i = +\infty$.
- The game ends at $\tilde{t} \equiv \min{\{\tilde{t}_1, \tilde{t}_2\}}$.
- The rational types' payoffs:

* if $\tilde{t}_1 > \tilde{t}_2$, then $\alpha_1^* e^{-r_1 \tilde{t}}$ for P1 and $(1 - \alpha_1^*) e^{-r_2 \tilde{t}}$ for P2.

* if $\tilde{t}_1 < \tilde{t}_2$, then $(1 - \alpha_2^*)e^{-r_1\tilde{t}}$ for P1 and $\alpha_2^*e^{-r_2\tilde{t}}$ for P2.

War-of-Attrition with One Commitment Type on Each Side

Multiple Types

Two players decide how to divide a dollar.

- Time $t \in [0, +\infty)$. Players' interest rates r_1 and r_2 .
- Player *i*'s commitment demand: α_i^* , with $\alpha_1^* + \alpha_2^* > 1$.
- With prob z_i , player *i* is committed, demands α_i^* , and never concedes.
- With prob $1 z_i$, player *i* is rational and chooses $\tilde{t}_i \in [0, +\infty]$.
 - * \tilde{t}_i is the time at which player *i* concedes,
 - * commitment type chooses $\tilde{t}_i = +\infty$.
- The game ends at $\tilde{t} \equiv \min{\{\tilde{t}_1, \tilde{t}_2\}}$.
- The rational types' payoffs:

* if $\tilde{t}_1 > \tilde{t}_2$, then $\alpha_1^* e^{-r_1 \tilde{t}}$ for P1 and $(1 - \alpha_1^*) e^{-r_2 \tilde{t}}$ for P2.

* if $\tilde{t}_1 < \tilde{t}_2$, then $(1 - \alpha_2^*)e^{-r_1\tilde{t}}$ for P1 and $\alpha_2^*e^{-r_2\tilde{t}}$ for P2.

War-of-Attrition with One Commitment Type on Each Side

Multiple Types

Two players decide how to divide a dollar.

- Time $t \in [0, +\infty)$. Players' interest rates r_1 and r_2 .
- Player *i*'s commitment demand: α_i^* , with $\alpha_1^* + \alpha_2^* > 1$.
- With prob z_i , player *i* is committed, demands α_i^* , and never concedes.
- With prob $1 z_i$, player *i* is rational and chooses $\tilde{t}_i \in [0, +\infty]$.
 - * \tilde{t}_i is the time at which player *i* concedes,
 - * commitment type chooses $\tilde{t}_i = +\infty$.
- The game ends at $\tilde{t} \equiv \min{\{\tilde{t}_1, \tilde{t}_2\}}$.
- The rational types' payoffs:

* if $\tilde{t}_1 > \tilde{t}_2$, then $\alpha_1^* e^{-r_1 \tilde{t}}$ for P1 and $(1 - \alpha_1^*) e^{-r_2 \tilde{t}}$ for P2.

* if $\tilde{t}_1 < \tilde{t}_2$, then $(1 - \alpha_2^*)e^{-r_1\tilde{t}}$ for P1 and $\alpha_2^*e^{-r_2\tilde{t}}$ for P2.

War-of-Attrition with One Commitment Type on Each Side

Multiple Types

Two players decide how to divide a dollar.

- Time $t \in [0, +\infty)$. Players' interest rates r_1 and r_2 .
- Player *i*'s commitment demand: α_i^* , with $\alpha_1^* + \alpha_2^* > 1$.
- With prob z_i , player *i* is committed, demands α_i^* , and never concedes.
- With prob $1 z_i$, player *i* is rational and chooses $\tilde{t}_i \in [0, +\infty]$.
 - * \tilde{t}_i is the time at which player *i* concedes,
 - * commitment type chooses $\tilde{t}_i = +\infty$.
- The game ends at $\tilde{t} \equiv \min{\{\tilde{t}_1, \tilde{t}_2\}}$.
- The rational types' payoffs:

* if $\tilde{t}_1 > \tilde{t}_2$, then $\alpha_1^* e^{-r_1 \tilde{t}}$ for P1 and $(1 - \alpha_1^*) e^{-r_2 \tilde{t}}$ for P2.

* if $\tilde{t}_1 < \tilde{t}_2$, then $(1 - \alpha_2^*)e^{-r_1\tilde{t}}$ for P1 and $\alpha_2^*e^{-r_2\tilde{t}}$ for P2.

Rational-type of player *i*'s mixed action can be represented by:

• a distribution of their concession time $\widetilde{F}_i(\cdot) \in \Delta[0, +\infty]$.

We will work with $F_i(\cdot) \equiv (1 - z_i)\widetilde{F}_i(\cdot)$.

War-of-Attrition

F_i(·) is the unconditional distribution of player i's concession time.
 F_i(t) is the prob that player i concedes before or at time t.
 This is what their opponent cares about.

•
$$F_i(\cdot) \in [0, 1 - z_i].$$

Bargaining Model

If $F_i(t) = 1 - z_i$, then player *i* has a perfect reputation at time *t*.

We construct an equilibrium, and then provide intuition for its uniqueness.

・ロト・日本・日本・日本・日本

From War-of-Attrition to Bargaining

Multiple Types

From War-of-Attrition to Bargaining

(日)

Rational-type of player *i*'s mixed action can be represented by:

• a distribution of their concession time $\widetilde{F}_i(\cdot) \in \Delta[0, +\infty]$.

We will work with $F_i(\cdot) \equiv (1 - z_i)\widetilde{F}_i(\cdot)$.

War-of-Attrition

0000000

F_i(·) is the *unconditional distribution* of player *i*'s concession time.
 F_i(t) is the prob that player *i* concedes before or at time t.
 This is what their opponent cares about.

•
$$F_i(\cdot) \in [0, 1 - z_i].$$

Bargaining Model

If $F_i(t) = 1 - z_i$, then player *i* has a perfect reputation at time *t*.

Multiple Types

From War-of-Attrition to Bargaining

(日)

Rational-type of player *i*'s mixed action can be represented by:

• a distribution of their concession time $\widetilde{F}_i(\cdot) \in \Delta[0, +\infty]$.

We will work with $F_i(\cdot) \equiv (1 - z_i)\widetilde{F}_i(\cdot)$.

War-of-Attrition

0000000

F_i(·) is the *unconditional distribution* of player *i*'s concession time.
 F_i(*t*) is the prob that player *i* concedes before or at time *t*.

This is what their opponent cares about.

•
$$F_i(\cdot) \in [0, 1 - z_i].$$

If $F_i(t) = 1 - z_i$, then player *i* has a perfect reputation at time *t*.

Multiple Types

From War-of-Attrition to Bargaining

(日)

Rational-type of player *i*'s mixed action can be represented by:

• a distribution of their concession time $\widetilde{F}_i(\cdot) \in \Delta[0, +\infty]$.

We will work with $F_i(\cdot) \equiv (1 - z_i)\widetilde{F}_i(\cdot)$.

War-of-Attrition

0000000

F_i(·) is the *unconditional distribution* of player *i*'s concession time.
 F_i(*t*) is the prob that player *i* concedes before or at time *t*.
 This is what their opponent cares about.

Multiple Types

From War-of-Attrition to Bargaining

(日)

Rational-type of player *i*'s mixed action can be represented by:

• a distribution of their concession time $\widetilde{F}_i(\cdot) \in \Delta[0, +\infty]$.

We will work with $F_i(\cdot) \equiv (1 - z_i)\widetilde{F}_i(\cdot)$.

War-of-Attrition

0000000

F_i(·) is the *unconditional distribution* of player *i*'s concession time.
 F_i(*t*) is the prob that player *i* concedes before or at time *t*.
 This is what their opponent cares about.

•
$$F_i(\cdot) \in [0, 1 - z_i].$$

If $F_i(t) = 1 - z_i$, then player *i* has a perfect reputation at time *t*.

Multiple Types

From War-of-Attrition to Bargaining

(日)

Rational-type of player *i*'s mixed action can be represented by:

• a distribution of their concession time $\widetilde{F}_i(\cdot) \in \Delta[0, +\infty]$.

We will work with $F_i(\cdot) \equiv (1 - z_i)\widetilde{F}_i(\cdot)$.

War-of-Attrition

F_i(·) is the *unconditional distribution* of player *i*'s concession time.
 F_i(*t*) is the prob that player *i* concedes before or at time *t*.
 This is what their opponent cares about.

•
$$F_i(\cdot) \in [0, 1 - z_i].$$

If $F_i(t) = 1 - z_i$, then player *i* has a perfect reputation at time *t*.

War-of-A

Bargaining Model

War-of-Attrition

Multiple Types

From War-of-Attrition to Bargaining

▲□▶▲□▶▲□▶▲□▶ □ のQで

Equilibrium Construction

We construct an equilibrium with the following features:

- 1. At most one player concedes with positive prob at time 0.
- 2. The rational type of both players finish conceding in finite time.
- 3. Both players finish conceding at the same time τ .
- 4. Both players concede at a constant rate when t ∈ (0, τ],
 i.e., both of them are indifferent from 0 to τ.

- 1. Players' concession rates when $t \in (0, \tau]$
- 2. The time at which concession stops τ .
- 3. Who concedes with positive prob at time 0 (if any), with what prob.

War-of-Attrition

0000000

Bargaining Model

We construct an equilibrium with the following features:

- 1. At most one player concedes with positive prob at time 0.
- 2. The rational type of both players finish conceding in finite time.

Multiple Types

From War-of-Attrition to Bargaining

▲□▶▲□▶▲□▶▲□▶ □ のQで

Kambe

- 3. Both players finish conceding at the same time τ .
- 4. Both players concede at a constant rate when t ∈ (0, τ],
 i.e., both of them are indifferent from 0 to τ.

- 1. Players' concession rates when $t \in (0, \tau]$
- 2. The time at which concession stops τ .
- 3. Who concedes with positive prob at time 0 (if any), with what prob.

War-of-Attrition

0000000

Bargaining Model

We construct an equilibrium with the following features:

- 1. At most one player concedes with positive prob at time 0.
- 2. The rational type of both players finish conceding in finite time.

Multiple Types

From War-of-Attrition to Bargaining

▲□▶▲□▶▲□▶▲□▶ □ のQで

Kambe

- 3. Both players finish conceding at the same time τ .
- 4. Both players concede at a constant rate when t ∈ (0, τ],
 i.e., both of them are indifferent from 0 to τ.

- 1. Players' concession rates when $t \in (0, \tau]$
- 2. The time at which concession stops τ .
- 3. Who concedes with positive prob at time 0 (if any), with what prob.

War-of-Attrition

0000000

Bargaining Model

We construct an equilibrium with the following features:

- 1. At most one player concedes with positive prob at time 0.
- 2. The rational type of both players finish conceding in finite time.

Multiple Types

From War-of-Attrition to Bargaining

▲□▶▲□▶▲□▶▲□▶ □ のQで

Kambe

- 3. Both players finish conceding at the same time τ .
- 4. Both players concede at a constant rate when t ∈ (0, τ],
 i.e., both of them are indifferent from 0 to τ.

- 1. Players' concession rates when $t \in (0, \tau]$
- 2. The time at which concession stops τ .
- 3. Who concedes with positive prob at time 0 (if any), with what prob.

War-of-Attrition

0000000

Bargaining Model

We construct an equilibrium with the following features:

- 1. At most one player concedes with positive prob at time 0.
- 2. The rational type of both players finish conceding in finite time.

From War-of-Attrition to Bargaining

▲□▶▲□▶▲□▶▲□▶ □ のQで

Kambe

- 3. Both players finish conceding at the same time τ .
- 4. Both players concede at a constant rate when $t \in (0, \tau]$,

i.e., both of them are indifferent from 0 to τ .

- 1. Players' concession rates when $t \in (0, \tau]$
- 2. The time at which concession stops τ .
- 3. Who concedes with positive prob at time 0 (if any), with what prob.

War-of-Attrition

00000000

Bargaining Model

We construct an equilibrium with the following features:

- 1. At most one player concedes with positive prob at time 0.
- 2. The rational type of both players finish conceding in finite time.

Multiple Types

From War-of-Attrition to Bargaining

▲□▶▲□▶▲□▶▲□▶ □ のQで

Kambe

- 3. Both players finish conceding at the same time τ .
- 4. Both players concede at a constant rate when $t \in (0, \tau]$,

i.e., both of them are indifferent from 0 to $\tau.$

- 1. Players' concession rates when $t \in (0, \tau]$
- 2. The time at which concession stops τ .
- 3. Who concedes with positive prob at time 0 (if any), with what prob.

War-of-Attrition

0000000

Bargaining Model

We construct an equilibrium with the following features:

- 1. At most one player concedes with positive prob at time 0.
- 2. The rational type of both players finish conceding in finite time.

Multiple Types

From War-of-Attrition to Bargaining

▲□▶▲□▶▲□▶▲□▶ □ のQで

Kambe

- 3. Both players finish conceding at the same time τ .
- 4. Both players concede at a constant rate when $t \in (0, \tau]$,

i.e., both of them are indifferent from 0 to τ .

- 1. Players' concession rates when $t \in (0, \tau]$
- 2. The time at which concession stops τ .
- 3. Who concedes with positive prob at time 0 (if any), with what prob.

War-of-Attrition

0000000

Bargaining Model

We construct an equilibrium with the following features:

- 1. At most one player concedes with positive prob at time 0.
- 2. The rational type of both players finish conceding in finite time.

Multiple Types

From War-of-Attrition to Bargaining

▲□▶▲□▶▲□▶▲□▶ □ のQで

Kambe

- 3. Both players finish conceding at the same time τ .
- Both players concede at a constant rate when t ∈ (0, τ],
 i.e., both of them are indifferent from 0 to τ.

- 1. Players' concession rates when $t \in (0, \tau]$
- 2. The time at which concession stops τ .
- 3. Who concedes with positive prob at time 0 (if any), with what prob.

War-of-Attrition 0000000000

Multiple Types

From War-of-Attrition to Bargaining

Equilibrium Construction: Compute Concession Rates

Player *i*'s concession rate at *t*:

$$\lambda_i(t) \equiv \Big| \frac{d(1 - F_i(t))/dt}{1 - F_i(t)} \Big|.$$

$$\lambda_i(t) \qquad \underbrace{\left(\alpha_j^* - (1 - \alpha_i^*)\right)}_{\text{player is cost of waiting}} = \underbrace{r_j(1 - \alpha_i^*)}_{\text{player is cost of waiting}}$$

$$\lambda_i(t) = \frac{(1 - \alpha_i^*)r_j}{\alpha_i^* + \alpha_j^* - 1}$$

$$1 - F_i(t) = \left(1 - F_i(0)\right)e^{-\lambda_i t}.$$

War-of-Attrition 0000000000

Multiple Types

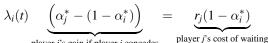
From War-of-Attrition to Bargaining

Equilibrium Construction: Compute Concession Rates

Player *i*'s concession rate at *t*:

$$\lambda_i(t) \equiv \Big| \frac{d(1 - F_i(t))/dt}{1 - F_i(t)} \Big|.$$

Player *j* is indifferent between conceding at $t \in (0, \tau)$ and conceding at the next time instant:



player i's gain if player i concedes

$$\lambda_i(t) = \frac{(1 - \alpha_i^*)r_j}{\alpha_i^* + \alpha_j^* - 1}$$

$$1 - F_i(t) = \left(1 - F_i(0)\right)e^{-\lambda_i t}.$$

War-of-Attrition

Multiple Types

From War-of-Attrition to Bargaining

Equilibrium Construction: Compute Concession Rates

Player *i*'s concession rate at *t*:

$$\lambda_i(t) \equiv \Big| \frac{d(1 - F_i(t))/dt}{1 - F_i(t)} \Big|.$$

Player *j* is indifferent between conceding at $t \in (0, \tau)$ and conceding at the next time instant:

$$\lambda_{i}(t) \underbrace{\left(\alpha_{j}^{*} - (1 - \alpha_{i}^{*})\right)}_{\text{player } j\text{'s gain if player } i \text{ concedes}} = \underbrace{r_{j}(1 - \alpha_{i}^{*})}_{\text{player } j\text{'s cost of waiting}}$$

This yields the expression for the equilibrium concession rate:

$$\lambda_i(t) = \frac{(1 - \alpha_i^*)r_j}{\alpha_i^* + \alpha_j^* - 1}$$

Since the above expression is independent of *t*, we write λ_i instead of $\lambda_i(t)$.

For every $t \in [0, \tau]$,

$$1 - F_i(t) = \left(1 - F_i(0)\right)e^{-\lambda_i t}.$$

War-of-Attrition

Multiple Types

From War-of-Attrition to Bargaining

Equilibrium Construction: Compute Concession Rates

Player *i*'s concession rate at *t*:

$$\lambda_i(t) \equiv \Big| \frac{d(1 - F_i(t))/dt}{1 - F_i(t)} \Big|.$$

Player *j* is indifferent between conceding at $t \in (0, \tau)$ and conceding at the next time instant:

$$\lambda_{i}(t) \underbrace{\left(\alpha_{j}^{*} - (1 - \alpha_{i}^{*})\right)}_{\text{player } j\text{'s gain if player } i \text{ concedes}} = \underbrace{r_{j}(1 - \alpha_{i}^{*})}_{\text{player } j\text{'s cost of waiting}}$$

This yields the expression for the equilibrium concession rate:

$$\lambda_i(t) = \frac{(1 - \alpha_i^*)r_j}{\alpha_i^* + \alpha_j^* - 1}$$

Since the above expression is independent of *t*, we write λ_i instead of $\lambda_i(t)$.

For every $t \in [0, \tau]$,

$$1 - F_i(t) = \left(1 - F_i(0)\right)e^{-\lambda_i t}.$$

War-of-Attrition

Multiple Types From War-of

From War-of-Attrition to Bargaining

Kambe 0000

Compute τ & Who Concedes in At Time 0

Suppose nobody concedes with positive prob at time 0,

• Let T_i be the time it takes for player *i* to build a perfect reputation:

$$e^{-\lambda_i T_i} = z_i,$$

or equivalently,

$$T_i = -\frac{\log z_i}{\lambda_i}.$$

If $T_1 = T_2$, then nobody concedes with positive prob at 0.

•
$$\tau = T_1 = T_2$$

If $T_i > T_j$, then $\tau = T_j$ and player *i* concedes with positive prob at time 0 s.t.

$$\left(1 - \underbrace{F_i(0)}_{\text{concession prob at }0}\right)e^{-\lambda_i T_j} = z_i \quad \Rightarrow \quad F_i(0) = 1 - z_i z_j^{-\lambda_i/\lambda_j}$$

Both players finish conceding at the same time if player *i* concedes with probability $F_i(0)$ at time 0.

War-of-Attrition

Multiple Types

From War-of-Attrition to Bargaining

Kambe 0000

Compute τ & Who Concedes in At Time 0

Suppose nobody concedes with positive prob at time 0,

• Let T_i be the time it takes for player *i* to build a perfect reputation:

$$e^{-\lambda_i T_i} = z_i,$$

or equivalently,

$$T_i = -\frac{\log z_i}{\lambda_i}.$$

If $T_1 = T_2$, then nobody concedes with positive prob at 0.

•
$$\tau = T_1 = T_2$$

If $T_i > T_j$, then $\tau = T_j$ and player *i* concedes with positive prob at time 0 s.t.

$$\left(1 - \underbrace{F_i(0)}_{\text{concession prob at } 0}\right) e^{-\lambda_i T_j} = z_i \quad \Rightarrow \quad F_i(0) = 1 - z_i z_j^{-\lambda_i/\lambda_j}$$

Both players finish conceding at the same time if player *i* concedes with probability $F_i(0)$ at time 0.

War-of-Attrition

Multiple Types

From War-of-Attrition to Bargaining

Kambe 0000

Compute τ & Who Concedes in At Time 0

Suppose nobody concedes with positive prob at time 0,

• Let T_i be the time it takes for player *i* to build a perfect reputation:

$$e^{-\lambda_i T_i} = z_i,$$

or equivalently,

$$T_i = -\frac{\log z_i}{\lambda_i}.$$

If $T_1 = T_2$, then nobody concedes with positive prob at 0.

•
$$\tau = T_1 = T_2$$

If $T_i > T_j$, then $\tau = T_j$ and player *i* concedes with positive prob at time 0 s.t.

$$\left(1 - \underbrace{F_i(0)}_{\text{concession prob at } 0}\right)e^{-\lambda_i T_j} = z_i \quad \Rightarrow \quad F_i(0) = 1 - z_i z_j^{-\lambda_i/\lambda_j}$$

Both players finish conceding at the same time if player *i* concedes with probability $F_i(0)$ at time 0.

War-of-Attrition 00000●000 Multiple Types

From War-of-Attrition to Bargaining

▲□▶▲□▶▲□▶▲□▶ □ のQで

Kambe 0000

Lessons from this equilibrium

Equilibrium payoffs when player *i* concedes with positive prob at t = 0:

- Player *i*'s payoff is 1 − α_j^{*}.
- Player *j*'s payoff is $(1 \alpha_i^*)(1 F_i(0)) + \alpha_j^* F_i(0)$.

The strength of player *i* increases in his rate of reputation building

$$\lambda_i \equiv \frac{r_j(1-\alpha_i^*)}{\alpha_i^* + \alpha_j^* - 1},$$

and increases in his initial commitment probability z_i .

A player is *stronger* if:

- he is more patient than his opponent,
- his commitment demand is less greedy,
- and he is more likely to be the commitment type.

War-of-Attrition

Multiple Types

From War-of-Attrition to Bargaining

Kambe 0000

Lessons from this equilibrium

Equilibrium payoffs when player *i* concedes with positive prob at t = 0:

- Player *i*'s payoff is 1 − α_j^{*}.
- Player *j*'s payoff is $(1 \alpha_i^*)(1 F_i(0)) + \alpha_j^* F_i(0)$.

The strength of player *i* increases in his rate of reputation building

$$\lambda_i \equiv \frac{r_j(1-\alpha_i^*)}{\alpha_i^* + \alpha_j^* - 1},$$

and increases in his initial commitment probability z_i .

A player is *stronger* if:

- he is more patient than his opponent,
- his commitment demand is less greedy,
- and he is more likely to be the commitment type.

War-of-Attrition

Multiple Types

From War-of-Attrition to Bargaining

▲□▶▲□▶▲□▶▲□▶ □ のQで

Kambe 0000

Lessons from this equilibrium

Equilibrium payoffs when player *i* concedes with positive prob at t = 0:

- Player *i*'s payoff is $1 \alpha_j^*$.
- Player *j*'s payoff is $(1 \alpha_i^*)(1 F_i(0)) + \alpha_j^*F_i(0)$.

The strength of player *i* increases in his rate of reputation building

$$\lambda_i \equiv \frac{r_j(1-\alpha_i^*)}{\alpha_i^* + \alpha_j^* - 1},$$

and increases in his initial commitment probability z_i .

A player is *stronger* if:

- he is more patient than his opponent,
- his commitment demand is less greedy,
- and he is more likely to be the commitment type.

The Uniqueness of Equilibrium

War-of-Attrition

We establish some necessary conditions for equilibrium:

- At most one player concedes with positive prob at time 0.
 Otherwise, one player strictly prefers to wait for another instant.
- 2. The rational type of every player concedes in finite time.

If *i* doesn't concede at *t*, then *i* expects *j* to concede before t + T with positive prob. If *j* does not concede, *j*'s prob of committed goes up.

From War-of-Attrition to Bargaining

(日)

Kambe

3. Both players stop conceding at the same time.

No incentive to wait when the other player will never concede.

4. Both players concede at a constant rate when t ∈ (0, τ].
Key step: F₁ and F₂ must be continuous and strictly increasing.
The indifference conditions for every t ∈ (0, τ] yield the unique rate.

Lemma

 $F_1(t)$ and $F_2(t)$ are continuous and strictly increasing when $t \in (0, \tau)$.

1. If F_1 jumps at t, then F_2 does not jump at t.

This is because P2 can benefit from waiting at *t*.

2. If F_1 is constant on [t', t''], then F_2 is also constant on [t', t''].

For P2, conceding at (t', t'') strictly dominated by conceding at t'.

3. \nexists interval $[t', t''] \subset [0, \tau]$ s.t. both F_1 and F_2 are constants.

Let t^* be the largest t'' s.t. F_1 and F_2 are constants on [t', t''].

Since F_1 and F_2 cannot both jump at t^* , either P1 or P2's payoff is continuous at t^* . Let's say P1's payoff is continuous at t^* .

Lemma

 $F_1(t)$ and $F_2(t)$ are continuous and strictly increasing when $t \in (0, \tau)$.

1. If F_1 jumps at t, then F_2 does not jump at t.

This is because P2 can benefit from waiting at *t*.

2. If F_1 is constant on [t', t''], then F_2 is also constant on [t', t''].

For P2, conceding at (t', t'') strictly dominated by conceding at t'.

3. \nexists interval $[t', t''] \subset [0, \tau]$ s.t. both F_1 and F_2 are constants.

Let t^* be the largest t'' s.t. F_1 and F_2 are constants on [t', t''].

Since F_1 and F_2 cannot both jump at t^* , either P1 or P2's payoff is continuous at t^* . Let's say P1's payoff is continuous at t^* .

Lemma

 $F_1(t)$ and $F_2(t)$ are continuous and strictly increasing when $t \in (0, \tau)$.

1. If F_1 jumps at t, then F_2 does not jump at t.

This is because P2 can benefit from waiting at t.

- If F₁ is constant on [t', t''], then F₂ is also constant on [t', t''].
 For P2, conceding at (t', t'') strictly dominated by conceding at t'.
- 3. \nexists interval $[t', t''] \subset [0, \tau]$ s.t. both F_1 and F_2 are constants.

Let t^* be the largest t'' s.t. F_1 and F_2 are constants on [t', t''].

Since F_1 and F_2 cannot both jump at t^* , either P1 or P2's payoff is continuous at t^* . Let's say P1's payoff is continuous at t^* .

Lemma

 $F_1(t)$ and $F_2(t)$ are continuous and strictly increasing when $t \in (0, \tau)$.

1. If F_1 jumps at t, then F_2 does not jump at t.

This is because P2 can benefit from waiting at t.

- If F₁ is constant on [t', t''], then F₂ is also constant on [t', t''].
 For P2, conceding at (t', t'') strictly dominated by conceding at t'.
- 3. \nexists interval $[t', t''] \subset [0, \tau]$ s.t. both F_1 and F_2 are constants.

Let t^* be the largest t'' s.t. F_1 and F_2 are constants on [t', t''].

Since F_1 and F_2 cannot both jump at t^* , either P1 or P2's payoff is continuous at t^* . Let's say P1's payoff is continuous at t^* .

Lemma

 $F_1(t)$ and $F_2(t)$ are continuous and strictly increasing when $t \in (0, \tau)$.

1. If F_1 jumps at t, then F_2 does not jump at t.

This is because P2 can benefit from waiting at t.

- If F₁ is constant on [t', t''], then F₂ is also constant on [t', t''].
 For P2, conceding at (t', t'') strictly dominated by conceding at t'.
- 3. \nexists interval $[t', t''] \subset [0, \tau]$ s.t. both F_1 and F_2 are constants.

Let t^* be the largest t'' s.t. F_1 and F_2 are constants on [t', t''].

Since F_1 and F_2 cannot both jump at t^* , either P1 or P2's payoff is continuous at t^* . Let's say P1's payoff is continuous at t^* .

Lemma

 $F_1(t)$ and $F_2(t)$ are continuous and strictly increasing when $t \in (0, \tau)$.

1. If F_1 jumps at t, then F_2 does not jump at t.

This is because P2 can benefit from waiting at t.

- If F₁ is constant on [t', t''], then F₂ is also constant on [t', t''].
 For P2, conceding at (t', t'') strictly dominated by conceding at t'.
- 3. \nexists interval [t', t''] ⊂ [0, τ] s.t. both F_1 and F_2 are constants.

Let t^* be the largest t'' s.t. F_1 and F_2 are constants on [t', t''].

Since F_1 and F_2 cannot both jump at t^* , either P1 or P2's payoff is continuous at t^* . Let's say P1's payoff is continuous at t^* .

Lemma

 $F_1(t)$ and $F_2(t)$ are continuous and strictly increasing when $t \in (0, \tau)$.

1. If F_1 jumps at t, then F_2 does not jump at t.

This is because P2 can benefit from waiting at t.

- If F₁ is constant on [t', t''], then F₂ is also constant on [t', t''].
 For P2, conceding at (t', t'') strictly dominated by conceding at t'.
- 3. \nexists interval $[t', t''] \subset [0, \tau]$ s.t. both F_1 and F_2 are constants.

Let t^* be the largest t'' s.t. F_1 and F_2 are constants on [t', t''].

Since F_1 and F_2 cannot both jump at t^* , either P1 or P2's payoff is continuous at t^* . Let's say P1's payoff is continuous at t^* .

Bargaining Model

Aultiple Types

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Smooth & Positive Concession from 0 to τ

Lemma

 $F_1(t)$ and $F_2(t)$ are continuous and strictly increasing when $t \in (0, \tau)$.

- 1. For every $t \in (0, \tau]$, if F_1 jumps at t, then F_2 does not jump at t.
- 2. If F_1 is constant on [t', t''], then F_2 is also constant on [t', t''].
- 3. \nexists interval [t', t''] ⊂ [0, τ] s.t. both F_1 and F_2 are constants.
- 4. 2 and 3 implies that F_1 and F_2 are strictly increasing on $[0, \tau]$.
- 5. Why are both F_1 and F_2 continuous?

If F_1 jumps at *t*, then F_2 is constant on $(t - \varepsilon, t)$, contradicting 4.

- Both players are indifferent from 0 to τ .
- Their indifference conditions pin down their concession rates.

Bargaining Model War-of-Attrition

Multiple Typ

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Kambe 0000

Smooth & Positive Concession from 0 to τ

Lemma

 $F_1(t)$ and $F_2(t)$ are continuous and strictly increasing when $t \in (0, \tau)$.

- 1. For every $t \in (0, \tau]$, if F_1 jumps at t, then F_2 does not jump at t.
- 2. If F_1 is constant on [t', t''], then F_2 is also constant on [t', t''].
- 3. \nexists interval [t', t''] ⊂ [0, τ] s.t. both F_1 and F_2 are constants.
- 4. 2 and 3 implies that F_1 and F_2 are strictly increasing on $[0, \tau]$.
- 5. Why are both F_1 and F_2 continuous?

If F_1 jumps at *t*, then F_2 is constant on $(t - \varepsilon, t)$, contradicting 4.

- Both players are indifferent from 0 to τ .
- Their indifference conditions pin down their concession rates.

Bargaining Model W

War-of-Attrition

Multiple Types

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Smooth & Positive Concession from 0 to τ

Lemma

 $F_1(t)$ and $F_2(t)$ are continuous and strictly increasing when $t \in (0, \tau)$.

- 1. For every $t \in (0, \tau]$, if F_1 jumps at t, then F_2 does not jump at t.
- 2. If F_1 is constant on [t', t''], then F_2 is also constant on [t', t''].
- 3. \nexists interval [t', t''] ⊂ [0, τ] s.t. both F_1 and F_2 are constants.
- 4. 2 and 3 implies that F_1 and F_2 are strictly increasing on $[0, \tau]$.
- 5. Why are both F_1 and F_2 continuous?

If F_1 jumps at *t*, then F_2 is constant on $(t - \varepsilon, t)$, contradicting 4.

- Both players are indifferent from 0 to τ .
- Their indifference conditions pin down their concession rates.

rgaining Model

Multiple Types

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Smooth & Positive Concession from 0 to τ

Lemma

 $F_1(t)$ and $F_2(t)$ are continuous and strictly increasing when $t \in (0, \tau)$.

- 1. For every $t \in (0, \tau]$, if F_1 jumps at t, then F_2 does not jump at t.
- 2. If F_1 is constant on [t', t''], then F_2 is also constant on [t', t''].
- 3. \nexists interval [t', t''] ⊂ [0, τ] s.t. both F_1 and F_2 are constants.
- 4. 2 and 3 implies that F_1 and F_2 are strictly increasing on $[0, \tau]$.
- 5. Why are both F_1 and F_2 continuous?

If F_1 jumps at t, then F_2 is constant on $(t - \varepsilon, t)$, contradicting 4.

- Both players are indifferent from 0 to τ .
- Their indifference conditions pin down their concession rates.

rgaining Model

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Smooth & Positive Concession from 0 to τ

Lemma

 $F_1(t)$ and $F_2(t)$ are continuous and strictly increasing when $t \in (0, \tau)$.

- 1. For every $t \in (0, \tau]$, if F_1 jumps at t, then F_2 does not jump at t.
- 2. If F_1 is constant on [t', t''], then F_2 is also constant on [t', t''].
- 3. \nexists interval [*t'*, *t''*] ⊂ [0, τ] s.t. both *F*₁ and *F*₂ are constants.
- 4. 2 and 3 implies that F_1 and F_2 are strictly increasing on $[0, \tau]$.
- 5. Why are both F_1 and F_2 continuous?

If F_1 jumps at t, then F_2 is constant on $(t - \varepsilon, t)$, contradicting 4.

- Both players are indifferent from 0 to τ .
- Their indifference conditions pin down their concession rates.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Multiple commitment types

War-of-Attrition

Bargaining Model

Let $C_i \subset [0, 1]$ be a finite set of commitment types.

- z_i : prob of player *i* is committed.
- $\pi_i(\alpha_i^*)$: Prob of committing to $\alpha_i^* \in C_i$ conditional on *i* is committed.

t = -1: players announce which commitment types to imitate.

Simplifying assumption: Transparent commitment types.

- can be relaxed when commitment types are stationary.
- important when commitment types are nonstationary (Wolitzky 11).

There exists a unique equilibrium. Why?

• P1's incentive to take a bargaining posture becomes weaker when P2's belief about P1 taking that bargaining posture increases.

Interesting limit: Fix other parameters and take $(z_1, z_2) \rightarrow 0$.

- A sequence of commitment probabilities: $\{z_1^n, z_2^n\}_{n=1}^{\infty}$.
- v_i^n : Player *i*'s equilibrium payoff in game (z_1^n, z_2^n) .

Theorem: War-of-Attrition with Rich Set of Commitment Types If $\lim z_1^n = \lim z_2^n = 0$ and $\lim \inf \frac{z_1^n}{z_1^n + z_2^n}$, $\limsup \frac{z_1^n}{z_1^n + z_2^n} \in (0, 1)$, then: $\liminf_{n \to \infty} v_i^n \ge \max \left\{ \alpha_i^* \in C_i \text{ s.t. } \alpha_i^* \le \frac{r_j}{r_i + r_j} \right\}.$

Implication: If C_i is sufficiently rich, then player *i* can approximately secure their Rubinstein bargaining payoff $\frac{r_i}{r_i+r_j}$.

 Bargaining Model
 War-of-Attrition
 Multiple Types
 From War-of-Attrition to Bargaining

 00000
 00000
 00000
 00000

Players' Payoffs

There exists a unique equilibrium. Why?

• P1's incentive to take a bargaining posture becomes weaker when P2's belief about P1 taking that bargaining posture increases.

Kambe

Interesting limit: Fix other parameters and take $(z_1, z_2) \rightarrow 0$.

- A sequence of commitment probabilities: $\{z_1^n, z_2^n\}_{n=1}^{\infty}$.
- v_i^n : Player *i*'s equilibrium payoff in game (z_1^n, z_2^n) .

Theorem: War-of-Attrition with Rich Set of Commitment Types If $\lim z_1^n = \lim z_2^n = 0$ and $\lim \inf \frac{z_1^n}{z_1^n + z_2^n}$, $\lim \sup \frac{z_1^n}{z_1^n + z_2^n} \in (0, 1)$, then: $\liminf_{n \to \infty} v_i^n \ge \max \left\{ \alpha_i^* \in C_i \text{ s.t. } \alpha_i^* \le \frac{r_j}{r_i + r_j} \right\}.$

Implication: If C_i is sufficiently rich, then player *i* can approximately secure their Rubinstein bargaining payoff $\frac{r_j}{r_i+r_j}$.

ing Model War-of-Attrition Multiple Types From War-of-Attrition to Bargaining

Players' Payoffs

There exists a unique equilibrium. Why?

• P1's incentive to take a bargaining posture becomes weaker when P2's belief about P1 taking that bargaining posture increases.

Kambe

Interesting limit: Fix other parameters and take $(z_1, z_2) \rightarrow 0$.

- A sequence of commitment probabilities: $\{z_1^n, z_2^n\}_{n=1}^{\infty}$.
- v_i^n : Player *i*'s equilibrium payoff in game (z_1^n, z_2^n) .

Theorem: War-of-Attrition with Rich Set of Commitment Types If $\lim z_1^n = \lim z_2^n = 0$ and $\lim \inf \frac{z_1^n}{z_1^n + z_2^n}$, $\limsup \frac{z_1^n}{z_1^n + z_2^n} \in (0, 1)$, then: $\liminf_{n \to \infty} v_i^n \ge \max \left\{ \alpha_i^* \in C_i \text{ s.t. } \alpha_i^* \le \frac{r_j}{r_i + r_j} \right\}.$

Implication: If C_i is sufficiently rich, then player *i* can approximately secure their Rubinstein bargaining payoff $\frac{r_i}{r_i+r_j}$.

g Model War-of-Attrition Multiple Types From War-of-Attrition to Bargaining

Kambe

Players' Payoffs

There exists a unique equilibrium. Why?

• P1's incentive to take a bargaining posture becomes weaker when P2's belief about P1 taking that bargaining posture increases.

Interesting limit: Fix other parameters and take $(z_1, z_2) \rightarrow 0$.

- A sequence of commitment probabilities: $\{z_1^n, z_2^n\}_{n=1}^{\infty}$.
- v_i^n : Player *i*'s equilibrium payoff in game (z_1^n, z_2^n) .

Theorem: War-of-Attrition with Rich Set of Commitment Types

$$If \lim z_1^n = \lim z_2^n = 0 \text{ and } \liminf \frac{z_1^n}{z_1^n + z_2^n}, \limsup \frac{z_1^n}{z_1^n + z_2^n} \in (0, 1), \text{ then:}$$
$$\liminf_{n \to \infty} v_i^n \ge \max \left\{ \alpha_i^* \in C_i \text{ s.t. } \alpha_i^* \le \frac{r_j}{r_i + r_j} \right\}.$$

Implication: If C_i is sufficiently rich, then player *i* can approximately secure their Rubinstein bargaining payoff $\frac{r_i}{r_i+r_j}$.

Let $k \equiv \lim z_1^n / z_2^n$.

For every (α_1^*, α_2^*) , one can compute T_1 and T_2 .

• Player 1 is stronger when $T_1 < T_2$ and vice versa.

Recall that:

$$T_i \approx -\frac{(\alpha_i^* + \alpha_j^* - 1)\log z_i \pi_i(\alpha_i^*)}{r_j(1 - \alpha_i^*)}$$

Ratio between T_1 and T_2 :

$$\frac{T_1}{T_2} \approx \frac{r_1(1-\alpha_2^*)}{r_2(1-\alpha_1^*)} \times \underbrace{\frac{\log z_1^n + \log \pi(\alpha_1^*)}{\log z_2^n + \log \pi(\alpha_2^*)}}_{\text{converges to 1 as } z_1^n \text{ goes to } 0}$$

- If $\alpha_2^* \leq \frac{r_1}{r_1+r_2}$, then player 1 receives $\frac{r_2}{r_1+r_2}$ in period 0.
- If $\alpha_2^* > \frac{r_1}{r_1 + r_2}$, then $T_1 < T_2$ when *n* is large enough \Rightarrow P1 is strong.

Let $k \equiv \lim z_1^n / z_2^n$.

For every (α_1^*, α_2^*) , one can compute T_1 and T_2 .

• Player 1 is stronger when $T_1 < T_2$ and vice versa.

Recall that:

$$T_i \approx -\frac{(\alpha_i^* + \alpha_j^* - 1)\log z_i \pi_i(\alpha_i^*)}{r_j(1 - \alpha_i^*)}$$

Ratio between T_1 and T_2 :

$$\frac{T_1}{T_2} \approx \frac{r_1(1-\alpha_2^*)}{r_2(1-\alpha_1^*)} \times \underbrace{\frac{\log z_1^n + \log \pi(\alpha_1^*)}{\log z_2^n + \log \pi(\alpha_2^*)}}_{\text{converges to 1 as } z_1^n \text{ goes to } 0}$$

- If $\alpha_2^* \leq \frac{r_1}{r_1+r_2}$, then player 1 receives $\frac{r_2}{r_1+r_2}$ in period 0.
- If $\alpha_2^* > \frac{r_1}{r_1 + r_2}$, then $T_1 < T_2$ when *n* is large enough \Rightarrow P1 is strong.

Let $k \equiv \lim z_1^n / z_2^n$.

For every (α_1^*, α_2^*) , one can compute T_1 and T_2 .

• Player 1 is stronger when $T_1 < T_2$ and vice versa.

Recall that:

$$T_i \approx -\frac{(\alpha_i^* + \alpha_j^* - 1)\log z_i \pi_i(\alpha_i^*)}{r_j(1 - \alpha_i^*)}$$

Ratio between T_1 and T_2 :

$$\frac{T_1}{T_2} \approx \frac{r_1(1-\alpha_2^*)}{r_2(1-\alpha_1^*)} \times \underbrace{\frac{\log z_1^n + \log \pi(\alpha_1^*)}{\log z_2^n + \log \pi(\alpha_2^*)}}_{\text{converges to 1 as } z_1^n \text{ goes to } 0}$$

- If $\alpha_2^* \leq \frac{r_1}{r_1+r_2}$, then player 1 receives $\frac{r_2}{r_1+r_2}$ in period 0.
- If $\alpha_2^* > \frac{r_1}{r_1 + r_2}$, then $T_1 < T_2$ when *n* is large enough \Rightarrow P1 is strong.

Let $k \equiv \lim z_1^n / z_2^n$.

For every (α_1^*, α_2^*) , one can compute T_1 and T_2 .

• Player 1 is stronger when $T_1 < T_2$ and vice versa.

Recall that:

$$T_i \approx -\frac{(\alpha_i^* + \alpha_j^* - 1)\log z_i \pi_i(\alpha_i^*)}{r_j(1 - \alpha_i^*)}$$

Ratio between T_1 and T_2 :

$$\frac{T_1}{T_2} \approx \frac{r_1(1-\alpha_2^*)}{r_2(1-\alpha_1^*)} \times \underbrace{\frac{\log z_1^n + \log \pi(\alpha_1^*)}{\log z_2^n + \log \pi(\alpha_2^*)}}_{\text{converges to 1 as } z_1^n \text{ goes to } 0}$$

- If $\alpha_2^* \leq \frac{r_1}{r_1+r_2}$, then player 1 receives $\frac{r_2}{r_1+r_2}$ in period 0.
- If $\alpha_2^* > \frac{r_1}{r_1 + r_2}$, then $T_1 < T_2$ when *n* is large enough \Rightarrow P1 is strong.

Let $k \equiv \lim z_1^n / z_2^n$.

For every (α_1^*, α_2^*) , one can compute T_1 and T_2 .

• Player 1 is stronger when $T_1 < T_2$ and vice versa.

Recall that:

$$T_i \approx -\frac{(\alpha_i^* + \alpha_j^* - 1)\log z_i \pi_i(\alpha_i^*)}{r_j(1 - \alpha_i^*)}$$

Ratio between T_1 and T_2 :

$$\frac{T_1}{T_2} \approx \frac{r_1(1-\alpha_2^*)}{r_2(1-\alpha_1^*)} \times \underbrace{\frac{\log z_1^n + \log \pi(\alpha_1^*)}{\log z_2^n + \log \pi(\alpha_2^*)}}_{\text{converges to 1 as } z_1^n \text{ goes to 1}}$$

- If $\alpha_2^* \leq \frac{r_1}{r_1+r_2}$, then player 1 receives $\frac{r_2}{r_1+r_2}$ in period 0.
- If $\alpha_2^* > \frac{r_1}{r_1 + r_2}$, then $T_1 < T_2$ when *n* is large enough \Rightarrow P1 is strong.

When $\alpha_1^* = \frac{r_2}{r_1 + r_2}$ and $\alpha_2^* > \frac{r_1}{r_1 + r_2}$, $T_1 < T_2$ when *n* is large enough.

- Why? $\frac{r_2(1-\alpha_1^*)}{\alpha_1^*+\alpha_2^*-1} = \lambda_1 > \lambda_2 = \frac{r_1(1-\alpha_2^*)}{\alpha_1^*+\alpha_2^*-1}.$
- When $z \to 0$, it takes longer to build reputation, so T_1/T_2 depends only on the ratio between concession rates.

Fix (α_1^*, α_2^*) , compute P2's concession prob at time 0 when *n* is large.

Using the formula we derived before, we have:

$$F_2(0) = 1 - z_2 z_1^{-\lambda_2/\lambda_1}$$

Compute the term $z_2 z_1^{-\lambda_2/\lambda_1}$ as $n \to \infty$.

• since $\lim z_1^n/z_2^n = k$, $\lim z_1^n = 0$ and $\lim z_2^n = 0$,

 $\chi_2 z_1^{-\lambda_2/\lambda_1}$ goes to 0 for every fixed (λ_1, λ_2) with $\lambda_1 > \lambda_2$.

When $\alpha_1^* = \frac{r_2}{r_1 + r_2}$ and $\alpha_2^* > \frac{r_1}{r_1 + r_2}$, $T_1 < T_2$ when *n* is large enough.

- Why? $\frac{r_2(1-\alpha_1^*)}{\alpha_1^*+\alpha_2^*-1} = \lambda_1 > \lambda_2 = \frac{r_1(1-\alpha_2^*)}{\alpha_1^*+\alpha_2^*-1}.$
- When $z \to 0$, it takes longer to build reputation, so T_1/T_2 depends only on the ratio between concession rates.

Fix (α_1^*, α_2^*) , compute P2's concession prob at time 0 when *n* is large.

Using the formula we derived before, we have:

$$F_2(0) = 1 - z_2 z_1^{-\lambda_2/\lambda_1}$$

Compute the term $z_2 z_1^{-\lambda_2/\lambda_1}$ as $n \to \infty$.

• since $\lim z_1^n/z_2^n = k$, $\lim z_1^n = 0$ and $\lim z_2^n = 0$,

 $\chi_{22} \chi_{1}^{-\lambda_{2}/\lambda_{1}}$ goes to 0 for every fixed $(\lambda_{1}, \lambda_{2})$ with $\lambda_{1} > \lambda_{2}$.

When $\alpha_1^* = \frac{r_2}{r_1 + r_2}$ and $\alpha_2^* > \frac{r_1}{r_1 + r_2}$, $T_1 < T_2$ when *n* is large enough.

- Why? $\frac{r_2(1-\alpha_1^*)}{\alpha_1^*+\alpha_2^*-1} = \lambda_1 > \lambda_2 = \frac{r_1(1-\alpha_2^*)}{\alpha_1^*+\alpha_2^*-1}.$
- When $z \to 0$, it takes longer to build reputation, so T_1/T_2 depends only on the ratio between concession rates.

Fix (α_1^*, α_2^*) , compute P2's concession prob at time 0 when *n* is large.

Using the formula we derived before, we have:

$$F_2(0) = 1 - z_2 z_1^{-\lambda_2/\lambda_1}$$

Compute the term $z_2 z_1^{-\lambda_2/\lambda_1}$ as $n \to \infty$.

• since $\lim z_1^n/z_2^n = k$, $\lim z_1^n = 0$ and $\lim z_2^n = 0$,

 $\chi_2 \chi_1^{-\lambda_2/\lambda_1}$ goes to 0 for every fixed (λ_1, λ_2) with $\lambda_1 > \lambda_2$.

When $\alpha_1^* = \frac{r_2}{r_1 + r_2}$ and $\alpha_2^* > \frac{r_1}{r_1 + r_2}$, $T_1 < T_2$ when *n* is large enough.

- Why? $\frac{r_2(1-\alpha_1^*)}{\alpha_1^*+\alpha_2^*-1} = \lambda_1 > \lambda_2 = \frac{r_1(1-\alpha_2^*)}{\alpha_1^*+\alpha_2^*-1}.$
- When $z \to 0$, it takes longer to build reputation, so T_1/T_2 depends only on the ratio between concession rates.

Fix (α_1^*, α_2^*) , compute P2's concession prob at time 0 when *n* is large.

Using the formula we derived before, we have:

$$F_2(0) = 1 - z_2 z_1^{-\lambda_2/\lambda_1}$$

Compute the term $z_2 z_1^{-\lambda_2/\lambda_1}$ as $n \to \infty$.

• since $\lim z_1^n/z_2^n = k$, $\lim z_1^n = 0$ and $\lim z_2^n = 0$,

 $\chi_2 \chi_1^{-\lambda_2/\lambda_1}$ goes to 0 for every fixed (λ_1, λ_2) with $\lambda_1 > \lambda_2$.

When $\alpha_1^* = \frac{r_2}{r_1 + r_2}$ and $\alpha_2^* > \frac{r_1}{r_1 + r_2}$, $T_1 < T_2$ when *n* is large enough.

- Why? $\frac{r_2(1-\alpha_1^*)}{\alpha_1^*+\alpha_2^*-1} = \lambda_1 > \lambda_2 = \frac{r_1(1-\alpha_2^*)}{\alpha_1^*+\alpha_2^*-1}.$
- When $z \to 0$, it takes longer to build reputation, so T_1/T_2 depends only on the ratio between concession rates.

Fix (α_1^*, α_2^*) , compute P2's concession prob at time 0 when *n* is large.

Using the formula we derived before, we have:

$$F_2(0) = 1 - z_2 z_1^{-\lambda_2/\lambda_1}$$

Compute the term $z_2 z_1^{-\lambda_2/\lambda_1}$ as $n \to \infty$.

• since $\lim z_1^n / z_2^n = k$, $\lim z_1^n = 0$ and $\lim z_2^n = 0$,

 $\chi_2 z_1^{-\lambda_2/\lambda_1}$ goes to 0 for every fixed (λ_1, λ_2) with $\lambda_1 > \lambda_2$.

When $\alpha_1^* = \frac{r_2}{r_1 + r_2}$ and $\alpha_2^* > \frac{r_1}{r_1 + r_2}$, $T_1 < T_2$ when *n* is large enough.

- Why? $\frac{r_2(1-\alpha_1^*)}{\alpha_1^*+\alpha_2^*-1} = \lambda_1 > \lambda_2 = \frac{r_1(1-\alpha_2^*)}{\alpha_1^*+\alpha_2^*-1}.$
- When $z \to 0$, it takes longer to build reputation, so T_1/T_2 depends only on the ratio between concession rates.

Fix (α_1^*, α_2^*) , compute P2's concession prob at time 0 when *n* is large.

Using the formula we derived before, we have:

$$F_2(0) = 1 - z_2 z_1^{-\lambda_2/\lambda_1}$$

Compute the term $z_2 z_1^{-\lambda_2/\lambda_1}$ as $n \to \infty$.

• since $\lim z_1^n/z_2^n = k$, $\lim z_1^n = 0$ and $\lim z_2^n = 0$,

 $_{2}z_{1}^{-\lambda_{2}/\lambda_{1}}$ goes to 0 for every fixed $(\lambda_{1}, \lambda_{2})$ with $\lambda_{1} > \lambda_{2}$.

- When $\alpha_1^* = \frac{r_2}{r_1 + r_2}$ and $\alpha_2^* > \frac{r_1}{r_1 + r_2}$, $T_1 < T_2$ when *n* is large enough.
 - Why? $\frac{r_2(1-\alpha_1^*)}{\alpha_1^*+\alpha_2^*-1} = \lambda_1 > \lambda_2 = \frac{r_1(1-\alpha_2^*)}{\alpha_1^*+\alpha_2^*-1}.$
 - When $z \to 0$, it takes longer to build reputation, so T_1/T_2 depends only on the ratio between concession rates.

Fix (α_1^*, α_2^*) , compute P2's concession prob at time 0 when *n* is large.

Using the formula we derived before, we have:

$$F_2(0) = 1 - z_2 z_1^{-\lambda_2/\lambda_1}$$

Compute the term $z_2 z_1^{-\lambda_2/\lambda_1}$ as $n \to \infty$.

since lim z₁ⁿ/z₂ⁿ = k, lim z₁ⁿ = 0 and lim z₂ⁿ = 0, z₂z₁<sup>-λ₂/λ₁ goes to 0 for every fixed (λ₁, λ₂) with λ₁ > λ₂.
F₂(0) ≈ 1 as n → +∞, i.e., the weak player concedes at time 0 with prob ≈ 1.
</sup>

Recap: By committing to the Rubinstein bargaining payoff $\frac{r_2}{r_1+r_2}$,

- P1 guarantees payoff $\frac{r_2}{r_1+r_2}$ when $\alpha_2^* \leq \frac{r_1}{r_1+r_2}$.
- As $n \to \infty$, P1's payoff is approximately $\frac{r_2}{r_1+r_2}$ when $\alpha_2^* > \frac{r_1}{r_1+r_2}$ since P2's concession prob at time 0 is close to 1.

Kambe

Similarly, P2 can guarantee payoff $\approx \frac{r_1}{r_1+r_2}$ by demanding $\frac{r_1}{r_1+r_2}$.

Since players' Rubinstein payoffs lie on the Pareto frontier:

• This approximately pins down both players' equilibrium payoffs.

Recap: By committing to the Rubinstein bargaining payoff $\frac{r_2}{r_1+r_2}$,

- P1 guarantees payoff $\frac{r_2}{r_1+r_2}$ when $\alpha_2^* \leq \frac{r_1}{r_1+r_2}$.
- As $n \to \infty$, P1's payoff is approximately $\frac{r_2}{r_1+r_2}$ when $\alpha_2^* > \frac{r_1}{r_1+r_2}$ since P2's concession prob at time 0 is close to 1.

Similarly, P2 can guarantee payoff $\approx \frac{r_1}{r_1+r_2}$ by demanding $\frac{r_1}{r_1+r_2}$.

Since players' Rubinstein payoffs lie on the Pareto frontier:

• This approximately pins down both players' equilibrium payoffs.

Recap: By committing to the Rubinstein bargaining payoff $\frac{r_2}{r_1+r_2}$,

- P1 guarantees payoff $\frac{r_2}{r_1+r_2}$ when $\alpha_2^* \leq \frac{r_1}{r_1+r_2}$.
- As $n \to \infty$, P1's payoff is approximately $\frac{r_2}{r_1+r_2}$ when $\alpha_2^* > \frac{r_1}{r_1+r_2}$ since P2's concession prob at time 0 is close to 1.

Similarly, P2 can guarantee payoff $\approx \frac{r_1}{r_1+r_2}$ by demanding $\frac{r_1}{r_1+r_2}$.

Since players' Rubinstein payoffs lie on the Pareto frontier:

• This approximately pins down both players' equilibrium payoffs.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Recap: By committing to the Rubinstein bargaining payoff $\frac{r_2}{r_1+r_2}$,

- P1 guarantees payoff $\frac{r_2}{r_1+r_2}$ when $\alpha_2^* \leq \frac{r_1}{r_1+r_2}$.
- As $n \to \infty$, P1's payoff is approximately $\frac{r_2}{r_1+r_2}$ when $\alpha_2^* > \frac{r_1}{r_1+r_2}$ since P2's concession prob at time 0 is close to 1.

Similarly, P2 can guarantee payoff $\approx \frac{r_1}{r_1+r_2}$ by demanding $\frac{r_1}{r_1+r_2}$.

Since players' Rubinstein payoffs lie on the Pareto frontier:

• This approximately pins down both players' equilibrium payoffs.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Recap: By committing to the Rubinstein bargaining payoff $\frac{r_2}{r_1+r_2}$,

- P1 guarantees payoff $\frac{r_2}{r_1+r_2}$ when $\alpha_2^* \leq \frac{r_1}{r_1+r_2}$.
- As $n \to \infty$, P1's payoff is approximately $\frac{r_2}{r_1+r_2}$ when $\alpha_2^* > \frac{r_1}{r_1+r_2}$ since P2's concession prob at time 0 is close to 1.

Similarly, P2 can guarantee payoff $\approx \frac{r_1}{r_1+r_2}$ by demanding $\frac{r_1}{r_1+r_2}$.

Since players' Rubinstein payoffs lie on the Pareto frontier:

• This approximately pins down both players' equilibrium payoffs.

War-of-Attrition Multiple Ty

From War-of-Attrition to Bargaining

From War-of-Attrition to Bargaining

Each player picks a bargaining posture, and decides when to concede.

• Next: What if each player can flexibly choose what to offer in an alternating offer bargaining game?

Important insight: Reveal rationality \approx concede when offers are frequent.

Lemma

Bargaining Model

 $\forall \varepsilon > 0, \exists \overline{\Delta} > 0, s.t. when \Delta < \overline{\Delta}, at every history h^t s.t.$

- P1 has revealed rationality
- P2 hasn't separated from commitment type α_2^* ,

then P1's payoff $\leq 1 - \alpha_2^* + \varepsilon$, and P2's payoff $\geq \alpha_2^* - \varepsilon$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ▲○

War-of-Attrition Multiple T

From War-of-Attrition to Bargaining

From War-of-Attrition to Bargaining

Each player picks a bargaining posture, and decides when to concede.

• Next: What if each player can flexibly choose what to offer in an alternating offer bargaining game?

Important insight: Reveal rationality \approx concede when offers are frequent.

Lemma

Bargaining Model

 $\forall \varepsilon > 0, \exists \overline{\Delta} > 0, s.t. when \Delta < \overline{\Delta}, at every history h^t s.t.$

- P1 has revealed rationality
- P2 hasn't separated from commitment type α_2^* ,

then P1's payoff $\leq 1 - \alpha_2^* + \varepsilon$, and P2's payoff $\geq \alpha_2^* - \varepsilon$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ▲○

▲□▶▲□▶▲□▶▲□▶ □ のQで

From War-of-Attrition to Bargaining

Each player picks a bargaining posture, and decides when to concede.

• Next: What if each player can flexibly choose what to offer in an alternating offer bargaining game?

Important insight: Reveal rationality \approx concede when offers are frequent.

Lemma

Bargaining Model

 $\forall \varepsilon > 0, \exists \overline{\Delta} > 0, s.t. when \Delta < \overline{\Delta}, at every history h^t s.t.$

- *P1 has revealed rationality*
- P2 hasn't separated from commitment type α_2^* ,

then P1's payoff $\leq 1 - \alpha_2^* + \varepsilon$, and P2's payoff $\geq \alpha_2^* - \varepsilon$.

From War-of-Attrition to Bargaining

Each player picks a bargaining posture, and decides when to concede.

• Next: What if each player can flexibly choose what to offer in an alternating offer bargaining game?

Important insight: Reveal rationality \approx concede when offers are frequent.

Lemma

Bargaining Model

 $\forall \varepsilon > 0, \exists \overline{\Delta} > 0, s.t. when \Delta < \overline{\Delta}, at every history h^t s.t.$

- P1 has revealed rationality
- P2 hasn't separated from commitment type α_2^* ,

then P1's payoff $\leq 1 - \alpha_2^* + \varepsilon$, and P2's payoff $\geq \alpha_2^* - \varepsilon$.

▲□▶▲□▶▲□▶▲□▶ = つへぐ

From War-of-Attrition to Bargaining

Each player picks a bargaining posture, and decides when to concede.

• Next: What if each player can flexibly choose what to offer in an alternating offer bargaining game?

Important insight: Reveal rationality \approx concede when offers are frequent.

Lemma

 $\forall \varepsilon > 0, \exists \overline{\Delta} > 0, s.t. when \Delta < \overline{\Delta}, at every history h^t s.t.$

- P1 has revealed rationality
- P2 hasn't separated from commitment type α_2^* ,

then P1's payoff $\leq 1 - \alpha_2^* + \varepsilon$, and P2's payoff $\geq \alpha_2^* - \varepsilon$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶▲□▶▲□▶▲□▶ □ のQで

A Heuristic Explanation

First, P1 will concede in finite time with prob 1.

Let *T* be the last time P1 concedes. We show that $T \rightarrow 0$ as $\Delta \rightarrow 0$.

- Suppose P1 has the option to concede at $T \Delta$ but he does not.
- His incentive not to concede implies that P2 will accept his offer at $T \Delta$ with positive prob, denoted by π .
- At time $T \Delta$, P2 gets $\alpha_2^* e^{-r\Delta}$ by waiting, so she will not accept any offer that gives her less than $\alpha_2^* e^{-r\Delta}$.
- P1's incentive constraint at $T \Delta$:

$$\pi \qquad \underbrace{(1 - \alpha_2^* e^{-r\Delta})}_{+(1 - \pi)(1 - \alpha_2^*)e^{-r\Delta}} \ge 1 - \alpha_2^*,$$

Bargaining Model

War-of-Attrition

Multiple Type

A Heuristic Explanation

First, P1 will concede in finite time with prob 1.

Let *T* be the last time P1 concedes. We show that $T \to 0$ as $\Delta \to 0$.

- Suppose P1 has the option to concede at $T \Delta$ but he does not.
- His incentive not to concede implies that P2 will accept his offer at $T \Delta$ with positive prob, denoted by π .
- At time $T \Delta$, P2 gets $\alpha_2^* e^{-r\Delta}$ by waiting, so she will not accept any offer that gives her less than $\alpha_2^* e^{-r\Delta}$.
- P1's incentive constraint at $T \Delta$:

$$\pi \qquad \underbrace{(1 - \alpha_2^* e^{-r\Delta})}_{+(1 - \pi)(1 - \alpha_2^*)e^{-r\Delta}} \ge 1 - \alpha_2^*,$$

War-of-Attrition

Bargaining Model

First, P1 will concede in finite time with prob 1.

Let *T* be the last time P1 concedes. We show that $T \to 0$ as $\Delta \to 0$.

- Suppose P1 has the option to concede at $T \Delta$ but he does not.
- His incentive not to concede implies that P2 will accept his offer at $T \Delta$ with positive prob, denoted by π .

From War-of-Attrition to Bargaining

00000

Kambe

- At time $T \Delta$, P2 gets $\alpha_2^* e^{-r\Delta}$ by waiting, so she will not accept any offer that gives her less than $\alpha_2^* e^{-r\Delta}$.
- P1's incentive constraint at $T \Delta$:

$$\pi \qquad \underbrace{(1 - \alpha_2^* e^{-r\Delta})}_{+(1 - \pi)(1 - \alpha_2^*)e^{-r\Delta}} \ge 1 - \alpha_2^*,$$

War-of-Attrition

Bargaining Model

First, P1 will concede in finite time with prob 1.

Let *T* be the last time P1 concedes. We show that $T \to 0$ as $\Delta \to 0$.

- Suppose P1 has the option to concede at $T \Delta$ but he does not.
- His incentive not to concede implies that P2 will accept his offer at $T \Delta$ with positive prob, denoted by π .

From War-of-Attrition to Bargaining

00000

- At time $T \Delta$, P2 gets $\alpha_2^* e^{-r\Delta}$ by waiting, so she will not accept any offer that gives her less than $\alpha_2^* e^{-r\Delta}$.
- P1's incentive constraint at $T \Delta$:

$$\pi \qquad \underbrace{(1 - \alpha_2^* e^{-r\Delta})}_{+(1 - \pi)(1 - \alpha_2^*)e^{-r\Delta} \ge 1 - \alpha_2^*}$$

A Heuristic Explanation

War-of-Attrition

Bargaining Model

First, P1 will concede in finite time with prob 1.

Let *T* be the last time P1 concedes. We show that $T \to 0$ as $\Delta \to 0$.

- Suppose P1 has the option to concede at $T \Delta$ but he does not.
- His incentive not to concede implies that P2 will accept his offer at $T \Delta$ with positive prob, denoted by π .
- At time $T \Delta$, P2 gets $\alpha_2^* e^{-r\Delta}$ by waiting, so she will not accept any offer that gives her less than $\alpha_2^* e^{-r\Delta}$.
- P1's incentive constraint at $T \Delta$:

$$\pi \qquad \underbrace{(1 - \alpha_2^* e^{-r\Delta})}_{+(1 - \pi)(1 - \alpha_2^*)e^{-r\Delta}} \ge 1 - \alpha_2^*,$$

the most P1 can get if P2 accepts his offer

From War-of-Attrition to Bargaining

000000

A Heuristic Explanation

- Let π be the prob that P2 accepts P1's offer at $T \Delta$.
- P1's incentive constraint at $T \Delta$:

$$\pi \qquad \underbrace{(1 - \alpha_2^* e^{-r\Delta})}_{+(1 - \pi)(1 - \alpha_2^*)e^{-r\Delta}} \ge 1 - \alpha_2^*,$$

the most P1 can get if P2 accepts his offer

which implies that

$$\pi \ge 1 - \alpha_2^*.$$

- Hence, P2's reputation is multiplied by $\frac{1}{1-\alpha_1^*}$ within Δ units of time.
- Do the same exercise for time $T 2\Delta$, $T 3\Delta$, $T 4\Delta$,...
- As $\Delta \rightarrow 0$, if P1 does not accept α_2^* , then P2's reputation goes to 1.
- Therefore, P2 can secure payoff $\alpha_2^* \varepsilon$.

A Heuristic Explanation

- Let π be the prob that P2 accepts P1's offer at $T \Delta$.
- P1's incentive constraint at $T \Delta$:

$$\pi \qquad \underbrace{(1 - \alpha_2^* e^{-r\Delta})}_{+(1 - \pi)(1 - \alpha_2^*)e^{-r\Delta}} \ge 1 - \alpha_2^*,$$

the most P1 can get if P2 accepts his offer

which implies that

$$\pi \ge 1 - \alpha_2^*.$$

- Hence, P2's reputation is multiplied by $\frac{1}{1-\alpha_1^*}$ within Δ units of time.
- Do the same exercise for time $T 2\Delta$, $T 3\Delta$, $T 4\Delta$,...
- As $\Delta \rightarrow 0$, if P1 does not accept α_2^* , then P2's reputation goes to 1.
- Therefore, P2 can secure payoff $\alpha_2^* \varepsilon$.

A Heuristic Explanation

- Let π be the prob that P2 accepts P1's offer at $T \Delta$.
- P1's incentive constraint at $T \Delta$:

$$\pi \qquad \underbrace{(1 - \alpha_2^* e^{-r\Delta})}_{+(1 - \pi)(1 - \alpha_2^*)e^{-r\Delta}} \ge 1 - \alpha_2^*,$$

the most P1 can get if P2 accepts his offer

which implies that

$$\pi \ge 1 - \alpha_2^*.$$

- Hence, P2's reputation is multiplied by $\frac{1}{1-\alpha_1^*}$ within Δ units of time.
- Do the same exercise for time $T 2\Delta$, $T 3\Delta$, $T 4\Delta$,...
- As $\Delta \rightarrow 0$, if P1 does not accept α_2^* , then P2's reputation goes to 1.
- Therefore, P2 can secure payoff $\alpha_2^* \varepsilon$.

War-of-Attrition Multiple Types From War-of-Attrition to Bargaining 000000000 00000 0000000

Kambe

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Heuristic Explanation

- Let π be the prob that P2 accepts P1's offer at $T \Delta$.
- P1's incentive constraint at $T \Delta$:

$$\pi \qquad \underbrace{(1 - \alpha_2^* e^{-r\Delta})}_{+(1 - \pi)(1 - \alpha_2^*)e^{-r\Delta}} \ge 1 - \alpha_2^*,$$

the most P1 can get if P2 accepts his offer

which implies that

$$\pi \ge 1 - \alpha_2^*.$$

- Hence, P2's reputation is multiplied by $\frac{1}{1-\alpha_1^*}$ within Δ units of time.
- Do the same exercise for time $T 2\Delta$, $T 3\Delta$, $T 4\Delta$,...
- As $\Delta \rightarrow 0$, if P1 does not accept α_2^* , then P2's reputation goes to 1.
- Therefore, P2 can secure payoff $\alpha_2^* \varepsilon$.

War-of-Attrition Multiple Types From War-of-Attrition to Bargaining 000000000 00000 00000000

A Heuristic Explanation

- Let π be the prob that P2 accepts P1's offer at $T \Delta$.
- P1's incentive constraint at $T \Delta$:

$$\pi \qquad \underbrace{(1 - \alpha_2^* e^{-r\Delta})}_{+(1 - \pi)(1 - \alpha_2^*)e^{-r\Delta}} \ge 1 - \alpha_2^*,$$

the most P1 can get if P2 accepts his offer

which implies that

$$\pi \ge 1 - \alpha_2^*.$$

- Hence, P2's reputation is multiplied by $\frac{1}{1-\alpha_1^*}$ within Δ units of time.
- Do the same exercise for time $T 2\Delta$, $T 3\Delta$, $T 4\Delta$,...
- As $\Delta \rightarrow 0$, if P1 does not accept α_2^* , then P2's reputation goes to 1.
- Therefore, P2 can secure payoff $\alpha_2^* \varepsilon$.

War-of-Attrition Multiple Types From War-of-Attrition to Bargaining 000000000 00000 0000000

A Heuristic Explanation

- Let π be the prob that P2 accepts P1's offer at $T \Delta$.
- P1's incentive constraint at $T \Delta$:

$$\pi \qquad \underbrace{(1 - \alpha_2^* e^{-r\Delta})}_{+(1 - \pi)(1 - \alpha_2^*)e^{-r\Delta}} \ge 1 - \alpha_2^*,$$

the most P1 can get if P2 accepts his offer

which implies that

$$\pi \ge 1 - \alpha_2^*.$$

- Hence, P2's reputation is multiplied by $\frac{1}{1-\alpha_1^*}$ within Δ units of time.
- Do the same exercise for time $T 2\Delta$, $T 3\Delta$, $T 4\Delta$,...
- As $\Delta \rightarrow 0$, if P1 does not accept α_2^* , then P2's reputation goes to 1.
- Therefore, P2 can secure payoff $\alpha_2^* \varepsilon$.

- -

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Kambe

Reveal Rationality \approx Concession as $\Delta \rightarrow 0$

P1's incentive not to concede:

• He expects P2 to accept his offer with positive prob in the near future.

If P2 does not accept P1's offer, then her reputation goes up.

As $\Delta \rightarrow 0$, P2 can frequently signal their type.

• The time it takes for her to have a perfect reputation goes to 0.

Reveal Rationality \approx Concession as $\Delta \rightarrow 0$

P1's incentive not to concede:

• He expects P2 to accept his offer with positive prob in the near future.

Kambe

▲□▶▲□▶▲□▶▲□▶ □ のQで

If P2 does not accept P1's offer, then her reputation goes up.

As $\Delta \rightarrow 0$, P2 can frequently signal their type.

• The time it takes for her to have a perfect reputation goes to 0.

Reveal Rationality \approx Concession as $\Delta \rightarrow 0$

P1's incentive not to concede:

• He expects P2 to accept his offer with positive prob in the near future.

Kambe

▲□▶▲□▶▲□▶▲□▶ □ のQで

If P2 does not accept P1's offer, then her reputation goes up.

As $\Delta \rightarrow 0$, P2 can frequently signal their type.

• The time it takes for her to have a perfect reputation goes to 0.

Robustness to Bargaining Protocols

War-of-Attrition

Think about a general reputational bargaining game.

- $t \in [0, +\infty)$.
- Bargaining protocol $g: [0, +\infty) \rightarrow \{0, 1, 2, 3\},$
 - g(t) = 0: no one can make offer at t.
 - g(t) = 1: only P1 can make offer at t.
 - g(t) = 2: only P2 can make offer at t.
 - g(t) = 3: both players offer simultaneously at t.
- Assumptions:
 - 1. each player makes infinitely many offers from 0 to $+\infty$.
 - 2. each player makes finitely many offers at any bounded interval.
- Summarize the bargaining game by its bargaining protocol g.

Robustness to Bargaining Protocols

War-of-Attrition

Think about a general reputational bargaining game.

Multiple Types

- $t \in [0, +\infty)$.
- Bargaining protocol $g: [0, +\infty) \rightarrow \{0, 1, 2, 3\},$

g(t) = 0: no one can make offer at t.

g(t) = 1: only P1 can make offer at t.

g(t) = 2: only P2 can make offer at t.

g(t) = 3: both players offer simultaneously at *t*.

- Assumptions:
 - 1. each player makes infinitely many offers from 0 to $+\infty$.
 - 2. each player makes finitely many offers at any bounded interval.

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

000000

Kambe

• Summarize the bargaining game by its bargaining protocol g.

Kambe 0000

Robustness to Bargaining Protocols

War-of-Attrition

Think about a general reputational bargaining game.

Multiple Types

- $t \in [0, +\infty)$.
- Bargaining protocol $g: [0, +\infty) \rightarrow \{0, 1, 2, 3\},$

g(t) = 0: no one can make offer at t.

g(t) = 1: only P1 can make offer at t.

g(t) = 2: only P2 can make offer at t.

- Assumptions:
 - 1. each player makes infinitely many offers from 0 to $+\infty$.
 - 2. each player makes finitely many offers at any bounded interval.
- Summarize the bargaining game by its bargaining protocol g.

Robustness to Bargaining Protocols

War-of-Attrition

Think about a general reputational bargaining game.

Multiple Types

- $t \in [0, +\infty)$.
- Bargaining protocol $g: [0, +\infty) \rightarrow \{0, 1, 2, 3\},$

g(t) = 0: no one can make offer at t.

g(t) = 1: only P1 can make offer at *t*.

$$g(t) = 2$$
: only P2 can make offer at t .

- Assumptions:
 - 1. each player makes infinitely many offers from 0 to $+\infty$.
 - 2. each player makes finitely many offers at any bounded interval.
- Summarize the bargaining game by its bargaining protocol g.

Robustness to Bargaining Protocols

War-of-Attrition

Think about a general reputational bargaining game.

- $t \in [0, +\infty)$.
- Bargaining protocol $g: [0, +\infty) \rightarrow \{0, 1, 2, 3\},$

g(t) = 0: no one can make offer at t.

g(t) = 1: only P1 can make offer at *t*.

$$g(t) = 2$$
: only P2 can make offer at t .

- Assumptions:
 - 1. each player makes infinitely many offers from 0 to $+\infty$.
 - 2. each player makes finitely many offers at any bounded interval.
- Summarize the bargaining game by its bargaining protocol g.

Kambe 0000

Robustness to Bargaining Protocols

War-of-Attrition

Think about a general reputational bargaining game.

- $t \in [0, +\infty)$.
- Bargaining protocol $g: [0, +\infty) \rightarrow \{0, 1, 2, 3\},$

g(t) = 0: no one can make offer at t.

g(t) = 1: only P1 can make offer at *t*.

$$g(t) = 2$$
: only P2 can make offer at t .

- Assumptions:
 - 1. each player makes infinitely many offers from 0 to $+\infty$.
 - 2. each player makes finitely many offers at any bounded interval.
- Summarize the bargaining game by its bargaining protocol g.

Multiple Types

From War-of-Attrition to Bargaining

Convergence Result

Definition: Convergence to Continuous Time

 $\{g_n\}_{n=1}^{\infty}$ converges to continuous time if for every $\varepsilon > 0$, there exists \overline{n} s.t. for

all $n \geq \overline{n}$, $t \geq 0$, and $i \in \{1, 2\}$, there exists $\hat{t} \in [t, t + \varepsilon]$ such that $i = g_n(\hat{t})$.

Only requires each player can make at least one offer in any ε -interval.

• Allows for many ways to approach continuous time.

Payoff Convergence Theorem

Suppose $\{g_n\}_{n=1}^{\infty}$ converges to continuous time. Let σ_n be a sequential

equilibrium in g_n , and $(v_{1,n}, v_{2,n})$ be players' payoffs in σ_n ,

then $\lim_{n\to\infty} v_{i,n}$ is player i's payoff in continuous-time war-of-attrition.

Continuous-time war-of-attrition captures what happens when players can make offers frequently.

Multiple Types

From War-of-Attrition to Bargaining

Convergence Result

Definition: Convergence to Continuous Time

 $\{g_n\}_{n=1}^{\infty}$ converges to continuous time if for every $\varepsilon > 0$, there exists \overline{n} s.t. for

all $n \geq \overline{n}$, $t \geq 0$, and $i \in \{1, 2\}$, there exists $\hat{t} \in [t, t + \varepsilon]$ such that $i = g_n(\hat{t})$.

Only requires each player can make at least one offer in any ε -interval.

• Allows for many ways to approach continuous time.

Payoff Convergence Theorem

Suppose $\{g_n\}_{n=1}^{\infty}$ converges to continuous time. Let σ_n be a sequential

equilibrium in g_n , and $(v_{1,n}, v_{2,n})$ be players' payoffs in σ_n ,

then $\lim_{n\to\infty} v_{i,n}$ is player i's payoff in continuous-time war-of-attrition.

Continuous-time war-of-attrition captures what happens when players can make offers frequently.

Multiple Types

From War-of-Attrition to Bargaining

Convergence Result

Definition: Convergence to Continuous Time

 $\{g_n\}_{n=1}^{\infty}$ converges to continuous time if for every $\varepsilon > 0$, there exists \overline{n} s.t. for

all $n \geq \overline{n}$, $t \geq 0$, and $i \in \{1, 2\}$, there exists $\hat{t} \in [t, t + \varepsilon]$ such that $i = g_n(\hat{t})$.

Only requires each player can make at least one offer in any ε -interval.

• Allows for many ways to approach continuous time.

Payoff Convergence Theorem

Suppose $\{g_n\}_{n=1}^{\infty}$ converges to continuous time. Let σ_n be a sequential equilibrium in g_n , and $(v_{1,n}, v_{2,n})$ be players' payoffs in σ_n ,

then $\lim_{n\to\infty} v_{i,n}$ is player i's payoff in continuous-time war-of-attrition.

Continuous-time war-of-attrition captures what happens when players can make offers frequently.

Multiple Types

From War-of-Attrition to Bargaining

Convergence Result

Definition: Convergence to Continuous Time

 $\{g_n\}_{n=1}^{\infty}$ converges to continuous time if for every $\varepsilon > 0$, there exists \overline{n} s.t. for

all $n \geq \overline{n}$, $t \geq 0$, and $i \in \{1, 2\}$, there exists $\hat{t} \in [t, t + \varepsilon]$ such that $i = g_n(\hat{t})$.

Only requires each player can make at least one offer in any ε -interval.

• Allows for many ways to approach continuous time.

Payoff Convergence Theorem

Suppose $\{g_n\}_{n=1}^{\infty}$ converges to continuous time. Let σ_n be a sequential

equilibrium in g_n , and $(v_{1,n}, v_{2,n})$ be players' payoffs in σ_n ,

then $\lim_{n\to\infty} v_{i,n}$ is player i's payoff in continuous-time war-of-attrition.

Continuous-time war-of-attrition captures what happens when players can make offers frequently.

Multiple Types

From War-of-Attrition to Bargaining

Convergence Result

Definition: Convergence to Continuous Time

 $\{g_n\}_{n=1}^{\infty}$ converges to continuous time if for every $\varepsilon > 0$, there exists \overline{n} s.t. for

all $n \geq \overline{n}$, $t \geq 0$, and $i \in \{1, 2\}$, there exists $\hat{t} \in [t, t + \varepsilon]$ such that $i = g_n(\hat{t})$.

Only requires each player can make at least one offer in any ε -interval.

• Allows for many ways to approach continuous time.

Payoff Convergence Theorem

Suppose $\{g_n\}_{n=1}^{\infty}$ converges to continuous time. Let σ_n be a sequential

equilibrium in g_n , and $(v_{1,n}, v_{2,n})$ be players' payoffs in σ_n ,

then $\lim_{n\to\infty} v_{i,n}$ is player i's payoff in continuous-time war-of-attrition.

Continuous-time war-of-attrition captures what happens when players can make offers frequently.

Kambe (1999)

War-of-Attrition

- Time $t \in [0, +\infty)$. Two players with discount rates r_1 and r_2 .
- Before time 0, players simultaneously announce their demands $\alpha_1^*, \alpha_2^* \in [0, 1]$.
- If $\alpha_1^* + \alpha_2^* \le 1$, then the game ends at 0 where player *i* receives $\alpha_i^* + \frac{1}{2}(1 \alpha_1^* \alpha_2^*)$.
- If $\alpha_1^* + \alpha_2^* > 1$, then play enters a *war of attrition phase*.

Player *i* becomes committed at time 0 with prob $\varepsilon_i > 0$ (is player *i*'s private info and is independent of whether player -i is committed).

At every $t \in [0, +\infty)$, the flexible type of every player decides whether to concede.

- Time $t \in [0, +\infty)$. Two players with discount rates r_1 and r_2 .
- Before time 0, players simultaneously announce their demands $\alpha_1^*, \alpha_2^* \in [0, 1].$
- If $\alpha_1^* + \alpha_2^* \le 1$, then the game ends at 0 where player *i* receives $\alpha_i^* + \frac{1}{2}(1 \alpha_1^* \alpha_2^*)$.
- If $\alpha_1^* + \alpha_2^* > 1$, then play enters a *war of attrition phase*.

At every $t \in [0, +\infty)$, the flexible type of every player decides whether to concede.

- Time $t \in [0, +\infty)$. Two players with discount rates r_1 and r_2 .
- Before time 0, players simultaneously announce their demands $\alpha_1^*, \alpha_2^* \in [0, 1].$
- If $\alpha_1^* + \alpha_2^* \le 1$, then the game ends at 0 where player *i* receives $\alpha_i^* + \frac{1}{2}(1 \alpha_1^* \alpha_2^*)$.
- If $\alpha_1^* + \alpha_2^* > 1$, then play enters a *war of attrition phase*.

At every $t \in [0, +\infty)$, the flexible type of every player decides whether to concede.

- Time $t \in [0, +\infty)$. Two players with discount rates r_1 and r_2 .
- Before time 0, players simultaneously announce their demands $\alpha_1^*, \alpha_2^* \in [0, 1].$
- If $\alpha_1^* + \alpha_2^* \le 1$, then the game ends at 0 where player *i* receives $\alpha_i^* + \frac{1}{2}(1 \alpha_1^* \alpha_2^*)$.
- If $\alpha_1^* + \alpha_2^* > 1$, then play enters a *war of attrition phase*.

At every $t \in [0, +\infty)$, the flexible type of every player decides whether to concede.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Time $t \in [0, +\infty)$. Two players with discount rates r_1 and r_2 .
- Before time 0, players simultaneously announce their demands $\alpha_1^*, \alpha_2^* \in [0, 1].$
- If $\alpha_1^* + \alpha_2^* \le 1$, then the game ends at 0 where player *i* receives $\alpha_i^* + \frac{1}{2}(1 \alpha_1^* \alpha_2^*)$.
- If $\alpha_1^* + \alpha_2^* > 1$, then play enters a *war of attrition phase*.

At every $t \in [0, +\infty)$, the flexible type of every player decides whether to concede.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Time $t \in [0, +\infty)$. Two players with discount rates r_1 and r_2 .
- Before time 0, players simultaneously announce their demands $\alpha_1^*, \alpha_2^* \in [0, 1].$
- If $\alpha_1^* + \alpha_2^* \le 1$, then the game ends at 0 where player *i* receives $\alpha_i^* + \frac{1}{2}(1 \alpha_1^* \alpha_2^*)$.
- If $\alpha_1^* + \alpha_2^* > 1$, then play enters a *war of attrition phase*.

At every $t \in [0, +\infty)$, the flexible type of every player decides whether to concede.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Time $t \in [0, +\infty)$. Two players with discount rates r_1 and r_2 .
- Before time 0, players simultaneously announce their demands $\alpha_1^*, \alpha_2^* \in [0, 1].$
- If $\alpha_1^* + \alpha_2^* \le 1$, then the game ends at 0 where player *i* receives $\alpha_i^* + \frac{1}{2}(1 \alpha_1^* \alpha_2^*)$.
- If $\alpha_1^* + \alpha_2^* > 1$, then play enters a *war of attrition phase*.

At every $t \in [0, +\infty)$, the flexible type of every player decides whether to concede.

Bargaining	Model
00000	

Multiple Types

From War-of-Attrition to Bargaining

Result

Theorem 1 in Kambe (1999)

When $\varepsilon_1, \varepsilon_2 \to 0$ while keeping $\frac{\varepsilon_1}{\varepsilon_2}$ fixed, every equilibrium converges to the following limit point.

- Players' initial demands are their Rubinstein payoffs $\left(\frac{r_2}{r_1+r_2}, \frac{r_1}{r_1+r_2}\right)$.
- Players will reach a deal without any delay.

Intuition: Player *i* secures payoff close to $\frac{r_{-i}}{r_i+r_{-i}}$ by demanding $\frac{r_{-i}}{r_i+r_{-i}}$.

• Player -i has an incentive to make a compatible offer in order to avoid the loss from being committed.

- Kambe characterizes equilibria where both players use pure strategies in the announcement stage.
- Sankjohanser (2019) allows for mixed strategiesロ, ィョ・ィョ・ ヨー つへで

Bargaining	Model
00000 ~	

Multiple Type

From War-of-Attrition to Bargaining

Result

Theorem 1 in Kambe (1999)

When $\varepsilon_1, \varepsilon_2 \to 0$ while keeping $\frac{\varepsilon_1}{\varepsilon_2}$ fixed, every equilibrium converges to the following limit point.

- Players' initial demands are their Rubinstein payoffs $\left(\frac{r_2}{r_1+r_2}, \frac{r_1}{r_1+r_2}\right)$.
- Players will reach a deal without any delay.

Intuition: Player *i* secures payoff close to $\frac{r_{-i}}{r_i+r_{-i}}$ by demanding $\frac{r_{-i}}{r_i+r_{-i}}$.

• Player -i has an incentive to make a compatible offer in order to avoid the loss from being committed.

- Kambe characterizes equilibria where both players use pure strategies in the announcement stage.
- Sankjohanser (2019) allows for mixed strategiesロ, (ア・マー・マー・マー・マー・

Bargaining	Model	
00000		

Multiple Type

From War-of-Attrition to Bargaining

Result

Theorem 1 in Kambe (1999)

When $\varepsilon_1, \varepsilon_2 \to 0$ while keeping $\frac{\varepsilon_1}{\varepsilon_2}$ fixed, every equilibrium converges to the following limit point.

- Players' initial demands are their Rubinstein payoffs $\left(\frac{r_2}{r_1+r_2}, \frac{r_1}{r_1+r_2}\right)$.
- Players will reach a deal without any delay.

Intuition: Player *i* secures payoff close to $\frac{r_{-i}}{r_i+r_{-i}}$ by demanding $\frac{r_{-i}}{r_i+r_{-i}}$.

• Player -i has an incentive to make a compatible offer in order to avoid the loss from being committed.

- Kambe characterizes equilibria where both players use pure strategies in the announcement stage.
- Sankjohanser (2019) allows for mixed strategiesロ , ィョ ・ ヨ ・ ヨ ・ つへで

rgaining	Model	
0000		

Multiple Types

From War-of-Attrition to Bargaining

Result

Theorem 1 in Kambe (1999)

When $\varepsilon_1, \varepsilon_2 \to 0$ while keeping $\frac{\varepsilon_1}{\varepsilon_2}$ fixed, every equilibrium converges to the following limit point.

- Players' initial demands are their Rubinstein payoffs $\left(\frac{r_2}{r_1+r_2}, \frac{r_1}{r_1+r_2}\right)$.
- Players will reach a deal without any delay.

Intuition: Player *i* secures payoff close to $\frac{r_{-i}}{r_i+r_{-i}}$ by demanding $\frac{r_{-i}}{r_i+r_{-i}}$.

• Player -i has an incentive to make a compatible offer in order to avoid the loss from being committed.

- Kambe characterizes equilibria where both players use pure strategies in the announcement stage.
- Sankjohanser (2019) allows for mixed strategiesロ, (ア・マー・マー・マー・マー・

rgaining	Model	
0000		

Multiple Type

From War-of-Attrition to Bargaining

Result

Theorem 1 in Kambe (1999)

When $\varepsilon_1, \varepsilon_2 \to 0$ while keeping $\frac{\varepsilon_1}{\varepsilon_2}$ fixed, every equilibrium converges to the following limit point.

- Players' initial demands are their Rubinstein payoffs $\left(\frac{r_2}{r_1+r_2}, \frac{r_1}{r_1+r_2}\right)$.
- Players will reach a deal without any delay.

Intuition: Player *i* secures payoff close to $\frac{r_{-i}}{r_i+r_{-i}}$ by demanding $\frac{r_{-i}}{r_i+r_{-i}}$.

• Player -i has an incentive to make a compatible offer in order to avoid the loss from being committed.

- Kambe characterizes equilibria where both players use pure strategies in the announcement stage.
- Sankjohanser (2019) allows for mixed strategiesロ, ィー・マー・ヨー つへや

gaining	Model	
000		

Multiple Type

From War-of-Attrition to Bargaining

Result

Barg

Theorem 1 in Kambe (1999)

When $\varepsilon_1, \varepsilon_2 \to 0$ while keeping $\frac{\varepsilon_1}{\varepsilon_2}$ fixed, every equilibrium converges to the following limit point.

- Players' initial demands are their Rubinstein payoffs $\left(\frac{r_2}{r_1+r_2}, \frac{r_1}{r_1+r_2}\right)$.
- Players will reach a deal without any delay.

Intuition: Player *i* secures payoff close to $\frac{r_{-i}}{r_i+r_{-i}}$ by demanding $\frac{r_{-i}}{r_i+r_{-i}}$.

• Player -i has an incentive to make a compatible offer in order to avoid the loss from being committed.

- Kambe characterizes equilibria where both players use pure strategies in the announcement stage.

Bargaining Model

Multiple Types

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Kambe (1999) vs Abreu and Gul (2000)

Advantages of Kambe's formulation.

- The commitment types' demands are endogenous.
- Avoid requirements on rich type spaces.
- Convenient in context with incomplete info about values/costs/quality, or when players can make complicated commitments.
- Examples: Wolitzky (2012).

Disadvantages of Kambe's formulation:

Bargaining Model

Multiple Types

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Kambe (1999) vs Abreu and Gul (2000)

Advantages of Kambe's formulation.

- The commitment types' demands are endogenous.
- Avoid requirements on rich type spaces.
- Convenient in context with incomplete info about values/costs/quality, or when players can make complicated commitments.
- Examples: Wolitzky (2012).

Disadvantages of Kambe's formulation:

Bargaining Model

Multiple Tyj 00000 From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Kambe (1999) vs Abreu and Gul (2000)

Advantages of Kambe's formulation.

- The commitment types' demands are endogenous.
- Avoid requirements on rich type spaces.
- Convenient in context with incomplete info about values/costs/quality, or when players can make complicated commitments.
- Examples: Wolitzky (2012).

Disadvantages of Kambe's formulation:

odel War-of-Attrition

Multiple Types

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Kambe (1999) vs Abreu and Gul (2000)

Advantages of Kambe's formulation.

- The commitment types' demands are endogenous.
- Avoid requirements on rich type spaces.
- Convenient in context with incomplete info about values/costs/quality, or when players can make complicated commitments.
- Examples: Wolitzky (2012).

Disadvantages of Kambe's formulation:

odel War-of-Attrition

fultiple Types

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Kambe (1999) vs Abreu and Gul (2000)

Advantages of Kambe's formulation.

- The commitment types' demands are endogenous.
- Avoid requirements on rich type spaces.
- Convenient in context with incomplete info about values/costs/quality, or when players can make complicated commitments.
- Examples: Wolitzky (2012).

Disadvantages of Kambe's formulation:

odel War-of-Attrition

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Kambe (1999) vs Abreu and Gul (2000)

Advantages of Kambe's formulation.

- The commitment types' demands are endogenous.
- Avoid requirements on rich type spaces.
- Convenient in context with incomplete info about values/costs/quality, or when players can make complicated commitments.
- Examples: Wolitzky (2012).

Disadvantages of Kambe's formulation:

Bargaining Model

Multiple Types

From War-of-Attrition to Bargaining

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Next Lecture

Next Lecture:

- Kambe (1999): Alternative formulation of reputational bargaining.
- Compte and Jehiel (2002): The role of outside options.
- Abreu and Pearce (2007): Repeated games with contracts.