Rubinstein Bargaining 000

Coasian Bargaining

Endogenous Investment

Positive Selection

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lecture 6: Coasian Bargaining

Harry PEI Department of Economics, Northwestern University

Spring Quarter, 2023

Positive Selection

▲□▶▲□▶▲□▶▲□▶ □ のQで

Bargaining: Overview

Two approaches to study bargaining:

- Cooperative approach (Nash, Shapley)
- Non-cooperative approach (Rubinstein)

Several key issues in the bargaining literature:

- How to incorporate incomplete information?
- Which insights are robust to different bargaining protocols?

Today: Revisit some classic models and results.

Next few lectures: Bargaining with reputation concerns.

Positive Selection

▲□▶▲□▶▲□▶▲□▶ □ のQで

Review: Rubinstein Bargaining Game

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, ...$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$. Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k + 1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

Positive Selection

▲□▶▲□▶▲□▶▲□▶ □ のQで

Review: Rubinstein Bargaining Game

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k + 1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

Positive Selection

▲□▶▲□▶▲□▶▲□▶ □ のQで

Review: Rubinstein Bargaining Game

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k + 1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

Positive Selection

▲□▶▲□▶▲□▶▲□▶ □ のQで

Review: Rubinstein Bargaining Game

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k + 1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

Positive Selection

▲□▶▲□▶▲□▶▲□▶ □ のQで

Review: Rubinstein Bargaining Game

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k+1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Review: Rubinstein Bargaining Game

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k + 1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

Review: Rubinstein Bargaining Game

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k + 1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

Review: Rubinstein Bargaining Game

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k + 1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

Review: Rubinstein Bargaining Game

Two players decide how to divide a dollar.

• Time: $t = 0, \Delta, 2\Delta, \dots$ Player *i*'s discount factor $\delta_i \equiv e^{-r_i\Delta}$.

Interpret Δ as period length and r_i as player *i*'s interest rate.

In period $2k\Delta$, P1 makes an offer $\alpha_1 \in [0, 1]$.

• If P2 accepts, then the game ends.

Payoffs: $\alpha_1 \delta_1^{2k}$ for player 1, and $(1 - \alpha_1) \delta_2^{2k}$ for player 2.

• If P2 rejects, then the game moves on to the next period.

In period $(2k + 1)\Delta$, P2 makes an offer $\alpha_2 \in [0, 1]$.

• If P1 accepts, then the game ends.

Payoffs: $(1 - \alpha_2)\delta_1^{2k+1}$ for player 1, and $\alpha_2\delta_2^{2k+1}$ for player 2.

Rubinstein's Theorem

Theorem: Rubinstein Bargaining Game

There exists a unique subgame perfect equilibrium.

On the equilibrium path, an agreement is reached in period 0.

Player 1's payoff is $\frac{1-\delta_2}{1-\delta_1\delta_2}$. *Player* 2's payoff is $\frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}$.

As the bargaining friction vanishes, i.e., $\Delta
ightarrow 0$

Player 1's payoff converges to:

$$\lim_{\Delta \to 0} \frac{1 - e^{-r_2 \Delta}}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_2}{r_1 + r_2}.$$

Player 2's payoff converges to:

$$\lim_{\Delta \to 0} \frac{e^{-r_2 \Delta} (1 - e^{-r_1 \Delta})}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_1}{r_1 + r_2}.$$

Rubinstein's Theorem

Theorem: Rubinstein Bargaining Game

There exists a unique subgame perfect equilibrium.

On the equilibrium path, an agreement is reached in period 0.

Player 1's payoff is $\frac{1-\delta_2}{1-\delta_1\delta_2}$. Player 2's payoff is $\frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}$

As the bargaining friction vanishes, i.e., $\Delta \rightarrow 0$

Player 1's payoff converges to:

$$\lim_{\Delta \to 0} \frac{1 - e^{-r_2 \Delta}}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_2}{r_1 + r_2}.$$

Player 2's payoff converges to:

$$\lim_{\Delta \to 0} \frac{e^{-r_2 \Delta} (1 - e^{-r_1 \Delta})}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_1}{r_1 + r_2}.$$

Rubinstein's Theorem

Theorem: Rubinstein Bargaining Game

There exists a unique subgame perfect equilibrium.

On the equilibrium path, an agreement is reached in period 0.

Player 1's payoff is $\frac{1-\delta_2}{1-\delta_1\delta_2}$. *Player* 2's payoff is $\frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}$.

As the bargaining friction vanishes, i.e., $\Delta \rightarrow 0$

Player 1's payoff converges to:

$$\lim_{\Delta \to 0} \frac{1 - e^{-r_2 \Delta}}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_2}{r_1 + r_2}.$$

Player 2's payoff converges to:

$$\lim_{\Delta \to 0} \frac{e^{-r_2 \Delta} (1 - e^{-r_1 \Delta})}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_1}{r_1 + r_2}.$$

Rubinstein's Theorem

Theorem: Rubinstein Bargaining Game

There exists a unique subgame perfect equilibrium.

On the equilibrium path, an agreement is reached in period 0.

Player 1's payoff is $\frac{1-\delta_2}{1-\delta_1\delta_2}$. *Player* 2's payoff is $\frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}$.

As the bargaining friction vanishes, i.e., $\Delta \rightarrow 0$

Player 1's payoff converges to:

$$\lim_{\Delta \to 0} \frac{1 - e^{-r_2 \Delta}}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_2}{r_1 + r_2}.$$

Player 2's payoff converges to:

$$\lim_{\Delta \to 0} \frac{e^{-r_2 \Delta} (1 - e^{-r_1 \Delta})}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_1}{r_1 + r_2}.$$

Rubinstein's Theorem

Theorem: Rubinstein Bargaining Game

There exists a unique subgame perfect equilibrium.

On the equilibrium path, an agreement is reached in period 0.

Player 1's payoff is $\frac{1-\delta_2}{1-\delta_1\delta_2}$. *Player* 2's payoff is $\frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}$.

As the bargaining friction vanishes, i.e., $\Delta \rightarrow 0$

Player 1's payoff converges to:

$$\lim_{\Delta \to 0} \frac{1 - e^{-r_2 \Delta}}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_2}{r_1 + r_2}.$$

Player 2's payoff converges to:

$$\lim_{\Delta \to 0} \frac{e^{-r_2 \Delta} (1 - e^{-r_1 \Delta})}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_1}{r_1 + r_2}.$$

Rubinstein's Theorem

Theorem: Rubinstein Bargaining Game

There exists a unique subgame perfect equilibrium.

On the equilibrium path, an agreement is reached in period 0.

Player 1's payoff is $\frac{1-\delta_2}{1-\delta_1\delta_2}$. *Player* 2's payoff is $\frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}$.

As the bargaining friction vanishes, i.e., $\Delta \rightarrow 0$

Player 1's payoff converges to:

$$\lim_{\Delta \to 0} \frac{1 - e^{-r_2 \Delta}}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_2}{r_1 + r_2}.$$

Player 2's payoff converges to:

$$\lim_{\Delta \to 0} \frac{e^{-r_2 \Delta} (1 - e^{-r_1 \Delta})}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_1}{r_1 + r_2}$$

Rubinstein's Theorem

Theorem: Rubinstein Bargaining Game

There exists a unique subgame perfect equilibrium.

On the equilibrium path, an agreement is reached in period 0.

Player 1's payoff is $\frac{1-\delta_2}{1-\delta_1\delta_2}$. *Player* 2's payoff is $\frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}$.

As the bargaining friction vanishes, i.e., $\Delta \rightarrow 0$

Player 1's payoff converges to:

$$\lim_{\Delta \to 0} \frac{1 - e^{-r_2 \Delta}}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_2}{r_1 + r_2}.$$

Player 2's payoff converges to:

$$\lim_{\Delta \to 0} \frac{e^{-r_2 \Delta} (1 - e^{-r_1 \Delta})}{1 - e^{-(r_1 + r_2) \Delta}} = \frac{r_1}{r_1 + r_2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Issues with Rubinstein Bargaining

1. Division of surplus is sensitive to the bargaining protocol.

- What if P1 makes 2 offers in a row and then P2 makes 1 offer?
- What if P1 makes 5 offers in a row and then P2 makes 7 offers?

We will come back to this issue in the next lecture.

- 2. How to introduce incomplete information?
 - The classic paper: Gul, Sonnenschein and Wilson (1986 JET).

▲□▶▲□▶▲□▶▲□▶ □ のQで

Issues with Rubinstein Bargaining

- 1. Division of surplus is sensitive to the bargaining protocol.
 - What if P1 makes 2 offers in a row and then P2 makes 1 offer?
 - What if P1 makes 5 offers in a row and then P2 makes 7 offers?

We will come back to this issue in the next lecture.

- 2. How to introduce incomplete information?
 - The classic paper: Gul, Sonnenschein and Wilson (1986 JET).

▲□▶▲□▶▲□▶▲□▶ □ のQで

Issues with Rubinstein Bargaining

- 1. Division of surplus is sensitive to the bargaining protocol.
 - What if P1 makes 2 offers in a row and then P2 makes 1 offer?
 - What if P1 makes 5 offers in a row and then P2 makes 7 offers?

We will come back to this issue in the next lecture.

- 2. How to introduce incomplete information?
 - The classic paper: Gul, Sonnenschein and Wilson (1986 JET).

Model

- Time $t = 0, \Delta, 2\Delta, 3\Delta$...
- A buyer and a seller whose cost is 0.

Common discount factor $\delta \equiv e^{-r\Delta}$, with r > 0.

- Buyer's value is v, with cdf F : [v, v] → [0, 1] with v ≥ 0.
 The results hold both for continuous F and discrete F.
- In period $t\Delta$, the seller makes an offer p_t ,

if the buyer accepts, then trade happens at price p_t and the game ends, if the buyer rejects, then the game moves on to period $(t + 1)\Delta$.

- **Important:** The uninformed player makes all the offers.
- If trade happens in period $t\Delta$ at price p, then the buyer's payoff is $(v p)\delta^t$, and the seller's payoff is $p\delta^t$.

Positive Selection

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Skimming Property

Observation: It is more costly for high-value types to wait.

Lemma: Skimming Property

Suppose the buyer with value v' accepts price p_t at h^t with positive prob, he accepts price p_t at h^t with probability 1 when his value is v'' > v'.

If type v' buyer accepts p_t at h^t , then $v' - p_t \ge \delta U(v', h^t, p_t)$.

Since type v' can imitate the strategy of type v'' and vice versa,

$$0 < U(v'', h^t, p_t) - U(v', h^t, p_t) \le v'' - v'.$$

If type v'' does not accept, then $v'' - p_t \le \delta U(v'', h^t, p_t)$, we have:

 $\delta(v'' - v') \ge \delta U(v'', h^t, p_t) - \delta U(v', h^t, p_t) \ge (v'' - p_t) - (v' - p_t) = v'' - v'.$

This leads to a contradiction.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Skimming Property

Lemma: Skimming Property

Suppose the buyer with value v' accepts price p_t at h^t with positive prob, he accepts price p_t at h^t with probability 1 when his value is v'' > v'.

The skimming property simplifies the search for equilibria:

- At every history, there exists $v^* \in [\underline{v}, \overline{v}]$ s.t. the buyer hasn't accepted the offer if and only if $v \leq v^*$.
- The seller's posterior belief is a truncation of his prior.

This is true in Coasian bargaining games but is not necessarily true in other dynamic games.

• Be careful when you use monotone methods in dynamic games since players also care about their continuation values.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Skimming Property

Lemma: Skimming Property

Suppose the buyer with value v' accepts price p_t at h^t with positive prob, he accepts price p_t at h^t with probability 1 when his value is v'' > v'.

The skimming property simplifies the search for equilibria:

- At every history, there exists $v^* \in [\underline{v}, \overline{v}]$ s.t. the buyer hasn't accepted the offer if and only if $v \leq v^*$.
- The seller's posterior belief is a truncation of his prior.

This is true in Coasian bargaining games but is not necessarily true in other dynamic games.

• Be careful when you use monotone methods in dynamic games since players also care about their continuation values.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lower Bound on Offered Price

Lemma: Lower Bound on Offered Prices

At every history of every equilibrium, the seller's offer is at least \underline{v} .

Let p^* be the supremum price s.t. all types will accept at all histories.

• The seller will not offer any price strictly less than p^* .

If
$$p^* < \underline{v}$$
, suppose the seller offers $p' \in (p^*, (1 - \delta)\underline{v} + \delta p^*)$.

Since p^* is the lowest price the buyer can get tomorrow, the lowest type prefers to accept p' today instead of waiting for a lower price tomorrow.

The skimming property implies that all types want to accept p' today, which contradicts the definition of p^* .

Rubinstein Bargaining 000

Coasian Bargaining

Endogenous Investment

Positive Selection

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Lower Bound on Offered Price

Lemma: Lower Bound on Offered Prices

At every history of every equilibrium, the seller's offer is at least v.

Implication: Once the seller offers \underline{v} , all types of the buyer will accept.

Rubinstein Bargaining

Coasian Bargaining

Endogenous Investment

Positive Selection

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Gap vs No Gap

The game's equilibrium outcome hinges on whether there is a gap between the buyer's lowest possible value and the seller's cost.

- The Gap Case: $\underline{v} > 0$.
- The No-Gap Case: $\underline{v} = 0$.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Gap Case: $\underline{v} > 0$

Theorem: Coase Conjecture with Gap

Fix r > 0, $\underline{v} > 0$, and *F*. For every $\varepsilon > 0$, there exists $\overline{\Delta} > 0$ such that when $\Delta < \overline{\Delta}$, in every equilibrium of the bargaining game,

1. Players reach an agreement before time ε with prob 1.

2. All trading prices are below $\underline{v} + \varepsilon$.

The uninformed seller makes all the offers.

• He has all the bargaining power.

However, he receives his lowest possible profit under incomplete info.

There is almost no inefficiency as the bargaining friction vanishes.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Coase Conjecture: Immediate Agreement and Low Prices

The seller has all the bargaining power, but he receives his lowest possible profit under incomplete info.

- Why? The seller faces a lack-of-commitment problem.
- He cannot commit not to lower the price tomorrow after learning that the buyer rejects his offer today.
- His future self competes with his current self a la Bertrand.
 This problem exacerbates when Δ becomes smaller.

What if the seller can commit to a price ex ante?

$$\max_{v^* \in [\underline{v}, \overline{v}]} \left\{ (1 - F(v^*))v^* \right\}$$

Take the FOC,

$$v^* = \frac{1 - F(v^*)}{f(v^*)}.$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Proof: Two-Type Case

We prove the result when there are two types $v \in \{\overline{v}, \underline{v}\}$.

• The prior belief is $v = \overline{v}$ with probability $F \in (0, 1)$.

The low type buyer accepts if and only if the seller offers \underline{v} .

Let F_t be the ex ante prob of the following event:

• The seller's type is high and remains in the market at time $t\Delta$.

We know that $F_0 = F$ and F_0 decreases over time.

Positive Selection

▲□▶▲□▶▲□▶▲□▶ □ のQで

Strict incentive to offer \underline{v} when $F_t \approx 0$

Lemma

There exists $\underline{F} > 0$ such that the seller strictly prefers to offer \underline{v} at time $t\Delta$ when $F_t < \underline{F}$.

The seller's payoff from offering \underline{v} is

 $\underline{v}(1-F+F_t).$

The seller's payoff from offering anything greater than \underline{v} is at most

$$\delta \underline{v}(1-F) + F_t \overline{v}.$$

Since v > 0, the former is strictly greater than the latter when $F_t \approx 0$.

Positive Selection

Proof: Bargaining Ends in Finite Time

Lemma

Fix $F_0 \in (0, 1)$. There exist $t \in \mathbb{N}$ and w > 0 such that for every $s \in \mathbb{N}$ and $F_s > 0$, we have $F_{t+s} \leq \max\{0, F_s - w\}$.

Proof: If $F_{t+s} > \max\{0, F_s - w\}$, then the seller's payoff at time $s\Delta$ is at most:

$$\overline{\nu}w + \delta^t \Big\{ \underline{\nu}(1-F_0) + \overline{\nu}(F_s-w) \Big\}.$$

The seller's payoff from offering \underline{v} at time $s\Delta$ is $\underline{v}(1 - F_0 + F_s)$.

When $t \to +\infty$ and $w \to 0$, we have

$$\underline{v}(1-F_0+F_s) > \overline{v}w + \delta^t \Big\{ \underline{v}(1-F_0) + \overline{v}(F_s-w) \Big\}.$$

The choice of *t* and *w* depend only on F_0 and is uniform for all $F_s \in [0, F_0]$.

Lemma

Positive Selection

Proof: Bargaining Ends in Finite Time

Lemma

Fix $F_0 \in (0, 1)$. There exist $t \in \mathbb{N}$ and w > 0 such that for every $s \in \mathbb{N}$ and $F_s > 0$, we have $F_{t+s} \leq \max\{0, F_s - w\}$.

Proof: If $F_{t+s} > \max\{0, F_s - w\}$, then the seller's payoff at time $s\Delta$ is at most:

$$\overline{v}w + \delta^t \Big\{ \underline{v}(1-F_0) + \overline{v}(F_s-w) \Big\}.$$

The seller's payoff from offering \underline{v} at time $s\Delta$ is $\underline{v}(1 - F_0 + F_s)$.

When $t \to +\infty$ and $w \to 0$, we have

$$\underline{v}(1-F_0+F_s) > \overline{v}w + \delta^t \Big\{ \underline{v}(1-F_0) + \overline{v}(F_s-w) \Big\}.$$

The choice of *t* and *w* depend only on F_0 and is uniform for all $F_s \in [0, F_0]$.

Lemma

Positive Selection

Proof: Bargaining Ends in Finite Time

Lemma

Fix $F_0 \in (0, 1)$. There exist $t \in \mathbb{N}$ and w > 0 such that for every $s \in \mathbb{N}$ and $F_s > 0$, we have $F_{t+s} \leq \max\{0, F_s - w\}$.

Proof: If $F_{t+s} > \max\{0, F_s - w\}$, then the seller's payoff at time $s\Delta$ is at most:

$$\overline{v}w + \delta^t \Big\{ \underline{v}(1-F_0) + \overline{v}(F_s-w) \Big\}.$$

The seller's payoff from offering \underline{v} at time $s\Delta$ is $\underline{v}(1 - F_0 + F_s)$.

When $t \to +\infty$ and $w \to 0$, we have

$$\underline{v}(1-F_0+F_s) > \overline{v}w + \delta^t \Big\{ \underline{v}(1-F_0) + \overline{v}(F_s-w) \Big\}.$$

The choice of *t* and *w* depend only on F_0 and is uniform for all $F_s \in [0, F_0]$.

Lemma

Positive Selection

Proof: Bargaining Ends in Finite Time

Lemma

Fix $F_0 \in (0, 1)$. There exist $t \in \mathbb{N}$ and w > 0 such that for every $s \in \mathbb{N}$ and $F_s > 0$, we have $F_{t+s} \leq \max\{0, F_s - w\}$.

Proof: If $F_{t+s} > \max\{0, F_s - w\}$, then the seller's payoff at time $s\Delta$ is at most:

$$\overline{v}w + \delta^t \Big\{ \underline{v}(1-F_0) + \overline{v}(F_s-w) \Big\}.$$

The seller's payoff from offering \underline{v} at time $s\Delta$ is $\underline{v}(1 - F_0 + F_s)$.

When $t \to +\infty$ and $w \to 0$, we have

$$\underline{v}(1-F_0+F_s) > \overline{v}w + \delta^t \Big\{ \underline{v}(1-F_0) + \overline{v}(F_s-w) \Big\}.$$

The choice of t and w depend only on F_0 and is uniform for all $F_s \in [0, F_0]$.

Lemma

Positive Selection

Proof: Bargaining Ends in Finite Time

Lemma

Fix $F_0 \in (0, 1)$. There exist $t \in \mathbb{N}$ and w > 0 such that for every $s \in \mathbb{N}$ and $F_s > 0$, we have $F_{t+s} \leq \max\{0, F_s - w\}$.

Proof: If $F_{t+s} > \max\{0, F_s - w\}$, then the seller's payoff at time $s\Delta$ is at most:

$$\overline{v}w + \delta^t \Big\{ \underline{v}(1-F_0) + \overline{v}(F_s-w) \Big\}.$$

The seller's payoff from offering \underline{v} at time $s\Delta$ is $\underline{v}(1 - F_0 + F_s)$.

When $t \to +\infty$ and $w \to 0$, we have

$$\underline{v}(1-F_0+F_s) > \overline{v}w + \delta^t \Big\{ \underline{v}(1-F_0) + \overline{v}(F_s-w) \Big\}.$$

The choice of t and w depend only on F_0 and is uniform for all $F_s \in [0, F_0]$.

Lemma

There exists $T \in \mathbb{N}$ such that the bargaining game ends before the Tth period, i.e., $F_T = 0$ for some T.

Positive Selection

Proof: Bargaining Ends in Finite Time

Lemma

Fix $F_0 \in (0, 1)$. There exist $t \in \mathbb{N}$ and w > 0 such that for every $s \in \mathbb{N}$ and $F_s > 0$, we have $F_{t+s} \leq \max\{0, F_s - w\}$.

Proof: If $F_{t+s} > \max\{0, F_s - w\}$, then the seller's payoff at time $s\Delta$ is at most:

$$\overline{v}w + \delta^t \Big\{ \underline{v}(1-F_0) + \overline{v}(F_s-w) \Big\}.$$

The seller's payoff from offering \underline{v} at time $s\Delta$ is $\underline{v}(1 - F_0 + F_s)$.

When $t \to +\infty$ and $w \to 0$, we have

$$\underline{v}(1-F_0+F_s) > \overline{v}w + \delta^t \Big\{ \underline{v}(1-F_0) + \overline{v}(F_s-w) \Big\}.$$

The choice of *t* and *w* depend only on F_0 and is uniform for all $F_s \in [0, F_0]$.

Lemma

There exists $T \in \mathbb{N}$ such that the bargaining game ends before the Tth period, i.e., $F_T = 0$ for some T.

Positive Selection

Proof: Bargaining Ends in Finite Time

Lemma

Fix $F_0 \in (0, 1)$. There exist $t \in \mathbb{N}$ and w > 0 such that for every $s \in \mathbb{N}$ and $F_s > 0$, we have $F_{t+s} \leq \max\{0, F_s - w\}$.

Proof: If $F_{t+s} > \max\{0, F_s - w\}$, then the seller's payoff at time $s\Delta$ is at most:

$$\overline{v}w + \delta^t \Big\{ \underline{v}(1-F_0) + \overline{v}(F_s-w) \Big\}.$$

The seller's payoff from offering \underline{v} at time $s\Delta$ is $\underline{v}(1 - F_0 + F_s)$.

When $t \to +\infty$ and $w \to 0$, we have

$$\underline{v}(1-F_0+F_s) > \overline{v}w + \delta^t \Big\{ \underline{v}(1-F_0) + \overline{v}(F_s-w) \Big\}.$$

The choice of *t* and *w* depend only on F_0 and is uniform for all $F_s \in [0, F_0]$.

Lemma

There exists $T \in \mathbb{N}$ such that the bargaining game ends before the Tth period, i.e., $F_T = 0$ for some T.

Positive Selection

Backward Induction: Small Price Difference

Let $T\Delta$ be the last period of the bargaining game.

The seller's price in the *T*th period is $p_T = \underline{v}$.

In the T - 1th period, the high type prefers accepting p_{T-1} to waiting for p_T :

$$\overline{v} - p_{T-1} \ge \delta(\overline{v} - p_T),$$

which yields:

$$p_{T-1} \leq (1-\delta)\overline{\nu} + \delta p_T.$$

Similarly, the high type is indifferent between accepting p_{T-2} and waiting for p_{T-1} :

$$p_{T-2} = (1-\delta)\overline{\nu} + \delta p_{T-1}.$$

Hence, for every t < T, we have

$$p_t - p_{t+1} \le (1 - \delta)(\overline{\nu} - p_{t+1}) \le (1 - \delta)(\overline{\nu} - \underline{\nu}),$$

i.e., the price difference across periods must be small enough.

Positive Selection

Backward Induction: Seller's Incentive

In the T - 1th period, the seller prefers offering p_{T-1} to offering p_T :

$$(F_{T-1} - F_T)p_{T-1} + \delta(1 - F_0 + F_T)p_T \ge (F_{T-1} + 1 - F_0)p_T.$$

or equivalently

$$\underbrace{(F_{T-1} - F_T)(p_{T-1} - p_T)}_{(F_T - 1)} \ge \underbrace{(1 - \delta)(F_T + 1 - F_0)p_T}_{(T - 1)}$$

benefit from offering p_{T-1}

cost of delay

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Recall that

$$p_{T-1} - p_T \le (1 - \delta)(\overline{\nu} - p_T),$$

we have:

$$F_{T-1} - F_T \ge \frac{(F_T + 1 - F_0)p_T}{\overline{\nu} - p_T} \ge \frac{(1 - F_0)p_T}{\overline{\nu} - p_T}$$

Positive Selection

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Backward Induction: Seller's Incentive

In the T - 1th period, the seller prefers offering p_{T-1} to offering p_T :

$$(F_{T-1}-F_T)p_{T-1}+\delta(1-F_0+F_T)p_T\geq (F_{T-1}+1-F_0)p_T.$$

or equivalently

$$\underbrace{(F_{T-1}-F_T)(p_{T-1}-p_T)}_{\text{benefit from offering } p_{T-1}} \ge \underbrace{(1-\delta)(F_T+1-F_0)p_T}_{\text{cost of delay}}.$$

Recall that

$$p_{T-1}-p_T \leq (1-\delta)(\overline{\nu}-p_T),$$

we have:

$$F_{T-1} - F_T \ge \frac{(F_T + 1 - F_0)p_T}{\overline{\nu} - p_T} \ge \frac{(1 - F_0)p_T}{\overline{\nu} - p_T}$$

Positive Selection

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Backward Induction: Seller's Incentive

In the T - 1th period, the seller prefers offering p_{T-1} to offering p_T :

$$(F_{T-1}-F_T)p_{T-1}+\delta(1-F_0+F_T)p_T \ge (F_{T-1}+1-F_0)p_T.$$

or equivalently

$$\underbrace{(F_{T-1} - F_T)(p_{T-1} - p_T)}_{\text{benefit from offering } p_{T-1}} \ge \underbrace{(1 - \delta)(F_T + 1 - F_0)p_T}_{\text{cost of delay}}.$$

Recall that

$$p_{T-1}-p_T \leq (1-\delta)(\overline{\nu}-p_T),$$

we have:

$$F_{T-1} - F_T \ge \frac{(F_T + 1 - F_0)p_T}{\overline{\nu} - p_T} \ge \frac{(1 - F_0)p_T}{\overline{\nu} - p_T}$$

Positive Selection

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Backward Induction: Seller's Incentive

In the T - 1th period, the seller prefers offering p_{T-1} to offering p_T :

$$(F_{T-1}-F_T)p_{T-1}+\delta(1-F_0+F_T)p_T\geq (F_{T-1}+1-F_0)p_T.$$

or equivalently

$$\underbrace{(F_{T-1} - F_T)(p_{T-1} - p_T)}_{\text{benefit from offering } p_{T-1}} \ge \underbrace{(1 - \delta)(F_T + 1 - F_0)p_T}_{\text{cost of delay}}.$$

Recall that

$$p_{T-1}-p_T \leq (1-\delta)(\overline{\nu}-p_T),$$

we have:

$$F_{T-1} - F_T \ge \frac{(F_T + 1 - F_0)p_T}{\overline{\nu} - p_T} \ge \frac{(1 - F_0)p_T}{\overline{\nu} - p_T}.$$

Positive Selection

Backward Induction: Seller's Incentive

In the T - 1th period, the seller prefers offering p_{T-1} to offering p_T :

$$(F_{T-1}-F_T)p_{T-1}+\delta(1-F_0+F_T)p_T\geq (F_{T-1}+1-F_0)p_T.$$

or equivalently

$$\underbrace{(F_{T-1} - F_T)(p_{T-1} - p_T)}_{\text{benefit from offering } p_{T-1}} \ge \underbrace{(1 - \delta)(F_T + 1 - F_0)p_T}_{\text{cost of delay}}.$$

Recall that

$$p_{T-1}-p_T \leq (1-\delta)(\overline{\nu}-p_T),$$

we have:

$$F_{T-1} - F_T \ge \frac{(F_T + 1 - F_0)p_T}{\overline{\nu} - p_T} \ge \frac{(1 - F_0)p_T}{\overline{\nu} - p_T}.$$

The fraction of high type who trades in the T - 1th period must be large enough in order to compensate for the loss of delaying $\underline{v}(1 - F_0)$.

▲□▶▲□▶▲□▶▲□▶ = つへぐ

Positive Selection

Backward Induction: Seller's Incentive

The seller prefers offering p_{T-1} to p_T in the T - 1th period:

$$F_{T-1} - F_T \ge \frac{(F_T + 1 - F_0)p_T}{\overline{\nu} - p_T} \ge \frac{(1 - F_0)p_T}{\overline{\nu} - p_T}$$

The fraction of high type who trades in the T - 1th period must be large enough in order to compensate for the loss of delaying $\underline{v}(1 - F_0)$.

Similarly, we can find uniform lower bounds on $F_{T-2} - F_{T-1}$, $F_{T-3} - F_{T-2}$,..., which depend only on $1 - F_0$, \underline{v} , \overline{v} , but not on δ and Δ .

This suggests that F_T, F_{T-1}, \dots reaches F_0 in bounded number of periods.

• This leads to an upper bound on T that does not depend on Δ

As $\Delta \to 0$, we have $T\Delta \to 0$ and $p_0 \to \underline{v}$.

Positive Selection

Backward Induction: Seller's Incentive

The seller prefers offering p_{T-1} to p_T in the T - 1th period:

$$F_{T-1} - F_T \ge \frac{(F_T + 1 - F_0)p_T}{\overline{\nu} - p_T} \ge \frac{(1 - F_0)p_T}{\overline{\nu} - p_T}.$$

The fraction of high type who trades in the T – 1th period must be large enough in order to compensate for the loss of delaying $\underline{v}(1 - F_0)$.

Similarly, we can find uniform lower bounds on $F_{T-2} - F_{T-1}$, $F_{T-3} - F_{T-2}$,..., which depend only on $1 - F_0$, \underline{v} , \overline{v} , but not on δ and Δ .

This suggests that F_T, F_{T-1}, \dots reaches F_0 in bounded number of periods.

• This leads to an upper bound on T that does not depend on Δ

As $\Delta \to 0$, we have $T\Delta \to 0$ and $p_0 \to \underline{v}$.

Positive Selection

Backward Induction: Seller's Incentive

The seller prefers offering p_{T-1} to p_T in the T - 1th period:

$$F_{T-1} - F_T \ge \frac{(F_T + 1 - F_0)p_T}{\overline{\nu} - p_T} \ge \frac{(1 - F_0)p_T}{\overline{\nu} - p_T}.$$

The fraction of high type who trades in the T - 1th period must be large enough in order to compensate for the loss of delaying $\underline{v}(1 - F_0)$.

Similarly, we can find uniform lower bounds on $F_{T-2} - F_{T-1}$, $F_{T-3} - F_{T-2}$,..., which depend only on $1 - F_0$, \underline{v} , \overline{v} , but not on δ and Δ .

This suggests that F_T, F_{T-1}, \dots reaches F_0 in bounded number of periods.

• This leads to an upper bound on T that does not depend on Δ

As
$$\Delta \to 0$$
, we have $T\Delta \to 0$ and $p_0 \to \underline{v}$.

Positive Selection

Backward Induction: Seller's Incentive

The seller prefers offering p_{T-1} to p_T in the T - 1th period:

$$F_{T-1} - F_T \ge \frac{(F_T + 1 - F_0)p_T}{\overline{\nu} - p_T} \ge \frac{(1 - F_0)p_T}{\overline{\nu} - p_T}.$$

The fraction of high type who trades in the T - 1th period must be large enough in order to compensate for the loss of delaying $\underline{v}(1 - F_0)$.

Similarly, we can find uniform lower bounds on $F_{T-2} - F_{T-1}$, $F_{T-3} - F_{T-2}$,..., which depend only on $1 - F_0$, \underline{v} , \overline{v} , but not on δ and Δ .

This suggests that F_T, F_{T-1}, \dots reaches F_0 in bounded number of periods.

• This leads to an upper bound on T that does not depend on Δ

As
$$\Delta \to 0$$
, we have $T\Delta \to 0$ and $p_0 \to \underline{v}$.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The No-Gap Case

The Gap Case ($\underline{v} > 0$):

- The seller cannot resist the temptation to lower prices, and his profit is arbitrarily close to \underline{v} as $\Delta \rightarrow 0$.
- Why? Offering \underline{v} and obtaining \underline{v} is tempting for the seller.

The No-Gap Case ($\underline{v} = 0$):

• There is no benefit from serving the lowest type, which helps the seller to commit to high prices.

Rubinstein Bargaining

Coasian Bargaining

Endogenous Investment

Positive Selection

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The No-Gap Case

An equilibrium is stationary if the buyer's strategy depends on the history only through the current-period offer and her value.

Theorem: Coase Conjecture without Gap

Suppose $\underline{v} = 0$. For every $\varepsilon > 0$, there exists $\overline{\Delta} > 0$ such that when $\Delta < \overline{\Delta}$, in every stationary equilibrium of the bargaining game,

1. Players reach an agreement before time ε with prob 1.

2. All trading prices are below ε .

Ausubel and Deneckere (1989): Folk theorem in the No-Gap Case.

- Any payoff between 0 and the commitment payoff can arise in Perfect Bayesian equilibrium.
- The seller can credibly commit to delay trading with the lowest type.

Positive Selection

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bargaining with Endogenous Investment

A model with endogenous and unobservable investment.

- Time $t = 0, \Delta, 2\Delta, 3\Delta$...
- Common discount factor $\delta \equiv e^{-r\Delta}$.
- The seller's production cost is 0. She makes all the offers.
- Before bargaining starts, the buyer decides whether to invest.
 If he does not invest, his value is <u>v</u>.
 If he invests, then he pays a cost of c and his value become
- Suppose $\underline{v} > 0$ and $c \in (0, \overline{v} \underline{v})$,

i.e., investment is costly and is socially efficient.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bargaining with Endogenous Investment

A model with endogenous and unobservable investment.

- Time $t = 0, \Delta, 2\Delta, 3\Delta$...
- Common discount factor $\delta \equiv e^{-r\Delta}$.
- The seller's production cost is 0. She makes all the offers.
- Before bargaining starts, the buyer decides whether to invest.

If he does not invest, his value is \underline{v} . If he invests, then he pays a cost of *c* and his value becomes \overline{v} .

• Suppose $\underline{v} > 0$ and $c \in (0, \overline{v} - \underline{v})$,

i.e., investment is costly and is socially efficient.

Positive Selection

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bargaining with Endogenous Investment

A model with endogenous and unobservable investment.

- Time $t = 0, \Delta, 2\Delta, 3\Delta...$
- Common discount factor $\delta \equiv e^{-r\Delta}$.
- The seller's production cost is 0. She makes all the offers.
- Before bargaining starts, the buyer decides whether to invest. If he does not invest, his value is *v*.

If he invests, then he pays a cost of *c* and his value becomes \overline{v} .

• Suppose $\underline{v} > 0$ and $c \in (0, \overline{v} - \underline{v})$,

i.e., investment is costly and is socially efficient.

Positive Selection

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bargaining with Endogenous Investment

A model with endogenous and unobservable investment.

- Time $t = 0, \Delta, 2\Delta, 3\Delta$...
- Common discount factor $\delta \equiv e^{-r\Delta}$.
- The seller's production cost is 0. She makes all the offers.
- Before bargaining starts, the buyer decides whether to invest. If he does not invest, his value is *v*.

If he invests, then he pays a cost of c and his value becomes \overline{v} .

• Suppose $\underline{v} > 0$ and $c \in (0, \overline{v} - \underline{v})$,

i.e., investment is costly and is socially efficient.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Two Useful Benchmarks

- 1. Observable investment: The buyer never invests.
 - Equilibrium social welfare is <u>v</u>.

2. Unobservable investment but take-it-or-leave-it offer:

- The buyer invests with probability $\underline{v}/\overline{v}$.
- The seller is indifferent between offering \underline{v} and offering \overline{v} .
- The buyer's equilibrium payoff is 0.
- The seller's equilibrium payoff is \underline{v} .
- Equilibrium social welfare is \underline{v} .

▲□▶▲□▶▲□▶▲□▶ □ のQで

Two Useful Benchmarks

- 1. Observable investment: The buyer never invests.
 - Equilibrium social welfare is <u>v</u>.
- 2. Unobservable investment but take-it-or-leave-it offer:
 - The buyer invests with probability $\underline{v}/\overline{v}$.
 - The seller is indifferent between offering \underline{v} and offering \overline{v} .
 - The buyer's equilibrium payoff is 0.
 - The seller's equilibrium payoff is \underline{v} .
 - Equilibrium social welfare is \underline{v} .

▲□▶▲□▶▲□▶▲□▶ □ のQで

Two Useful Benchmarks

- 1. Observable investment: The buyer never invests.
 - Equilibrium social welfare is <u>v</u>.
- 2. Unobservable investment but take-it-or-leave-it offer:
 - The buyer invests with probability $\underline{v}/\overline{v}$.
 - The seller is indifferent between offering \underline{v} and offering \overline{v} .
 - The buyer's equilibrium payoff is 0.
 - The seller's equilibrium payoff is \underline{v} .
 - Equilibrium social welfare is \underline{v} .

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Two Useful Benchmarks

- 1. Observable investment: The buyer never invests.
 - Equilibrium social welfare is <u>v</u>.
- 2. Unobservable investment but take-it-or-leave-it offer:
 - The buyer invests with probability $\underline{v}/\overline{v}$.
 - The seller is indifferent between offering \underline{v} and offering \overline{v} .
 - The buyer's equilibrium payoff is 0.
 - The seller's equilibrium payoff is \underline{v} .
 - Equilibrium social welfare is \underline{v} .

▲□▶▲□▶▲□▶▲□▶ □ のQで

Two Useful Benchmarks

- 1. Observable investment: The buyer never invests.
 - Equilibrium social welfare is <u>v</u>.
- 2. Unobservable investment but take-it-or-leave-it offer:
 - The buyer invests with probability $\underline{v}/\overline{v}$.
 - The seller is indifferent between offering \underline{v} and offering \overline{v} .
 - The buyer's equilibrium payoff is 0.
 - The seller's equilibrium payoff is \underline{v} .
 - Equilibrium social welfare is \underline{v} .

▲□▶▲□▶▲□▶▲□▶ □ のQで

Two Useful Benchmarks

- 1. Observable investment: The buyer never invests.
 - Equilibrium social welfare is <u>v</u>.
- 2. Unobservable investment but take-it-or-leave-it offer:
 - The buyer invests with probability $\underline{v}/\overline{v}$.
 - The seller is indifferent between offering \underline{v} and offering \overline{v} .
 - The buyer's equilibrium payoff is 0.
 - The seller's equilibrium payoff is \underline{v} .
 - Equilibrium social welfare is \underline{v} .

▲□▶▲□▶▲□▶▲□▶ □ のQで

Two Useful Benchmarks

- 1. Observable investment: The buyer never invests.
 - Equilibrium social welfare is <u>v</u>.
- 2. Unobservable investment but take-it-or-leave-it offer:
 - The buyer invests with probability $\underline{v}/\overline{v}$.
 - The seller is indifferent between offering \underline{v} and offering \overline{v} .
 - The buyer's equilibrium payoff is 0.
 - The seller's equilibrium payoff is \underline{v} .
 - Equilibrium social welfare is <u>v</u>.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Two Useful Benchmarks

- 1. Observable investment: The buyer never invests.
 - Equilibrium social welfare is <u>v</u>.
- 2. Unobservable investment but take-it-or-leave-it offer:
 - The buyer invests with probability $\underline{v}/\overline{v}$.
 - The seller is indifferent between offering \underline{v} and offering \overline{v} .
 - The buyer's equilibrium payoff is 0.
 - The seller's equilibrium payoff is \underline{v} .
 - Equilibrium social welfare is <u>v</u>.

Positive Selection

▲□▶▲□▶▲□▶▲□▶ □ のQで

Unobservable Investment and Coasian Bargaining

What if investment is unobserable and offers are frequent, i.e., $\Delta \rightarrow 0$?

• Recall that $c \in (0, \overline{v} - \underline{v})$.

In equilibrium, the buyer cannot invest with probability 1.

- Otherwise, his value is \overline{v} for sure.
- The seller will charge him \overline{v} , so he has no incentive to invest.

In equilibrium, the buyer cannot invest with probability 0.

- Otherwise, his value is \underline{v} for sure.
- The seller will charge him <u>v</u>, so he has a strict incentive to invest.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Unobservable Investment and Coasian Bargaining

What if investment is unobserable and offers are frequent, i.e., $\Delta \rightarrow 0$?

• Recall that $c \in (0, \overline{v} - \underline{v})$.

In equilibrium, the buyer cannot invest with probability 1.

- Otherwise, his value is \overline{v} for sure.
- The seller will charge him \overline{v} , so he has no incentive to invest.

In equilibrium, the buyer cannot invest with probability 0.

- Otherwise, his value is \underline{v} for sure.
- The seller will charge him \underline{v} , so he has a strict incentive to invest.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Unobservable Investment and Coasian Bargaining

What if investment is unobserable and offers are frequent, i.e., $\Delta \rightarrow 0$?

• Recall that $c \in (0, \overline{v} - \underline{v})$.

In equilibrium, the buyer cannot invest with probability 1.

- Otherwise, his value is \overline{v} for sure.
- The seller will charge him \overline{v} , so he has no incentive to invest.

In equilibrium, the buyer cannot invest with probability 0.

- Otherwise, his value is \underline{v} for sure.
- The seller will charge him \underline{v} , so he has a strict incentive to invest.

Positive Selection

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Unobservable Investment and Coasian Bargaining

Hence, the buyer invests with interior probability $F \in (0, 1)$.

- He must be indifferent between investing and not investing.
- A possible line of reasoning:
 - The seller will never offer anything below \underline{v} .
 - The buyer will accept \underline{v} if the seller offers it.
 - The Coase conjecture in the gap case implies that as Δ → 0, the seller's offer will fall to <u>v</u> within ε unit of time.
 - The buyer's maximization problem at the investment stage:
 - If he does not invest, he gets 0.
 - If he invests, then his payoff converges to v
 v − *v* − *c* as Δ → 0, which is strictly greater than 0.

Positive Selection

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Unobservable Investment and Coasian Bargaining

Hence, the buyer invests with interior probability $F \in (0, 1)$.

- He must be indifferent between investing and not investing.
- A possible line of reasoning:
 - The seller will never offer anything below \underline{v} .
 - The buyer will accept \underline{y} if the seller offers it.
 - The Coase conjecture in the gap case implies that as Δ → 0, the seller's offer will fall to <u>v</u> within ε unit of time.
 - The buyer's maximization problem at the investment stage:
 - If he does not invest, he gets 0.
 - If he invests, then his payoff converges to v
 v − *v* − *c* as Δ → 0, which is strictly greater than 0.

Positive Selection

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Unobservable Investment and Coasian Bargaining

Hence, the buyer invests with interior probability $F \in (0, 1)$.

- He must be indifferent between investing and not investing.
- A possible line of reasoning:
 - The seller will never offer anything below \underline{v} .
 - The buyer will accept \underline{v} if the seller offers it.
 - The Coase conjecture in the gap case implies that as Δ → 0, the seller's offer will fall to <u>v</u> within ε unit of time.
 - The buyer's maximization problem at the investment stage:
 - If he does not invest, he gets 0.
 - If he invests, then his payoff converges to v
 v − *v* − *c* as Δ → 0, which is strictly greater than 0.

Positive Selection

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Unobservable Investment and Coasian Bargaining

Hence, the buyer invests with interior probability $F \in (0, 1)$.

- He must be indifferent between investing and not investing.
- A possible line of reasoning:
 - The seller will never offer anything below \underline{v} .
 - The buyer will accept \underline{v} if the seller offers it.
 - The Coase conjecture in the gap case implies that as Δ → 0, the seller's offer will fall to <u>v</u> within ε unit of time.
 - The buyer's maximization problem at the investment stage:
 - If he does not invest, he gets 0.
 - If he invests, then his payoff converges to v
 v − *v* − *c* as Δ → 0, which is strictly greater than 0.

Positive Selection

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Unobservable Investment and Coasian Bargaining

Hence, the buyer invests with interior probability $F \in (0, 1)$.

- He must be indifferent between investing and not investing.
- A possible line of reasoning:
 - The seller will never offer anything below \underline{v} .
 - The buyer will accept \underline{v} if the seller offers it.
 - The Coase conjecture in the gap case implies that as Δ → 0, the seller's offer will fall to <u>v</u> within ε unit of time.
 - The buyer's maximization problem at the investment stage:
 - If he does not invest, he gets 0.
 - If he invests, then his payoff converges to v
 v − *v* − *c* as Δ → 0, which is strictly greater than 0.

Positive Selection

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Unobservable Investment and Coasian Bargaining

Hence, the buyer invests with interior probability $F \in (0, 1)$.

- He must be indifferent between investing and not investing.
- A possible line of reasoning:
 - The seller will never offer anything below \underline{v} .
 - The buyer will accept \underline{v} if the seller offers it.
 - The Coase conjecture in the gap case implies that as Δ → 0, the seller's offer will fall to <u>v</u> within ε unit of time.
 - The buyer's maximization problem at the investment stage:
 - If he does not invest, he gets 0.
 - If he invests, then his payoff converges to v
 v − *v* − *c* as Δ → 0, which is strictly greater than 0.

Positive Selection

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Unobservable Investment and Coasian Bargaining

Hence, the buyer invests with interior probability $F \in (0, 1)$.

- He must be indifferent between investing and not investing.
- A possible line of reasoning:
 - The seller will never offer anything below \underline{v} .
 - The buyer will accept \underline{v} if the seller offers it.
 - The Coase conjecture in the gap case implies that as Δ → 0, the seller's offer will fall to <u>v</u> within ε unit of time.
 - The buyer's maximization problem at the investment stage:
 - If he does not invest, he gets 0.
 - If he invests, then his payoff converges to v
 v − *v* − *c* as Δ → 0, which is strictly greater than 0.

The buyer has a strict incentive to invest, which is a contradiction.

Positive Selection

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Unobservable Investment and Coasian Bargaining

Hence, the buyer invests with interior probability $F \in (0, 1)$.

- He must be indifferent between investing and not investing.
- A possible line of reasoning:
 - The seller will never offer anything below \underline{v} .
 - The buyer will accept \underline{v} if the seller offers it.
 - The Coase conjecture in the gap case implies that as Δ → 0, the seller's offer will fall to <u>v</u> within ε unit of time.
 - The buyer's maximization problem at the investment stage:
 - If he does not invest, he gets 0.
 - If he invests, then his payoff converges to $\overline{v} \underline{v} c$ as $\Delta \to 0$, which is strictly greater than 0.

The buyer has a strict incentive to invest, which is a contradiction.

Positive Selection

Unobservable Investment and Coasian Bargaining

Hence, the buyer invests with interior probability $F \in (0, 1)$.

- He must be indifferent between investing and not investing.
- A possible line of reasoning:
 - The seller will never offer anything below \underline{v} .
 - The buyer will accept \underline{v} if the seller offers it.
 - The Coase conjecture in the gap case implies that as Δ → 0, the seller's offer will fall to <u>v</u> within ε unit of time.
 - The buyer's maximization problem at the investment stage:
 - If he does not invest, he gets 0.
 - If he invests, then his payoff converges to $\overline{v} \underline{v} c$ as $\Delta \to 0$, which is strictly greater than 0.

The buyer has a strict incentive to invest, which is a contradiction.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is wrong with this line of reasoning?

- The buyer is indifferent between investing and not investing.
- The seller will never offer anything below \underline{v} .
- The buyer will accept \underline{v} if the seller offers it.
- The Coase conjecture in the gap case implies that as Δ → 0, the seller's offer will fall to <u>v</u> within ε unit of time.
- The buyer's maximization problem at the investment stage:
 - If he does not invest, he gets 0.
 - If he invests, then his payoff converges to $\overline{v} \underline{v} c$ as $\Delta \to 0$, which is strictly greater than 0.

The buyer has a strict incentive to invest, which is a contradiction.

The sentences in red are wrong.

• The Coase conjecture (i.e., the theorem in GSW) is incorrectly applied.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

What is wrong with this line of reasoning?

- The buyer is indifferent between investing and not investing.
- The seller will never offer anything below \underline{v} .
- The buyer will accept \underline{v} if the seller offers it.
- The Coase conjecture in the gap case implies that as Δ → 0, the seller's offer will fall to <u>v</u> within ε unit of time.
- The buyer's maximization problem at the investment stage:
 - If he does not invest, he gets 0.
 - If he invests, then his payoff converges to $\overline{v} \underline{v} c$ as $\Delta \to 0$, which is strictly greater than 0.

The buyer has a strict incentive to invest, which is a contradiction.

The sentences in red are wrong.

• The Coase conjecture (i.e., the theorem in GSW) is incorrectly applied.

イロト 不得 とうほう イヨン

The Coase Conjecture Revisited

What did GSW show?

Theorem: Coase Conjecture with Gap

Fix F. For every $\varepsilon > 0$, there exists $\overline{\Delta} > 0$ such that when $\Delta < \overline{\Delta}$, in every equilibrium of the bargaining game,

- 1. Players reach an agreement before time ε with prob 1.
- 2. All trading prices are below $\underline{v} + \varepsilon$.

What's going on in the game with endogenous investment?

• The value distribution F is endogenous, and hence, it may depend on the parameters such as Δ .

When $\Delta \rightarrow 0$, the prob that *F* assigns to \underline{v} may also go to 0.

▲□▶▲□▶▲□▶▲□▶ □ のQで

The Coase Conjecture Revisited

What did GSW show?

Theorem: Coase Conjecture with Gap

Fix F. For every $\varepsilon > 0$, there exists $\overline{\Delta} > 0$ such that when $\Delta < \overline{\Delta}$, in every equilibrium of the bargaining game,

- 1. Players reach an agreement before time ε with prob 1.
- 2. All trading prices are below $\underline{v} + \varepsilon$.

What's going on in the game with endogenous investment?

• The value distribution F is endogenous, and hence, it may depend on the parameters such as Δ .

When $\Delta \rightarrow 0$, the prob that *F* assigns to <u>v</u> may also go to 0.

▲□▶▲□▶▲□▶▲□▶ □ のQで

The Coase Conjecture Revisited

What did GSW show?

Theorem: Coase Conjecture with Gap

Fix F. For every $\varepsilon > 0$, there exists $\overline{\Delta} > 0$ such that when $\Delta < \overline{\Delta}$, in every equilibrium of the bargaining game,

- 1. Players reach an agreement before time ε with prob 1.
- 2. All trading prices are below $\underline{v} + \varepsilon$.

What's going on in the game with endogenous investment?

• The value distribution F is endogenous, and hence, it may depend on the parameters such as Δ .

When $\Delta \rightarrow 0$, the prob that *F* assigns to \underline{v} may also go to 0.

Unobservable Investment and Coasian Bargaining

Let $\alpha \equiv \frac{c}{\overline{v}-\underline{v}} \in (0,1)$.

- The low type's payoff must be 0.
- The high type's payoff must be α(v
 <u>ν</u>) s.t. the buyer is indifferent between investing and not investing.

Recall that the seller's offered prices must satisfy:

$$p_t - p_{t+1} = (1 - \delta)(\overline{\nu} - p_{t+1}).$$

The price in the *T*th period must be \underline{v} .

Type \overline{v} must find it optimal to accept $p_{T-1} \approx \underline{v}$ in the T - 1th period, which gives:

$$\alpha(\overline{v} - \underline{v}) \approx e^{-r\Delta T}(\overline{v} - \underline{v})$$

Hence, $e^{-r\Delta T} \approx \alpha$, i.e., ΔT does not converge to 0 as $\Delta \rightarrow 0$ since *T* depends on *F*, which depends endogenously on Δ .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How can *T* explode as $\Delta \rightarrow 0$?

Recall: The seller's incentive to offer p_{T-1} instead of p_T in the *T*th period.

$$F_{T-1}-F_T\geq \frac{(1-F_0)p_T}{\overline{\nu}-p_T}.$$

Similarly, $F_{t-1} - F_t$ is bounded below by a linear function of $1 - F_0$.

Therefore, $F_{T-1} - F_T$ can be very small only when $1 - F_0 \rightarrow 0$, i.e., when the low type is sufficiently unlikely.

Hence, the buyer's investment prob $\rightarrow 1$ as $\Delta \rightarrow 0$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How can *T* explode as $\Delta \rightarrow 0$?

Recall: The seller's incentive to offer p_{T-1} instead of p_T in the *T*th period.

$$F_{T-1}-F_T\geq \frac{(1-F_0)p_T}{\overline{\nu}-p_T}.$$

Similarly, $F_{t-1} - F_t$ is bounded below by a linear function of $1 - F_0$.

Therefore, $F_{T-1} - F_T$ can be very small only when $1 - F_0 \rightarrow 0$, i.e., when the low type is sufficiently unlikely.

Hence, the buyer's investment prob $\rightarrow 1$ as $\Delta \rightarrow 0$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How can *T* explode as $\Delta \rightarrow 0$?

Recall: The seller's incentive to offer p_{T-1} instead of p_T in the *T*th period.

$$F_{T-1}-F_T\geq \frac{(1-F_0)p_T}{\overline{\nu}-p_T}.$$

Similarly, $F_{t-1} - F_t$ is bounded below by a linear function of $1 - F_0$.

Therefore, $F_{T-1} - F_T$ can be very small only when $1 - F_0 \rightarrow 0$, i.e., when the low type is sufficiently unlikely.

Hence, the buyer's investment prob $\rightarrow 1$ as $\Delta \rightarrow 0$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How can *T* explode as $\Delta \rightarrow 0$?

Recall: The seller's incentive to offer p_{T-1} instead of p_T in the *T*th period.

$$F_{T-1}-F_T\geq \frac{(1-F_0)p_T}{\overline{\nu}-p_T}.$$

Similarly, $F_{t-1} - F_t$ is bounded below by a linear function of $1 - F_0$.

Therefore, $F_{T-1} - F_T$ can be very small only when $1 - F_0 \rightarrow 0$, i.e., when the low type is sufficiently unlikely.

Hence, the buyer's investment prob $\rightarrow 1$ as $\Delta \rightarrow 0$.

Positive Selection

Expected Delay & Social Welfare

The seller prefers p_{T-1} to p_T at time $(T-1)\Delta$:

$$F_{T-1} - F_T \ge \frac{F_T + (1-F)}{\overline{\nu} - p_T} p_T.$$

The seller prefers p_{T-2} to p_{T-1} at time $(T-2)\Delta$:

$$F_{T-2} - F_{T-1} \ge (F_{T-1} - F_T) \Big\{ \delta + \frac{p_{T-1}}{\overline{\nu} - p_{T-1}} \Big\}$$

• • • • • • •

The seller prefers p_{t-1} to p_t at time $(t-1)\Delta$:

$$F_{t-1} - F_t \ge (F_t - F_{t+1}) \Big\{ \delta + \frac{p_t}{\overline{\nu} - p_t} \Big\}.$$

Since p_t decreases in t, when Δ is close to $0, \exists \gamma > 1/\delta$ s.t

$$\delta + \frac{p_t}{\overline{\nu} - p_t} > \gamma \text{ for every } t \in \mathbb{N}.$$

Positive Selection

Expected Delay & Social Welfare

The seller prefers p_{T-1} to p_T at time $(T-1)\Delta$:

$$F_{T-1} - F_T \ge \frac{F_T + (1-F)}{\overline{\nu} - p_T} p_T.$$

The seller prefers p_{T-2} to p_{T-1} at time $(T-2)\Delta$:

$$F_{T-2} - F_{T-1} \ge (F_{T-1} - F_T) \left\{ \delta + \frac{p_{T-1}}{\overline{\nu} - p_{T-1}} \right\}$$

• • • • • • •

The seller prefers p_{t-1} to p_t at time $(t-1)\Delta$:

$$F_{t-1} - F_t \ge (F_t - F_{t+1}) \Big\{ \delta + \frac{p_t}{\overline{\nu} - p_t} \Big\}.$$

Since p_t decreases in t, when Δ is close to $0, \exists \gamma > 1/\delta$ s.t

$$\delta + \frac{p_t}{\overline{\nu} - p_t} > \gamma \text{ for every } t \in \mathbb{N}.$$

Positive Selection

Expected Delay & Social Welfare

The seller prefers p_{T-1} to p_T at time $(T-1)\Delta$:

$$F_{T-1} - F_T \ge \frac{F_T + (1-F)}{\overline{\nu} - p_T} p_T.$$

The seller prefers p_{T-2} to p_{T-1} at time $(T-2)\Delta$:

$$F_{T-2} - F_{T-1} \ge (F_{T-1} - F_T) \left\{ \delta + \frac{p_{T-1}}{\overline{\nu} - p_{T-1}} \right\}$$

••• •••

The seller prefers p_{t-1} to p_t at time $(t-1)\Delta$:

$$F_{t-1} - F_t \ge (F_t - F_{t+1}) \Big\{ \delta + \frac{p_t}{\overline{\nu} - p_t} \Big\}.$$

Since p_t decreases in t, when Δ is close to $0, \exists \gamma > 1/\delta$ s.t

$$\delta + \frac{p_t}{\overline{\nu} - p_t} > \gamma \text{ for every } t \in \mathbb{N}.$$

Positive Selection

Expected Delay & Social Welfare

The seller prefers p_{T-1} to p_T at time $(T-1)\Delta$:

$$F_{T-1} - F_T \ge \frac{F_T + (1-F)}{\overline{\nu} - p_T} p_T.$$

The seller prefers p_{T-2} to p_{T-1} at time $(T-2)\Delta$:

$$F_{T-2} - F_{T-1} \ge (F_{T-1} - F_T) \left\{ \delta + \frac{p_{T-1}}{\overline{\nu} - p_{T-1}} \right\}$$

••• •••

The seller prefers p_{t-1} to p_t at time $(t-1)\Delta$:

$$F_{t-1} - F_t \ge (F_t - F_{t+1}) \left\{ \delta + \frac{p_t}{\overline{\nu} - p_t} \right\}.$$

Since p_t decreases in t, when Δ is close to $0, \exists \gamma > 1/\delta$ s.t.

$$\delta + \frac{p_t}{\overline{v} - p_t} > \gamma \text{ for every } t \in \mathbb{N}.$$

Positive Selection

Expected Delay & Social Welfare

The seller prefers p_{T-1} to p_T at time $(T-1)\Delta$:

$$F_{T-1} - F_T \ge \frac{F_T + (1-F)}{\overline{\nu} - p_T} p_T.$$

The seller prefers p_{T-2} to p_{T-1} at time $(T-2)\Delta$:

$$F_{T-2} - F_{T-1} \ge (F_{T-1} - F_T) \left\{ \delta + \frac{p_{T-1}}{\overline{\nu} - p_{T-1}} \right\}$$

••• •••

The seller prefers p_{t-1} to p_t at time $(t-1)\Delta$:

$$F_{t-1} - F_t \ge (F_t - F_{t+1}) \Big\{ \delta + \frac{p_t}{\overline{\nu} - p_t} \Big\}.$$

Since p_t decreases in t, when Δ is close to $0, \exists \gamma > 1/\delta$ s.t.

$$\delta + \frac{p_t}{\overline{v} - p_t} > \gamma \text{ for every } t \in \mathbb{N}.$$

Endogenous Investment

Positive Selection

Expected Delay & Social Welfare

Recall that *T* is pinned down by:

$$e^{-r\Delta T} = \delta^T \approx \alpha.$$

The previous slide implies that there exists $\gamma > 1$ s.t.

$$F_{t-1} - F_t \ge \gamma (F_t - F_{t+1}),$$

and

$$\sum_{t=1}^{T} (F_{t-1} - F_t) \approx 1.$$

As $\Delta \to 0$ (or $\delta \to 1$), since $F_{t-1} - F_t$ decays at a rate higher than $1/\delta$,

• For every $\varepsilon > 0$, let $T_{\varepsilon,\Delta} \equiv \lfloor \varepsilon/\Delta \rfloor$, $\exists \overline{\Delta} > 0$ such that $\forall \Delta < \overline{\Delta}$:

$$\sum_{t=1}^{T_{\varepsilon,\Delta}} (F_{t-1} - F_t) > 1 - \varepsilon.$$

Lesson: Players trade before time ε with prob close to $1, \varepsilon_{\overline{a}}, \varepsilon_{\overline$

Endogenous Investment

Positive Selection

Expected Delay & Social Welfare

Recall that *T* is pinned down by:

$$e^{-r\Delta T} = \delta^T \approx \alpha.$$

The previous slide implies that there exists $\gamma > 1$ s.t.

$$F_{t-1} - F_t \ge \gamma (F_t - F_{t+1}),$$

and

$$\sum_{t=1}^{T} (F_{t-1} - F_t) \approx 1.$$

As $\Delta \to 0$ (or $\delta \to 1$), since $F_{t-1} - F_t$ decays at a rate higher than $1/\delta$,

• For every $\varepsilon > 0$, let $T_{\varepsilon,\Delta} \equiv \lfloor \varepsilon/\Delta \rfloor$, $\exists \overline{\Delta} > 0$ such that $\forall \Delta < \overline{\Delta}$:

$$\sum_{t=1}^{T_{\varepsilon,\Delta}} (F_{t-1} - F_t) > 1 - \varepsilon.$$

Lesson: Players trade before time ε with prob close to $1, \varepsilon_{\overline{a}}, \varepsilon_{\overline$

Endogenous Investment

Positive Selection

Expected Delay & Social Welfare

Recall that *T* is pinned down by:

$$e^{-r\Delta T} = \delta^T \approx \alpha.$$

The previous slide implies that there exists $\gamma > 1$ s.t.

$$F_{t-1} - F_t \ge \gamma (F_t - F_{t+1}),$$

and

$$\sum_{t=1}^{T} (F_{t-1} - F_t) \approx 1.$$

As $\Delta \to 0$ (or $\delta \to 1$), since $F_{t-1} - F_t$ decays at a rate higher than $1/\delta$,

• For every $\varepsilon > 0$, let $T_{\varepsilon,\Delta} \equiv \lfloor \varepsilon/\Delta \rfloor$, $\exists \overline{\Delta} > 0$ such that $\forall \Delta < \overline{\Delta}$:

$$\sum_{t=1}^{T_{\varepsilon,\Delta}} (F_{t-1} - F_t) > 1 - \varepsilon.$$

Lesson: Players trade before time ε with prob close to 1. $\varepsilon = 0$

Endogenous Investment

Positive Selection

Coase Conjecture: Negative Selection

Coase conjecture: The remaining types are undesirable (e.g., types with low values).

The optimal price when the seller can commit satisfies:

$$v^* = \frac{1 - F(v^*)}{f(v^*)}.$$

When the distribution is truncated at \hat{v} , s.t. the new distribution *G* satisfies:

$$G(v) = rac{F(v)}{F(\widehat{v})}$$
 and $g(v) = rac{f(v)}{F(\widehat{v})}.$

Since

$$\frac{1-G(v)}{g(v)} = \frac{1-\frac{F(v)}{F(\widehat{v})}}{\frac{f(v)}{F(\widehat{v})}} = \frac{F(\widehat{v})-F(v)}{f(v)} < \frac{1-F(v)}{f(v)},$$

the optimal monopoly price decreases, so the seller faces a lack-of-commitment problem.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Positive Selection

What if the remaining types are high types?

• You charge a price, and those who stay in the game must keep paying the price you charge.

Solving for the ex ante optimal price for the seller:

$$\max_{v^* \in [\underline{v}, \overline{v}]} \left\{ (1 - F(v^*))v^* \right\}$$

Take the FOC,

$$v^* = \frac{1 - F(v^*)}{f(v^*)}.$$

After the types below v^* leave, what will happen?

Positive Selection

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Tirole (2016): Positive Selection

The ex ante optimal price satisfies:

$$v^* = \frac{1 - F(v^*)}{f(v^*)}.$$

After the types below v^* leave, the truncated distribution *H* satisfies:

$$H(v) = \frac{F(v) - F(v^*)}{1 - F(v^*)}$$
 and $h(v) = \frac{f(v)}{1 - F(v^*)}$.

Since

$$\frac{1-H(v)}{h(v)} = \frac{1-\frac{F(v)-F(v^*)}{1-F(v^*)}}{\frac{f(v)}{1-F(v^*)}} = \frac{1-F(v)}{f(v)}.$$

The optimal price remains the same, i.e., the seller faces no lack-of-commitment problem.

Positive Selection

▲□▶▲□▶▲□▶▲□▶ □ のQで

Application: Conversion Game

After the Muslim conquest of Egypt, the Muslim rulers levied a poll tax for non-Muslims.

- You pay a lump sum every year if you are a copt (i.e., not a Muslim).
- You can avoid paying this tax if you convert, which is irreversible.

Presumably, a copt is more likely to convert if they are poorer.

• The remaining copts should be richer (or more religious).

Empirical findings:

- The poll tax does not increase over time.
- Most of the conversion happened in the first few centuries.

Positive Selection

▲□▶▲□▶▲□▶▲□▶ □ のQで

Application: Conversion Game

After the Muslim conquest of Egypt, the Muslim rulers levied a poll tax for non-Muslims.

- You pay a lump sum every year if you are a copt (i.e., not a Muslim).
- You can avoid paying this tax if you convert, which is irreversible.

Presumably, a copt is more likely to convert if they are poorer.

• The remaining copts should be richer (or more religious).

Empirical findings:

- The poll tax does not increase over time.
- Most of the conversion happened in the first few centuries.

Positive Selection

▲□▶▲□▶▲□▶▲□▶ □ のQで

Application: Conversion Game

After the Muslim conquest of Egypt, the Muslim rulers levied a poll tax for non-Muslims.

- You pay a lump sum every year if you are a copt (i.e., not a Muslim).
- You can avoid paying this tax if you convert, which is irreversible.

Presumably, a copt is more likely to convert if they are poorer.

• The remaining copts should be richer (or more religious).

Empirical findings:

- The poll tax does not increase over time.
- Most of the conversion happened in the first few centuries.

Positive Selection

▲□▶▲□▶▲□▶▲□▶ □ のQで

Application: Conversion Game

After the Muslim conquest of Egypt, the Muslim rulers levied a poll tax for non-Muslims.

- You pay a lump sum every year if you are a copt (i.e., not a Muslim).
- You can avoid paying this tax if you convert, which is irreversible.

Presumably, a copt is more likely to convert if they are poorer.

• The remaining copts should be richer (or more religious).

Empirical findings:

- The poll tax does not increase over time.
- Most of the conversion happened in the first few centuries.

Positive Selection

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Next Few Lectures

Abreu and Gul (2000): The paper is NOT easy to read.

- Part 1: War of attrition with one commitment type.
- Part 2: War of attrition with multiple commitment types.
- Part 3: Bargaining game with frequent offers.

Kambe (1999): An alternative approach to reputational bargaining.

Compte and Jehiel (2002): Reputational bargaining with outside options.

Abreu and Pearce (2007): Bargaining with contracts.

Alison will present Che and Sakovics (2004):

• A dynamic theory of hold-up.