
Online Appendix: Reputation Building under Observational

Learning

Harry PEI

July 5, 2022

This document consists of four sections. In Section A, I show the no-herding result Proposition

2. In Section B, I examine the patient player’s undiscounted average payoff. I show Proposition 3

in Section B.1, and establish the tightness of the lower bound in Proposition 3 in Section B.2. I

show that the conclusion of Proposition 3 fails when both K and M are finite in Section B.3, under

a mild regularity condition on players’ stage-game payoffs. I show Theorems 2 and 3 in Section C.

I also establish the existence of equilibrium when the private signal is unboundedly informative.

In Section D, I use a counterexample to show that the conclusion of Proposition 1 fails when the

short-run players can directly observe calendar time.

A Proof of Proposition 2

First, I establish the result when M = +∞. Suppose by way of contradiction that player 2s herd on

b ̸= b∗ at ht, then the strategic type has no intertemporal incentive at ht and at every ht∗ that differs

from ht only in {a0, ..., at−K}. In equilibrium, strategic-type player 1 plays his myopic best reply to

b at those histories. Consider two cases. First, suppose BR1(b) = {a∗}, then in equilibrium, both

types of player 1 play a∗ at ht and at every ht∗ that differs from ht only in {a0, ..., at−K}. As a result,

player 2t has a strict incentive to play b∗ instead of b at ht. This contradicts the hypothesis that

b ̸= b∗. Second, suppose BR1(b) ̸= {a∗}, then in equilibrium, the strategic type has no incentive

to play a∗ at ht and at every ht∗ that differs from ht only in {a0, ..., at−K}. Since π(ht) > 0, player

2t+1’s belief assigns probability 1 to the commitment type if she observes at = a∗, and player 1’s

actions from period t − K + 1 to t − 1 and player 2’s actions from period 0 to t − 1 are given

according to ht. Therefore, player 2t+1 plays b∗ following the aforementioned observation, which

contradicts the hypothesis that they herd on b ̸= b∗.

Next, I establish the result when M is finite and is at least one. Suppose by way of contradiction

1



B PLAYER 1’S UNDISCOUNTED AVERAGE PAYOFF 2

that player 2s herd on b ̸= b∗ at ht. Since K and M are both finite, player 2t’s action must be

measurable with respect to

(amax{0,t−K}, ..., at−1, bmax{0,t−M}, ..., bt−1).

For every t ≥ max{M,K}, (at−K , ..., at−1, bt−M , ..., bt−1), and ht ≡ (as, bs)s≤t−1, there exists hT ≻

ht such that player 2’s action at hT coincides with her action at (at−K , ..., at−1, bt−M , ..., bt−1).

Therefore, player 2s herding on b ̸= b∗ at any ht ≡ (as, bs)s≤t−1 implies that they play b in every

period after max{K,M}. Hence, the strategic-type player 1 has no intertemporal incentive after

period T . Consider two cases. Suppose BR1(b) ̸= {a∗}, then the strategic type has no incentive to

play a∗, so player 2 assigns probability 1 to the commitment type after observing a∗, which means

that player 2 has a strict incentive to play b∗. This contradicts the hypothesis that they herd on

action b ̸= b∗. Suppose BR1(b) ̸= {a∗}, then in equilibrium, the strategic type has no incentive to

play a∗ and player 2 has a strict incentive to play b∗. This contradicts the hypothesis that they

herd on action b ̸= b∗.

B Player 1’s Undiscounted Average Payoff

This Appendix consists of three parts. I establish Proposition 3 in Section B.1. I establish the

tightness of the payoff lower bound in Section B.2. I show that the conclusion of Proposition 3 fails

when both K and M are finite in Section B.3.

B.1 Proof of Proposition 3: Lower Bound on Undiscounted Average Payoff

I show that when M = +∞ and players’ payoffs satisfy Assumptions 1 and 2 in the main text, for

every δ ∈ (0, 1), π0 ∈ (0, 1), and every strategy profile (σ1, σ2) that is part of a PBE, we have:

lim inf
t→∞

1

t
E(a∗,σ2)

[ t−1∑
s=0

u1(as, bs)
]
≥ K

K + 1
u1(a

∗, b∗) +
1

K + 1
u1(a

∗, b′). (B.1)

Consider the strategic type’s payoff when he deviates and imitates the commitment type. For

every β ∈ ∆(B) and a ≺ a∗, Assumption 2 implies that u1(a
∗, β) < u1(a, β). Let h

t ≡ {as, bs}t−1
s=0.

For every t ∈ N and a ∈ A, let Et(a, b
t) be the event that (i) player 1 plays a in period t, (ii) player

1 has played a∗ from period t −K + 1 to t − 1, (iii) player 1 plays according to σ1 starting from

period t+ 1, and (iv) the history of player 2’s actions until period t is bt ≡ (b0, ..., bt−1).
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For every τ ∈ {1, 2, ...,K} and ht ≡ (a∗, ..., a∗, bt), let yτt (·|a, ht) ∈ ∆(B) be the distribution of

bt+τ conditional on event Et(a, b
t), and let yt(·|a, ht) ∈ ∆(BK) be the distribution of (bt+1, ..., bt+K)

conditional on event Et(a, b
t). Let u1 and u1 be player 1’s highest and lowest feasible stage-game

payoffs, respectively, and let || · || be the total variation norm. If

||yt(·|a∗, ht)− yt(·|a, ht)|| ≤
1− δ

2δ(u1 − u1)

(
u1(a, β)− u1(a

∗, β)
)
, (B.2)

then the strategic-type player 1 has a strict incentive to play a instead of a∗ at ht as well as at every

history ht∗ that differs from ht only in terms of {a0, ..., at−K}. The latter is because the distribution

of {bt+1, ..., bt+K} does not depend on {a0, ..., at−K} since they cannot be observed by players 2t+1

to 2t+K . Let

∆ ≡ 1− δ

2Kδ(u1 − u1)
min

β∈∆(B),a≺a∗

{
u1(a, β)− u1(a

∗, β)
}
. (B.3)

Since

||yτt (·|a∗, ht)− yτt (·|a, ht)|| ≤ ||yt(·|a∗, ht)− yt(·|a, ht)|| ≤
K∑
s=1

||yst (·|a∗, ht)− yst (·|a, ht)||,

inequality (B.2) holds when ||yτt (·|a∗, ht)− yτt (·|a, ht)|| ≤ ∆ for every τ ∈ {1, 2, ...,K}. Let H(a∗,σ2)

be the set of public histories that occur with positive probability when player 1 plays a∗ in every

period and player 2 plays σ2. I partition H(a∗,σ2) into two subsets, H(a∗,σ2)
0 and H(a∗,σ2)

1 :

1. If there exists a ≺ a∗ such that ||yτt (·|a∗, ht)−yτt (·|a′, ht)|| ≤ ∆ for every τ , then ht ∈ H(a∗,σ2)
0 .

2. If for every a ≺ a∗, there exists τ such that ||yτt (·|a∗, ht)−yτt (·|a′, ht)|| ≥ ∆, then ht ∈ H(a∗,σ2)
1 .

For every ht ∈ H(a∗,σ2)
0 , the strategic type has a strict incentive not to play a∗ at ht, which means

that player 2 assigns probability 1 to the commitment type after observing a∗ at ht. For every

τ ∈ {1, 2, ...,K}, every on-path history ht+τ ≻ ht such that a∗ has been played from period t to

t+ τ −1, player 2 has a strict incentive to play b∗ at ht+τ . This in addition to the fact that player 2

plays an action at least as large as b′ at every on-path history implies that for every ht ∈ H(a∗,σ2)
0 ,

we have:
1

K + 1
E(a∗,σ2)

[ t+K∑
s=t

u1(as, bs)
∣∣∣ht] ≥ K

K + 1
u1(a

∗, b∗) +
1

K + 1
u1(a

∗, b′). (B.4)

For every ht ∈ H(a∗,σ2)
1 , there exists a constant γ > 0 such that for every α ∈ ∆(A) such that

b ≺ b∗ best replies against α, we have ||yt(·|a∗, ht) − yt(·|α, ht)|| ≥ γ∆. The Pinsker’s inequality
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implies that

d
(
yt(·|α, ht)

∥∥∥yt(·|a∗, ht)) ≥ 2γ2∆2. (B.5)

for every such α ∈ ∆(A). For every equilibrium (σ1, σ2) and every τ ∈ {0, 1, ...,K},

E(a∗,σ2)
[ ∞∑
s=0

d
(
ys(K+1)+τ (·|σ1(hs(K+1)+τ ), hs(K+1)+τ )

∥∥∥ys(K+1)+τ (·|a∗, hs(K+1)+τ )
)]

≤ − log π0.

(B.6)

Inequalities (B.5) and (B.6) together imply that:

E(a∗,σ2)
[ ∞∑
s=0

1
{
hs(K+1)+τ ∈ H(a∗,σ2)

1 and σ2(h
s(K+1)+τ ) ≺ b∗

}]
≤ − log π0

2γ2∆2
(B.7)

I derive a lower bound for lim inft→∞
1
tE

(a∗,σ2)
[∑t−1

s=0 u1(as, bs)
]
using inequalities (B.4) and (B.7).

For every τ ∈ {0, 1, ...,K}, let

Hτ
0 ≡

{
ht
∣∣∣∃hs(K+1)+τ ∈ H(a∗,σ2)

0 such that ht ⪰ hs(K+1)+τ and t ∈ [s(K + 1), s(K + 1) +K]
}
,

let

Hτ
1 ≡

{
hs(K+1)+τ ∈ H(a∗,σ2)

1

∣∣∣s ∈ N
}
,

and let Hτ ≡ Hτ
0 ∪ Hτ

1 . By definition, H(a∗,σ2) =
⋃K

τ=0Hτ . An important observation is that for

every τ, τ ′ ∈ {0, 1, ...,K} with τ ̸= τ ′,

Hτ
1 ∩Hτ ′

1 = {∅} and Hτ
0 ∩Hτ ′

0 = {∅}. (B.8)

The former is straightforward. For the latter, suppose by way of contradiction that ht ∈ Hτ
0 ∩Hτ ′

0

with τ < τ ′, there exist hs and hs+τ ′−τ such that ht ≿ hs+τ ′−τ ≻ hs, hs ∈ Hτ
0 , t− s ≤ K, and s− τ

is divisible by K +1. On one hand hs ∈ Hτ
0 and τ ′ − τ ≤ K implies that σ1(h

s+τ ′−τ ) = a∗. On the

other hand hs+1 ∈ Hτ ′
0 implies that σ1(h

s+τ ′−τ ) ̸= a∗. This leads to a contradiction.

For every τ ∈ {0, 1, ...,K}, inequality (B.4) implies that player 1’s expected average payoff at

histories in Hτ
0 is at least the right-hand-side of (B.1). Since Hτ

0 ∩ Hτ ′
0 = {∅} for every τ ̸= τ ′, it

implies that player 1’s expected average payoff at histories in
⋃K

τ=0Hτ
0 is at least the right-hand-

side of (B.1). For every τ ∈ {0, 1, ...,K}, (B.7) implies that player 1’s expected average payoff

at histories belonging to set Hτ
1

∖⋃K
s=0Hs

0 is at least u1(a
∗, b∗). Since Hτ

1 ∩ Hτ ′
1 = {∅} for every



B PLAYER 1’S UNDISCOUNTED AVERAGE PAYOFF 5

τ ̸= τ ′, it implies that player 1’s expected average payoff at histories in
⋃K

s=0Hs
1

∖⋃K
s=0Hs

0 is at

least u1(a
∗, b∗). The two parts imply that

lim inf
t→∞

1

t
E(a∗,σ2)

[ t−1∑
s=0

u1(as, bs)
]
≥ K

K + 1
u1(a

∗, b∗) +
1

K + 1
u1(a

∗, b′).

B.2 Tightness of the Lower Bound in Proposition 3

When payoffs are monotone-supermodular, (a′, b′) is the unique stage-game Nash equilibrium. Let

π0 be the largest real number in (0, 1) such that b′ best replies against the mixed action π0 ◦ a∗ +

(1− π0) ◦ a′. Consider the following construction when π0 ∈ (0, π0). At every on-path history (the

set of on-path histories can be derived recursively),

� if t is divisible by K + 1, then player 1 plays a′ and player 2 plays b′ in period t;

� if t is not divisible by K + 1, then player 1 plays a∗ and player 2 plays b∗ in period t.

I partition off-path histories into three subsets. For every period t public history such that:

� (i) there exists no r < t, such that br ̸= b∗ and r is not divisible by K +1; (ii) there exists no

s < t such that bs ̸= b′ and s is divisible by K + 1; (iii) player 2 observes player 1 playing an

off-path action in period t − 1, then players play (a∗, b∗) if t is divisible by K + 1, and play

(a′, b′) if t is not divisible by K + 1.

� (i) there exists no r < t, such that br ̸= b∗ and r is not divisible by K+1, but (ii) there exists

s < t such that bs ̸= b′ and s is divisible by K + 1. If t − 1 is divisible by K + 1, bt−1 = b∗

while at−1 ̸= a∗, then play (a′, b′) in period t. If t − 1 is divisible by K + 1, bt−1 = b∗ while

at−1 = a∗, then play (a∗, b∗) in period t if and only if ξt > 1/2 and play (a′, b′) in period t

otherwise. If t− 1 is not divisible by K+1, or bt−1 ̸= b∗, then play (a∗, b∗) if t is not divisible

by K + 1 and play (a′, b′) if t is divisible by K + 1.

� there exists r < t, such that br ̸= b∗ and r is not divisible by K + 1, then play (a′, b′) in all

subsequent periods.

Player 1’s undiscounted time-average payoff from playing a∗ in every period equals the right-hand-

side of (B.1). I verify players’ incentive constraints. Since b∗ best replies to a∗ and b′ best replies

to a′, player 2’s incentive constraints are satisfied. I verify player 1’s incentives. At every on-path

ht,
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� If t + 1 not divisible by K + 1 and t is not divisible by K + 1, then the strategic type’s

continuation value from playing a∗ in period t is at least

V ≡ u1(a
′, b′) + δu1(a

∗, b∗) + δ2u1(a
∗, b∗) + ...+ δKu1(a

∗, b∗)

1 + δ + ...+ δK
, (B.9)

while his continuation value from playing any other action is u1(a
′, b′). This verifies his

incentive to play a∗ when δ is above some cutoff.

� If t+1 not divisible by K+1 and t is divisible by K+1, then the strategic type’s continuation

values from playing a∗ and a′ are the same, equal V , while his continuation value from playing

other actions is u1(a
′, b′). He has a strict incentive to play a′ since a′ best replies to b′.

� If t+ 1 is divisible by K + 1, then the strategic type’s continuation value from playing a∗ in

period t is at least V . If he deviates and plays at, then consider his incentive in period t+ 1

at off-path history (ht, at, bt = b∗).

Since player 2 plays b∗ in period t+ 1 after observing player 1’s deviation in period t, player

1’s continuation value from playing a∗ in period t + 1 is at least 1
2V + 1

2u1(a
′, b′). This is

because player 2 will play b∗ with probability 1/2 in period t + 2, after which player 1 will

be forgiven for his deviation. Player 1’s continuation value from playing actions other than

a∗ in period t+ 1 is u1(a
′, b′). Therefore, he has a strict incentive to play a∗ in period t+ 1

following his deviation in period t, and his continuation value in period t when he deviates is

strictly lower than V .

B.3 Asymptotic Payoff under Finite K and M

I examine player 1’s undiscounted average payoff when he imitates the commitment type given that

every player 2 can only observe player 1’s actions in the last K periods and player 2’s actions in

the last M periods, where both K and M are finite. In contrast to the conclusion of Proposition

3, I show that under a mild regularity condition on players’ stage-game payoffs (that is satisfied

by the product choice game and many other examples), there exist equilibria in which player

1’s undiscounted average payoff from imitating the commitment type equals his minmax payoff

u1(a
′, b′).

First, I introduce the regularity condition. Since players’ payoffs are monotone-supermodular,

u1(a
∗, b∗) > u1(a

′, b′). Without loss of generality, I normalize player 1’s payoff so that u1(a
′, b′) = 0
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and u1(a
∗, b∗) = 1. Let q be the largest q ∈ [0, 1] such that b′ is not player 2’s strict best reply to

qa∗ + (1 − q)a′. Let q be the smallest q ∈ [0, 1] such that b∗ is not player 2’s strict best reply to

qa∗ + (1 − q)a′. Since b′ is a strict best reply to a′ and b∗ is a strict best reply to a∗, there exist

b∗∗ ̸= b′ and b′′ ̸= b∗ such that {b∗∗, b′} ⊂ BR2(qa
∗ + (1− q)a′) and {b∗, b′′} ⊂ BR2(qa

∗ + (1− q)a′).

Assumption 2 in the main text implies that either b∗ = b∗∗ and b′ = b′′, or b∗ ≻ b′′ ≻ b∗∗ ≻ b′, or

b∗ ≻ b′′ = b∗∗ ≻ b′.

Definition. Players’ stage-game payoffs are irregular if b′′ = b∗∗ and u1(a
∗, b∗∗) < −1. Players’

stage-game payoffs are regular if they are not irregular.

One can verify that players’ payoffs are regular in the product choice game since b∗ = b∗∗ ≻

b′′ = b′. Players’ payoffs are also regular in general monotone-supermodular games where player 1’s

cost of playing a∗ is not too large when player 2 plays actions in between b′ and b∗. An example of

a game where players’ payoffs are irregular is given by:

– b∗ b′′ b′

a∗ 1, 1 −2, 0 −3,−2

a′ 2,−2 1, 0 0, 1

Proposition. Suppose players’ payoffs are monotone-supermodular and regular. For every

ε > 0, there exists δ ∈ (0, 1) such that when δ > δ, there exist equilibria in which

lim sup
t→∞

1

t
E(a∗,σ2)

[ t−1∑
s=0

u1(as, bs)
]
≤ ε. (B.10)

My proof of this proposition considers three cases separately.

Case 1: u1(a
∗,b∗∗) > 0 Consider the following strategy profile in which player 2t’s action de-

pends only on (at−1, bt−1), and the rational type player 1 mixes between a∗ and a′ such that player

2t is indifferent between b∗∗ and b′. Later on, I will verify that such mixing probabilities exist.

1. When (at−1, bt−1) /∈ {(a∗, b′), (a∗, b∗∗), (a′, b∗∗)}, player 2t plays b∗∗ with probability r(a′, b′).

2. When (at−1, bt−1) = (a∗, b′), player 2t plays b
∗∗ with probability r(a∗, b′).

3. When (at−1, bt−1) = (a′, b∗∗), player 2t plays b
∗∗ with probability r(a′, b∗∗).

4. When (at−1, bt−1) = (a∗, b∗∗), player 2t plays b
∗∗ with probability r(a∗, b∗∗).
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Let

X ≡ max
{
− 1− δ

δ
u1(a

∗, b′), (1− δ)u1(a
′, b∗∗)

}
. (B.11)

Player 1’s continuation values are V (a′, b′) = 0, V (a∗, b′) = −1−δ
δ u1(a

∗, b′), and

V (a, b∗∗) =
X − (1− δ)u1(a, b

∗∗)

δ
for every a ∈ {a′, a∗}. (B.12)

Let r(a′, b′) = 0. For every (a, b) ∈ {(a∗, b′), (a∗, b∗∗), (a′, b∗∗)}, let

r(a, b) =
V (a, b)

X
. (B.13)

I verify that V (a, b) ≤ X so that r(a, b) is a well-defined probability. First, V (a∗, b′) ≤ X by

definition. Second, I show that V (a′, b∗∗) < V (a∗, b∗∗) ≤ X. The first inequality is because

u1(a
′, b∗∗) > u1(a

∗, b∗∗) and (B.12). The second inequality is equivalent to

X − (1− δ)u1(H,T )

δ
≤ X ⇔ X < u1(a

∗, b∗∗).

The last inequality is satisfied when δ is close to 1 since X converges to 0 and u1(a
∗, b∗∗) > 0.

According to the construction of these continuation values, we have

(1− δ)u1(a
∗, b∗∗) + δV (a∗, b∗∗) = (1− δ)u1(a

′, b∗∗) + δV (a′, b∗∗),

and

(1− δ)u1(a
∗, b

′
) + δV (a∗, b

′
) = (1− δ)u1(a

′, b
′
) + δV (a′, b

′
),

which means that player 1 is indifferent regardless of player 2’s action, and therefore, he is indifferent

between a∗ and a′ at every (at−1, bt−1). Since a′ is the lowest action and player 1’s continuation

value at (a, b) is the same as his lowest continuation value V (a′, b′) for every b and a /∈ {a∗, a′},

player 1 strictly prefers a′ to actions other than a′ and a∗ at every history.

Then I verify player 1’s mixed strategies is well-defined by showing that πt ≤ q∗/2 at every

history. Let

L ≡ min
{ r(a∗, b′)

r(a∗, b∗∗)
,
r(a∗, b∗∗)

r(a∗, b′)

}
. (B.14)
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According to the expressions for r(a∗, b∗∗) and r(a∗, b′), we have

r(a∗, b′)

r(a∗, b∗∗)
=

−u1(a
∗, b′)

max
{
− u1(a

∗, b′)

δ
, u1(a

′, b∗∗)
}
− u1(a

∗, b∗∗)

.

Both the denominator and the numerator of the above expression are bounded away from 0 and

are bounded from above for δ close to 1, which implies that L is bounded away from 0. Let π0 be

defined via the following equation:

π0

1− π0
=

q∗/2

1− q∗/2

(q∗
2

)K+M+1
LM . (B.15)

I show by induction that πt ≤ q∗/2 for every t ∈ N if π0 < π0. Without loss of generality, we only

need to consider histories where (at−K , ..., at−1) = (a∗, ..., a∗) and (bt−M , ..., bt−1) = (b∗∗, ..., b∗∗).

First, condition (B.15) implies that π0 ≤ q∗/2. Second, suppose πs ≤ q∗/2 for every s ≤ t− 1, then

the rational type plays a∗ with probability at least q∗/2 at every history from period 0 to period

t−1. Let P c be the probability measure over histories induced by the commitment type and let P r

be the probability measure over histories induced by the strategic type. According to Bayes rule,

we have

πt
1− πt

=
π0

1− π0
ΠK

i=1

P c(at−i = a∗|at−i+1, ..., at−1)

P r(at−i = a∗|at−i+1, ..., at−1)
ΠM

i=1

P c(bt−i = b∗∗|at−i+1, ..., at−1, bt−i+1, ..., bt−1)

P r(bt−i = b∗∗|at−i+1, ..., at−1, bt−i+1, ..., bt−1)
.

According to the induction hypothesis, we have

P c(at−i = a∗|at−i+1, ..., at−1)

P r(at−i = a∗|at−i+1, ..., at−1)
≤ (q∗/2)−1. (B.16)

Since the rational type player 1 plays a∗ with probability at least q∗/2 in every period before t and

conditional on playing a∗, the probability of b∗∗ is at least min{r(a∗, b′), r(a∗, b∗∗)}. Therefore,

P c(bt−i = b∗∗|at−i+1, ..., at−1, bt−i+1, ..., bt−1)

P r(bt−i = b∗∗|at−i+1, ..., at−1, bt−i+1, ..., bt−1)
≤ (q∗/2)−1L−1. (B.17)

Plugging inequalities (B.16) and (B.17) into the expression for πt, we have πt ≤ q∗/2.

In the last step, I compute player 1’s undiscounted time average payoff by playing a∗ in every

period, which induces a 2-state Markov Chain with transition probabilities Pr(b∗∗|b∗∗) = r(a∗, b∗∗)

and Pr(b′|b′) = r(a∗, b′). The stationary distribution attaches probability r(a∗,b′)
1−r(a∗,b∗∗)+r(a∗,b′) to state
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b∗∗. Player 1’s undiscounted average payoff from playing a∗ in every period is

r(a∗, b′)

1− r(a∗, b∗∗) + r(a∗, b′)
u1(a

∗, b∗∗) +
1− r(a∗, b∗∗)

1− r(a∗, b∗∗) + r(a∗, b′)
u1(a

∗, b′). (B.18)

Plugging in the expressions for r(a∗, b′) and r(a∗, b∗∗) and using the observation that X → 0 as

δ → 1, we obtain that the above equation is close to 0 as δ → 1.

Case 2: u1(a
∗,b∗∗) ≤ 0 and b∗ ≻ b′′ ≻ b∗∗ ≻ b′ Consider the following strategy profile:

1. When (at−1, bt−1) /∈ {(a∗, b′), (a∗, b∗∗), (a∗, b′′), (a∗, b∗), (a′, b∗), (a′, b∗∗)}, player 2t plays b′ and

the rational type player 1 mixes between a∗ and a′ with probabilities such that the uncondi-

tional probability of a∗ is q.

2. When (at−1, bt−1) = (a∗, b′), player 2t plays b∗∗ with probability r(a∗, b′) and plays b′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with proba-

bilities such that the unconditional probability of a∗ is q.

3. When (at−1, bt−1) = (a′, b∗∗), player 2t plays b
∗∗ with probability r(a′, b∗∗) and plays b′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with proba-

bilities such that the unconditional probability of a∗ is q.

4. When (at−1, bt−1) = (a∗, b∗∗), player 2t plays b∗ with probability r(a∗, b∗∗) and plays b′′

with complementary probability. The rational type player 1 mixes between a∗ and a′ with

probabilities such that the unconditional probability of a∗ is q.

5. When (at−1, bt−1) = (a∗, b′′), player 2t plays b∗∗ with probability r(a∗, b′′) and plays b′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with proba-

bilities such that the unconditional probability of a∗ is q.

6. When (at−1, bt−1) = (a′, b∗), player 2t plays b∗ with probability r(a′, b∗) and plays b′′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with proba-

bilities such that the unconditional probability of a∗ is q.

7. When (at−1, bt−1) = (a∗, b∗), player 2t plays b∗ with probability r(a∗, b∗) and plays b′′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with proba-

bilities such that the unconditional probability of a∗ is q.
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The rational type player 1’s continuation value satisfies V (a′, b′) = 0, V (a′, b′′) = 0,

0 = (1− δ)u1(a
∗, b′) + δV (a∗, b′) = (1− δ)u1(a

′, b′) + δV (a′, b′), (B.19)

X(b∗∗) ≡ (1− δ)u1(a
∗, b∗∗) + δV (a∗, b∗∗) = (1− δ)u1(a

′, b∗∗) + δV (a′, b∗∗), (B.20)

Y (b′′) ≡ (1− δ)u1(a
∗, b′′) + δV (a∗, b′′) = (1− δ)u1(a

′, b
′′
) + δV (a′, b′′), (B.21)

and

Y (b∗) ≡ (1− δ)u1(a
∗, b∗) + δV (a∗, b∗) = (1− δ)u1(a

′, b∗) + δV (a′, b∗), (B.22)

where Y (b′′) ≡ (1− δ)u1(a
′, b′′),

X(b∗∗) ≡ max
{
(1− δ)u1(a

′, b′′), (1− δ)u1(a
′, b∗∗),−1− δ

δ
u1(a

∗, b′)
}
,

and

Y (b∗) ≡ 2max
{X(b∗∗)− (1− δ)u1(a

∗, b∗∗)

δ
, (1−δ)(δu1(a

′, b′′)+u1(a
∗, b∗)), (1−δ)u1(a

′, b∗)+δX(b∗)
}
.

In order to deliver these continuation values, we need

Y (b′′) ≤ V (a∗, b∗∗) =
X(b∗∗)− (1− δ)u1(a

∗, b∗∗)

δ
≤ Y (b∗), (B.23)

0 ≤ V (a∗, b′′) =
Y (b′′)− (1− δ)u1(a

∗, b′′)

δ
≤ X(b∗∗), (B.24)

Y (b′′) ≤ V (a∗, b∗) =
Y (b∗)− (1− δ)u1(a

∗, b∗)

δ
≤ Y (b∗), (B.25)

Y (b′′) ≤ V (a′, b∗) =
Y (b∗)− (1− δ)u1(a

′, b∗)

δ
≤ Y (b∗), (B.26)

and

0 ≤ V (a′, b∗∗) =
X(b∗∗)− (1− δ)u1(a

′, b∗∗)

δ
≤ X(b∗∗). (B.27)

All of these conditions are satisfied when δ is close to 1 given the values ofX(b∗∗), Y (b′′), and Y (b∗∗).

As a result, there exist r(a∗, b′), r(a∗, b∗∗), r(a∗, b′′), r(a∗, b∗), r(a′, b∗), and r(a′, b∗∗) that deliver

player 1 continuation values V (a∗, b′), V (a∗, b∗∗), V (a∗, b′′), V (a∗, b∗), V (a′, b∗), and V (a′, b∗∗).

Furthermore, the definition of Y (b∗) implies that r(a∗, b∗), r(a∗, b∗∗), r(a′, b∗) are less than 1/2.
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Let

L ≡ min
{min{r(a∗, b∗), r(a∗, b∗∗), r(a′, b∗)}
max{r(a∗, b∗), r(a∗, b∗∗), r(a′, b∗)}

,
min{r(a∗, b′′), r(a′, b∗), r(a′, b∗∗)}
max{r(a∗, b′′), r(a′, b∗), r(a′, b∗∗)}

}
.

By definition, L is bounded away from 0. Let π0 ∈ (0, 1) be defined via the following equation:

π0

1− π0
=

q/2

1− q/2

(q
2

)K+M+1
LM . (B.28)

The same argument as before implies that player 2’s posterior belief attaches probability less than

q/2 to the commitment type if her prior belief satisfies π0 ≤ π0.

When player 1 plays a∗ in every period, he induces a Markov Chain with four states b∗, b∗∗, b′′,

and b′, which is communicating. Since his discounted average payoff is 0, his undiscounted average

payoff is close to 0 when δ is close to 1.

Case 3: u1(a
∗,b∗∗) ≤ 0, b∗ ≻ b′′ = b∗∗ ≻ b′, and u1(a

∗,b∗∗) ∈ (−1,0] Consider the following

strategy profile:

1. When (at−1, bt−1) /∈ {(a∗, b′), (a∗, b∗∗), (a∗, b∗), (a′, b∗), (a′, b∗∗)}, player 2t plays b′ and the

rational type player 1 mixes between a∗ and a′ with probabilities such that the unconditional

probability of a∗ is q.

2. When (at−1, bt−1) = (a∗, b′), player 2t plays b∗∗ with probability r(a∗, b′) and plays b′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with proba-

bilities such that the unconditional probability of a∗ is q.

3. When (at−1, bt−1) = (a∗, b∗∗), player 2t plays b∗∗ with probability r(a∗, b∗∗) and plays b′

with complementary probability. The rational type player 1 mixes between a∗ and a′ with

probabilities such that the unconditional probability of a∗ is q.

4. When (at−1, bt−1) = (a′, b∗∗), player 2t plays b∗ with probability r(a′, b∗∗) and plays b∗∗

with complementary probability. The rational type player 1 mixes between a∗ and a′ with

probabilities such that the unconditional probability of a∗ is q.

5. When (at−1, bt−1) = (a′, b∗), player 2t plays b∗ with probability r(a′, b∗) and plays b∗∗ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with proba-

bilities such that the unconditional probability of a∗ is q.
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6. When (at−1, bt−1) = (a∗, b∗), player 2t plays b∗ with probability r(a∗, b∗) and plays b∗∗ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with proba-

bilities such that the unconditional probability of a∗ is q.

Let

X ≡ max
{
(1− δ)u1(a

′, b∗∗),−1− δ

δ
u1(a

∗, b′)
}
. (B.29)

Let Y ∈ R be a real number satisfying

X − (1− δ)u1(a
∗, b∗∗)

δ
< Y < (1− δ)u1(a

∗, b∗) + δX. (B.30)

Such Y exists if and only if (1 + δ)X < u1(a
∗, b∗∗) + δu1(a

∗, b∗). When δ is close enough to 1, this

is satisfied when u1(a
∗, b∗) + u1(a

∗, b∗∗) > 0, i.e., when payoffs are regular.

Player 1’s continuation values are V (a′, b′) = 0, V (a∗, b′) = −1−δ
δ u1(a

∗, b′), V (a∗, b∗∗) and

V (a′, b∗∗) are pinned down by

X = (1− δ)u1(a
′, b∗∗) + δV (a′, b∗∗) = (1− δ)u1(a

∗, b∗∗) + δV (a∗, b∗∗), (B.31)

and V (a′, b∗) and V (a∗, b∗) are pinned down by

Y = (1− δ)u1(a
′, b∗) + δV (a′, b∗) = (1− δ)u1(a

∗, b∗) + δV (a∗, b∗). (B.32)

According to the construction of X and Y , we know that V (a∗, b′) ∈ (0, X), V (a′, b∗∗) ∈ (0, X),

V (a∗, b∗∗) ∈ (X,Y ), V (a′, b∗) ∈ (0, X) and V (a∗, b∗) ∈ (0, X). The strategy of playing a∗ in every

period induces a Markov Chain with three states b′, b∗, and b∗∗, that is communicating. Since

player 1’s discounted average payoff from playing a∗ in every period is 0, his undiscounted average

payoff is 0 when δ is close to 1.

C Proofs of Theorem 2 and Theorem 3

I establish Theorem 2 in Section C.1. In Section C.2, I establish the existence of equilibrium when

the private signal is unboundedly informative, M = +∞, and δ being close enough to 1. I establish

Theorem 3 in Section C.3.
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C.1 Proof of Theorem 2

I start from Lemma C.1 which shows that in every equilibrium, if player 1 plays a∗ in every period,

then there exists η > 0 that depends only on the distribution over private signals and the prior

probability of commitment type π0, such that the probability with which player 2 plays b∗ with

probability at least η in every period is close to 1.

Lemma C.1. Suppose the private signal is unboundedly informative about a∗. For every π0 > 0

and ε > 0, there exists η > 0, such that in every equilibrium (σ1, σ2),

Pr
{
Pr(bt = b∗) ≥ η for every t ∈ N

∣∣∣(a∗, σ2)} ≥ 1− ε. (C.1)

Proof. Let p∗ ∈ (0, 1) be such that player 2 has a strict incentive to play b∗ when she believes

that player 1 plays a∗ with probability more than p∗. For every π > 0, there exists M(π) > 0

such that when the prior belief assigns probability more than π to a∗ and the signal realization s

is such that f(s|a∗) > M(π)f(s|a) for every a ̸= a∗, the posterior belief after observing s assigns

probability more than p∗ to a∗. Let l0 ≡ 1−π0
π0

, l∗ ≡ l0/ε, π
∗ ≡ 1

l∗+1 , let S(π∗) ⊂ S be the set of

signal realizations such that f(s|a∗) > M(π∗)f(s|a) for every a ̸= a∗, and let η ≡
∑

s∈S(π∗) f(s|a∗).

Since the private signal is unboundedly informative, S(π∗) is non-empty and f(s|a∗) > 0 for every

s ∈ S(π∗). Therefore, η > 0.

Let πt be the probability of commitment type after player 2t observes {b0, ..., bt−1}, but not st

and {amax{0,t−K}, ..., at−1}. Let π̃t be the probability of commitment type after player 2t observes

{b0, ..., bt−1} and {amax{0,t−K}, ..., at−1}, but not st. By definition, if {amax{0,t−K}, ..., at−1} =

{a∗, ..., a∗}, then π̃t ≥ πt. Under the probability measure induced by (a∗, σ2), {1−πt
πt

}t∈N is a non-

negative supermartingale. The Doob’s Upcrossing Inequality implies that when the prior belief is

π0, the probability of the event {πt ≥ π∗ for all t ∈ N} is at least 1− ε. Since player 2t has a strict

incentive to play b∗ after she observes st ∈ S(π̃t), and moreover π̃t ≥ πt, we have S(π∗) ⊂ S(π̃t)

when πt ≥ π∗. The probability of event {Pr(bt = b∗) ≥ η for every t ∈ N} is at least 1− ε.

Next, I show that in every period where the probability of commitment type is more than π∗

but player 2 plays b∗ with ex ante probability less than 1 − ν, one can bound the informativeness

of bt about player 1’s type from below by a strictly positive function of ν.

Lemma C.2. Suppose the private signal is unboundedly informative about a∗, and satisfies

MLRP. For every π∗ ∈ (0, 1), there exists c > 0 such that for every ν ∈ (0, 1), α ∈ ∆(A)
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with α(a∗) > π∗, and β : S → ∆(B) that best replies to α. If γ(a∗, β)[b∗] < 1 − ν, then

d
(
γ(α, β)

∥∥γ(a∗, β)) > 2cν2.

Proof. Since u2(a, b) has strictly increasing differences and the distribution over private signals

satisfies MLRP, Topkis Theorem implies that every β that best replies to some αmust be monotone,

i.e., for every s ≻ s′ and b ∈ B, if β(s) assigns a positive probability to b, then β(s′) assigns zero

probability to every b′ smaller than b. Therefore, it is without loss of generality to focus on player

2’s pure strategies taking the form of β : S → B.

When πt > π∗, player 2t has a strict incentive to play b∗ after observing s ∈ S(π∗), where S(π∗) is

the set of signal realizations such that f(s|a∗) > f(s|a)M(π∗) for every a ̸= a∗. At every history ht,

there exists an interval [s, s] ⊂ S such that β(s) = b∗ if and only if s ∈ [s, s], and moreover, β(s) ≻ b∗

for every s ≻ s, and β(s) ≺ b∗ for every s ≺ s. By definition, S(π∗) ⊂ [s, s]. Let S∗ ≡ [s∗, s∗] be

a non-empty interval that is a subset of S(π∗). Since the signal distribution satisfies MLRP, we

know that f(s|a∗) > f(s|a)M(π∗) for every s ⪯ s∗ and a ≻ a∗, and f(s|a∗) > f(s|a)M(π∗) for

every s ⪰ s∗ and a ≺ a∗.

Let A be the set of actions that are strictly higher than a∗ and let A be the set of actions that

are strictly lower than a∗. For every α ∈ ∆(A), let α′ ∈ ∆(A) be the distribution over A conditional

on a ̸= a∗. If supp(α) ∩ A ̸= {∅}, then let α ∈ ∆(A) be the distribution over A conditional on

a ∈ supp(α) ∩ A. If supp(α) ∩ A ̸= {∅}, then let α ∈ ∆(A) be the distribution over A conditional

on a ∈ supp(α) ∩A. By definition, there exists λ ∈ [0, 1] such that α′ = λα+ (1− λ)α.

Suppose γ(a∗, β)[b∗] < 1 and ||γ(α′, β)− γ(a∗, β)|| = D, then

∑
s≻s

f(s|a∗) ≥ −D + λ
∑
s≻s

f(s|α),
∑
s≺s

f(s|a∗) ≥ −D + (1− λ)
∑
s≺s

f(s|α), (C.2)

and

−D +
∑

s∈[s,s]\S∗

f(s|a∗) +
∑
s∈S∗

f(s|a∗)

≤ λ
∑
s∈S∗

f(s|α) + (1− λ)
∑
s∈S∗

f(s|α) + λ
∑

s∈[s,s]\S∗

f(s|α) + (1− λ)
∑

s∈[s,s]\S∗

f(s|α).

Let η ≡
∑

s∈S∗ f(s|a∗). Since f(s|a∗) > f(s|a)M(π∗) for every s ∈ S∗ and a ̸= a∗,

−D+ η(1− 1

M(π∗)
) +

∑
s∈[s,s∗)

f(s|a∗) +
∑

s∈(s∗,s]

f(s|a∗) ≤ λ
∑

s∈[s,s]\S∗

f(s|α) + (1− λ)
∑

s∈[s,s]\S∗

f(s|α).

(C.3)
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Since the distribution over private signals satisfies MLRP,

∑
s≻s f(s|a∗)∑
s≻s f(s|α)

≤
∑

s∈(s∗,s] f(s|a∗)∑
s∈(s∗,s] f(s|α)

and

∑
s≺s f(s|a∗)∑
s≺s f(s|α)

≤
∑

s∈[s∗,s) f(s|a∗)∑
s∈[s∗,s) f(s|α)

.

The above inequalities together with (C.2) imply that

∑
s∈(s∗,s]

f(s|a∗) ≥
∑

s∈(s∗,s] f(s|α)
∑

s≻s f(s|a∗)∑
s≻s f(s|α)

≥ λ

∑
s≻s f(s|a∗)

D +
∑

s≻s f(s|a∗)
∑

s∈(s∗,s]

f(s|α) (C.4)

and ∑
s∈[s,s∗)

f(s|a∗) ≥ (1− λ)

∑
s≺s f(s|a∗)

D +
∑

s≺s f(s|a∗)
∑

s∈[s,s∗)

f(s|α) (C.5)

Plugging (C.4) and (C.5) back to (C.3), we obtain

η(1− 1

M(π∗)
)− λ

∑
s∈[s,s∗)

f(s|α)− (1− λ)
∑

s∈(s∗,s]

f(s|α)

≤ D
{
1 +

λ

D +
∑

s≻s f(s|a∗)
+

1− λ

D +
∑

s≺s f(s|a∗)

}
. (C.6)

First, I show that the left-hand-side of (C.6) is greater than η/2 when M is large enough. Without

loss of generality, I index the elements of S as {..., s−1, s0, s1, ...} such that si ≺ sj for every i < j.

Consider three cases, depending on the limit of set S∗ as M → +∞.

1. If there exist m,n ∈ N such that limM→+∞ S∗ = [sm, sn], then there exists k ∈ N such that

sk ∈ S∗ for every M ∈ R+. As a result, η is bounded from below by f(sk|a∗) for every M ,

which implies that the left-hand-side of (C.6) is more than η/2 when M is large enough.

2. If the limit of S∗ is unbounded from above, then f(s|a∗) ≥ f(s|a)M for every a ≻ a∗ and

s ∈ S, which leads to a contradiction unless A is empty. Therefore, λ = 0 and (s∗, s] is an

empty set, and the left-hand-side of (C.6) is η(1 − 1
M(π∗)), which is greater than η/2 when

M(π∗) is large.

3. If the limit of S∗ is unbounded from below, then similarly, the left-hand-side of (C.6) is η.

Next, I bound the term 1 + λ
D+

∑
s≻s f(s|a∗)

+ 1−λ
D+

∑
s≺s f(s|a∗)

from above. Since {b∗} = BR2(a
∗), we

know that for every b ≻ b∗, there exists r∗ ∈ R+ such that b ∈ BR2(α) only if α(A)/α(a∗) ≥ r∗,

and for every b ≺ b∗, there exists r∗ ∈ R+ such that b ∈ BR2(α) only if α(A)/α(a∗) ≥ r∗. When
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α(a∗) ≥ π∗, Bayes rule implies that

λ(1− π∗)
∑

s≻s f(s|α)
π∗∑

s≻s f(s|a∗)
≥ r∗ and

(1− λ)(1− π∗)
∑

s≺s f(s|α)
π∗∑

s≺s f(s|a∗)
≥ r∗.

As a result,

1 +
λ

D +
∑

s≻s f(s|a∗)
+

1− λ

D +
∑

s≺s f(s|a∗)
≤ 1 +

π∗

1− π∗ (r
∗ + r∗).

Let R ≡ 1 + π∗

1−π∗ (r∗ + r∗). Inequality (C.6) then implies that ||γ(α′, β) − γ(a∗, β)|| = D ≥ η
2R .

Since γ(a∗, β)[b∗] < 1− ν, then there exists c > 0 such that α(a∗) ≤ 1− cν, and therefore,

||γ(α, β)− γ(a∗, β)|| ≥ cν||γ(α′, β)− γ(a∗, β)|| ≥ cν
η

2R
.

The Pinsker’s inequality leads to a lower bound on the KL-divergence between γ(α, β) and γ(a∗, β).

Let ht ≡ {b0, ..., bt−1, amax{0,t−K}, ..., at−1, ξt} be player 2t’s information before observing st. Let

g(ht) be the probability of bt = b∗ at ht. Let g(ht, ωc) be the probability of bt = b∗ at ht conditional

on player 1 being the commitment type.

Lemma C.2 bounds the speed of learning at ht from below. This implies a lower bound on

the speed of learning when future player 2s observe b∗ in period t, given that she knew that

the probability with which player 2t plays b∗ is no more than g(ht). However, future player 2s’

information does not nest that of player 2t’s, since they do not observe {at−K , ..., at−1}. As a result,

they cannot interpret bt in the same way as player 2t does.

For every s, t ∈ N with s > t, I provide a lower bound on the informativeness of bt about

player 1’s type from the perspective of player 2s, as a function of the informativeness of bt from

the perspective of player 2t. This together with Lemma C.2 establishes a lower bound on the

informativeness of bt from the perspective of future player 2s as a function of the probability that

bt ̸= b∗. Using the entropy approach in Gossner (2011), one can obtain the lower bound on player

1’s equilibrium payoff.

Let π(ht) be the probability with which player 2’s belief assigns to the commitment type at ht.

By definition, π(h0) = π0. For every strategy profile σ, let Pσ be the probability measure over H

induced by σ, let Pσ,ωc be the probability measure induced by σ conditional on player 1 being the
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commitment type, and let Pσ,ωs be the probability measure induced by σ conditional on player 1

being the strategic type. One can the write the posterior likelihood ratio as

π(ht)

1− π(ht)

/ π0
1− π0

=
Pσ,ωc(b0)

Pσ,ωs(b0)
· P

σ,ωc(b1|b0)
Pσ,ωs(b1|b0)

· ... · P
σ,ωc(bt−1|bt−2, ..., b0)

Pσ,ωs(bt−1|bt−2, ..., b0)
· P

σ,ωc(at−K , ..., at−1|bt, bt−1, ..., b0)

Pσ,ωs(at−K , ..., at−1|bt, bt−1, ..., b0)
(C.7)

Furthermore, for every ϵ > 0 and every t, we know that:

Pσ,ωc

(
πσ(b0, b1, ...bt−1) < ϵπ0

)
≤ ϵ

1− π0
1− π0ϵ

, (C.8)

in which πσ(b0, b1, ...bt−1) is player 2’s belief about player 1’s type after observing (b0, ..., bt−1) but

before observing player 1’s actions and st. For every ϵ > 0, let

ρ∗(ϵ) ≡ ϵπ0
1− cϵ

. (C.9)

If πσ(b0, b1, ...bt−1) ≥ ϵπ0 and player 2t believes that bt = b∗ occurs with probability less than

1 − ϵ after observing (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗), then under probability measure Pσ, the

probability of (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗) conditional on (b0, ..., bt−1) is at least ρ
∗(ϵ).

In order to show this, suppose by way of contradiction that the probability that (at−K , ..., at−1) =

(a∗, ..., a∗) is strictly less than ρ∗(ϵ) conditional on (b0, ..., bt−1). According to (C.9), after observ-

ing (at−K , ..., at−1) = (a∗, ..., a∗) in period t and given that πσ(b0, b1, ...bt−1) ≥ ϵπ0, π(h
t) assigns

probability strictly more than 1 − cϵ to the commitment type. As a result, player 2 in period t

believes that a∗ is played with probability at least 1 − cϵ at ht. This contradicts hypothesis that

she plays b∗ with probability less than 1− ϵ.

Next, I study the believed distribution of bt from the perspective of player 2s conditional on

the event that πσ(b0, b1, ...bt−1) ≥ ϵπ0. Let P(σ, t, s) ∈ ∆(∆(AK)) be player 2’s signal structure in

period s(≥ t) about (at−K , ..., at−1) under equilibrium σ. For every small enough η > 0, given that

P(σ, t) assigns probability at least ρ∗(ϵ) to (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗), the probability with

which P(σ, t, s) assigns to event (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗) occurring with probability less

than ηρ∗(ϵ) is bounded from above by:

ηρ∗(ϵ)(1− ρ∗(ϵ))

(1− ηρ∗(ϵ))ρ∗(ϵ)
= η

1− ρ∗(ϵ)

1− ρ∗(ϵ)η
. (C.10)
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Let g(t|hs) be player 2’s belief about the probability with which b∗ is played in period t when she

observes hs. Let g(t, ωc|hs) be her belief about the probability with which b∗ is played in period

t conditional on player 1 being committed. When player 2t believes that (amax{0,t−K}, ..., at−1) =

(a∗, a∗, ..., a∗) occurs with probability more than ηρ∗(ϵ), we have:

g(t|hs) ≤ 1− ϵηρ∗. (C.11)

Applying (C.11), we obtain a lower bound on the KL-divergence between g(t, ωc|hs) and g(t|hs).

This is the lower bound on the speed with which player 2s at hs will learn through bt = b∗ about

player 1’s type, which applies to all events except for one that occurs with probability less than

η 1−ρ∗

1−ρ∗η . Therefore, for every ϵ and π0, there exists δ
∗ ∈ (0, 1) such that when δ > δ∗, strategic-type

player 1’s discounted average payoff by playing a∗ in every period is at least:

(
1− ϵ− ϵ

1− π0
1− π0ϵ

)
u1(a

∗, b∗) +
(
ϵ+ ϵ

1− π0
1− π0ϵ

)
min
b∈B

u1(a
∗, b)− ϵ. (C.12)

Let ϵ → 0 and δ → 1, (C.12) implies that with probability at least 1 − ε, player 1’s discounted

average payoff from playing a∗ in every period is at least (1 − ϵ)u1(a
∗, b∗). Take ϵ → 0, one can

obtain that the patient player’s discounted average payoff is at least u1(a
∗, b∗) in every equilibrium.

C.2 Existence of Equilibrium

I establish the existence of equilibrium when the private signal is unboundedly informative about

a∗, K ≥ 1, and δ is large enough. For every s ∈ S, let a(s) ≡ mina∈A{f(s|a) > 0} and let b(s) ∈ B

be player 2’s strict best reply to a(s). For every a ∈ A, let v(a) ≡
∑

s∈S f(s|a)u1(a, b(s)). Let

S′ ≡
{
s ∈ S

∣∣∣∃a ≺ a∗ such that f(s|a) > 0
}
and S∗ ≡

{
s ∈ S

∣∣∣f(s|a∗) > 0
}
.

When S′∩S∗ ̸= {∅}, we have
∑

s∈S′ f(s|a) > 0 for every a ⪯ a∗, and let p∗ ≡ mina⪯a∗
∑

s∈S′ f(s|a).

I show that the following strategy profile and belief constitute a Perfect Bayesian equilibrium.

� If t = 0, or t ≥ 1, (b0, ..., bt−1) = (b∗, ..., b∗) and at−1 = a∗, then player 1 plays a∗, player 2t

believes that at = a∗ upon receiving any st ∈ S∗ and plays b∗, and believes that at = a(st)

upon receiving any st /∈ S∗ and plays b(st).

� At any other history, player 2t believes that at = a(st) upon receiving any st ∈ S, and plays
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b(st). Player 1 plays argmaxa∈A v(a) in period t if there exists τ < t such that bτ ̸= b∗. At

histories where there exists no τ < t such that bτ ̸= b∗ but at−1 ̸= a∗, player 1 plays a∗ if

(1− δ)v(a∗) + δ
∑
s∈S′

f(s|a∗)max
a∈A

v(a) + δ
∑
s/∈S′

f(s|a∗)u1(a∗, b∗)

≥ max
ã̸=a∗

{(1− δ)v(ã) + δ
∑

s∈(S\S∗)∪S′ f(s|ã)maxa∈A v(a)

1− δ
∑

s∈S∗\S′ f(s|ã)

}
, (C.13)

and plays the action defined by the following expression if inequality (C.13) is violated:

argmax
ã̸=a∗

{(1− δ)v(ã) + δ
∑

s∈(S\S∗)∪S′ f(s|ã)maxa∈A v(a)

1− δ
∑

s∈S∗\S′ f(s|ã)

}
.

Player 2’s strategy is optimal given her belief. Player 2’s belief at on-path history respects Bayes

Rule since every period t on-path history satisfies (b0, ..., bt−1) = (b∗, ..., b∗) and at−1 = a∗, in which

case both types of player 1 play a∗ and player 2t believes that at = a∗ upon observing any st ∈ S∗.

I verify player 1’s incentive constraints by considering two cases separately.

1. Suppose S′ ∩ S∗ = {∅}, i.e., the distribution over private signals is such that f(s|a) = 0 for

every a ≺ a∗ and s ∈ S satisfying f(s|a∗) > 0. In period t, player 1’s stage-game payoff

from playing a∗ is u1(a
∗, b∗). When he plays any a ̸= a∗, player 2t plays a(st) at any history

after observing any st that occurs with positive probability under a, from which player 1’s

stage-game payoff is no more than u1(a,BR2(a)), which is no more than u1(a
∗, b∗).

2. Suppose S′ ∩ S∗ ̸= {∅}. Player 1’s continuation value from playing a∗ is u1(a
∗, b∗) at every

on-path history. Suppose he makes a one-shot deviation and plays a ≻ a∗ at an on-path

history, then his stage-game payoff is no more than max{u1(a, b∗), u1(a,BR2(a))}, which is

no more than u1(a
∗, b∗), and his continuation value is no more than u1(a

∗, b∗), which means

that he cannot strictly profit from such a deviation. Suppose he makes a one-shot deviation

and plays a ≺ a∗ at an on-path history, then his stage-game payoff is no more than u1(a
′, b∗)

and his continuation value is at most

max
{
max
a≻a∗

u1(a, b
∗), (1− δ)u1(a

′, b∗) + δp∗max
a∈A

v(a) + δ(1− p∗)u1(a
∗, b∗)

}
, (C.14)

where the first term is player 1’s maximal continuation value when he plays a ≻ a∗ at histories

where player 2 has not played actions other than b∗ but player 1’s action in the previous period
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is not a∗, and the second term is player 1’s maximal continuation value when he plays a ⪯ a∗

at such histories. The value of maxa≻a∗ u1(a, b
∗) is strictly less than u1(a

∗, b∗) since u1(a, b)

strictly decreases in a, the value of maxa∈A v(a) is strictly less than u1(a
∗, b∗) since a∗ is player

1’s unique Stackelberg action, S∗ ∩ S′ ̸= {∅}, and u1(a, b) strictly increases in b. Therefore,

(C.14) is strictly less than u1(a
∗, b∗) when δ is large enough. It implies that when δ is large

enough, playing a′ is not a profitable one-shot deviation.

When at−1 ̸= a∗ but there is no τ < t such that bτ ̸= b∗, notice that the left-hand-side of (C.13)

is player 1’s continuation value from playing a∗, and the right-hand-side is his continuation

value from playing ã ̸= a∗. This verifies his incentive constraint. When there exists τ < t

such that bτ ̸= b∗, player 2 plays b(s) upon observing s, and it is optimal for player 1 to play

argmaxa∈A v(a).

C.3 Proof of Theorem 3

I establish Theorem 3 by modifying the constructive proof of Theorem 1. Without loss of generality,

I focus on signal distributions such that f(·|a′) ̸= f(·|a∗). This is because when a∗ and a′ generates

the same distribution over private signals, the constructive proof of Theorem 1 still applies. In

order to avoid repetition, I focus on the case in which b∗ = b∗∗ and b′ = b′′. The other two cases can

be shown similarly. When b∗ = b∗∗ and b′ = b′′, there exists q∗ ∈ (0, 1) such that b∗ is a strict best

reply to qa∗+(1−q)a′ if and only if q > q∗, and b′ is a strict best reply to qa∗+(1−q)a′ if and only

if q < q∗, and player 2 is indifferent between b∗ and b′ when player 1’s action is q∗a∗ + (1 − q∗)a′.

Without loss of generality, I adopt the normalization that u1(a
∗, b∗) = 1 and u1(a

′, b′) = 0. Let

S′ ≡
{
s ∈ S

∣∣∣f(s|a′) > 0
}
.

Since a∗ is not strongly separable from a′, f(s|a∗) > 0 only if s ∈ S′. Recall that S is a completely

ordered set. For every β : S → ∆{b∗, b′}, I say that β is monotone if for every s ≻ s′ with s, s′ ∈ S′,

β(s′) assigns positive probability to b∗ implies that β(s) assigns probability 1 to b∗, and β(s) assigns

positive probability to b′ implies that β(s′) assigns probability 1 to b′. For every monotone β, let

f1(β) be the probability of action b∗ when player 1 plays a∗ and player 2 responds according to β,

and let f0(β) be the probability of action b∗ when player 1 plays a′ and player 2 responds according
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to β. Let

F ≡
{
(f0, f1) ∈ [0, 1]2

∣∣∣there exist α ∈ ∆{a∗, a′} and monotone β such that

β best replies to α and f0(β) = f0, f1(β) = f1

}
.

Since a∗ is not strongly separable from a′,

1. There exists ε > 0 that depends only on the signal distribution such that f0(β) ≥ εf1(β) for

every monotone β, and f0(β) ≤ (1− ε)f1(β) for every monotone β satisfying f0(β) < ε.1

2. For every f0 ∈ [0, 1], there exists f1 ∈ [0, 1] such that (f0, f1) ∈ F .

3. There exists a continuous and strictly increasing function g : [0, 1] → [0, 1] with g(0) = 0 and

g(1) = 1 such that (x, g(x)) ∈ F for every x ∈ [0, 1].

4. There exists q > 0 such that when player 1 plays qa∗ + (1 − q)a′, β(s) = b′ for all s ∈ S is

player 2’s best reply.

Let Φ be the set of monotone β, let β be the constant mapping such that β(s) = b∗ for every s ∈ S,

and let β be the constant mapping such that β(s) = b′ for every s ∈ S. Let ht ≡ (b0, ..., bt−1) be

the history of player 2’s actions. Let H be the set of ht, which also contains the null history ∅.

Consider the following strategy profile in which player 1 only plays a∗ and a′ on the equilibrium

path. Players’ on-path behaviors are characterized by α : H × {a∗, a′} → ∆{a∗, a′} and ϕ : H ×

{a∗, a′} → Φ where α is player 2t’s belief about at after observing {at−K , ..., at−1} and {b0, ..., bt−1}

but before observing st, and ϕ is player 2t’s strategy that maps her private signals to a distribution

over {b∗, b′}. Both ϕ and α depend only on the history of player 2’s actions as well as player 1’s action

in the period before. According to the properties of monotone β, one can replace ϕ : H×{a∗, a′} →

Φ with f0 : H×{a∗, a′} → [0, 1] and f1 : H×{a∗, a′} → [0, 1] such that (f0(h
t, at−1), f1(h

t, at−1)) ∈ F

for every ht ∈ H and at−1 ∈ {a∗, a′}. Let V (ht, at−1) be the strategic type player 1’s continuation

value at (ht, at−1) under the above strategy profile. Similar to the proof of Theorem 1, I require

functions α, ϕ, and V to satisfy the following conditions:

1. α(∅) = qa∗ + (1− q)a′, ϕ(∅) = β, and V (∅) = 0.

2. For every ht ∈ H such that bt−1 = b∗ and b′ has not occurred after the first time b∗ occurred,

we have α(ht, a∗) = a∗, ϕ(ht, a∗) = β, and V (ht, a∗) = 1.

1If there exists s′ ∈ S such that f(s′|a′) > 0 and f(s′|a∗) = 0, then f0(β) ≤ (1− ε)f1(β) for every monotone β.
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The values of functions f0, f1, and V at other histories are defined as follows. When t = 1,

V (b′, a′) = 0 and V (b′, a∗) = −1−δ
δ u1(a

∗, b′), which implies that player 1 is indifferent between

a∗ and a′ in period 0. For every t ≥ 2 and on-path ht such that bt−1 = b′, player 1’s incentive

constraint requires him to be indifferent between a∗ and a′, which gives:

V (ht, a) = f0(h
t, a)

(
(1−δ)u1(a

′, b∗)+δ V (ht, b∗, a′)︸ ︷︷ ︸
=1

)
+(1−f0(h

t, a))
(
(1−δ)u1(a

′, b′)+δV (ht, b′, a′)
)

= f1(h
t, a)

(
(1− δ)u1(a

∗, b∗) + δV (ht, b∗, a∗)︸ ︷︷ ︸
=1

)
+ (1− f1(h

t, a))
(
(1− δ)u1(a

∗, b′) + δV (ht, b′, a∗)
)
.

I show that for every V (ht, a) ∈ [0,−1−δ
δ u1(a

∗, b′)], there exist f0, f1, V (ht, b′, a′), V (ht, b′, a∗) and

V (ht, b∗, a′) that satisfy the above incentive constraint, and moreover, (f0, f1) ∈ F , V (ht, b∗, a′) = 1

and

V (ht, b′, a′), V (ht, b′, a∗) ∈
[
0,−1− δ

δ
u1(a

∗, b′)
]
.

Let f∗
1 ∈ [0, 1] be such that

f∗
1 + (1− f∗

1 )(1− δ)u1(a
∗, b′) = −1− δ

δ
u1(a

∗, b′),

and let f∗
0 be such that (f∗

0 , f
∗
1 ) ∈ F . Such f∗

1 exists since u1(a
∗, b′) < u1(a

′, b′) = 0. Consider two

cases. First, consider the case in which

f∗
0 ((1− δ)u1(a

′, b∗) + δ) > −1− δ

δ
u1(a

∗, b′). (C.15)

Then there exists V (ht, b′, a∗) ∈ [0,−1−δ
δ u1(a

∗, b′)] such that when f1(h
t, a) satisfies

f1(h
t, a) + (1− f1(h

t, a))
(
(1− δ)u1(a

∗, b′) + δV (ht, b′, a∗)
)
= −1− δ

δ
u1(a

∗, b′), (C.16)

and f0(h
t, a) satisfies (f0(h

t, a), f1(h
t, a)) ∈ F , I show that when δ is close enough to 1, we have

f0(h
t, a)

(
(1− δ)u1(a

′, b∗) + δ
)
< −1− δ

δ
u1(a

∗, b′).

Let v ≡ −1−δ
δ u1(a

∗, b′) and suppose by way of contradiction that the above inequality is not true
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for any δ close to 1, then

f0(h
t, a)

1− f0(ht, a)
>

v

(1− δ)u1(a′, b∗) + δ − v
.

When V (ht, b′, a∗) = −1−δ
δ u1(a

∗, b′), we have f1(ht,a)
1−f1(ht,a) =

v
1−v . This implies that

f0(h
t, a)

1− f0(ht, a)

/ f1(h
t, a)

1− f1(ht, a)
>

v

(1− δ)u1(a′, b∗) + δ − v

/ v

1− v
, (C.17)

with the right-hand-side converging to 1 as δ goes to 1. Since f0 ≤ (1− ε)f1 for every (f0, f1) ∈ F

such that f0 is small enough, and according to (C.16), f1(h
t, a) converges to 0 as δ → 1, there

exists δ ∈ (0, 1) such that for every δ > δ,

f0(h
t, a)

1− f0(ht, a)

/ f1(h
t, a)

1− f1(ht, a)
< 1− ε

2
. (C.18)

Inequalities (C.17) and (C.18) contradict each other. The intermediate value theorem implies the

existence of f0, f1, V (ht, b′, a′), V (ht, b′, a∗) and V (ht, b∗, a′) that satisfy my requirements.

Second, consider the case in which

f∗
0 ((1− δ)u1(a

′, b∗) + δ) ≤ −1− δ

δ
u1(a

∗, b′).

I show that there exists V (ht, b′, a′) ∈ [0,−1−δ
δ u1(a

∗, b′)] such that when V (ht, b∗, a′) = 1, V (ht, b′, a∗) =

0, f1(h
t, a) given by

f1(h
t, a) + (1− f1(h

t, a))(1− δ)u1(a
∗, b′) = −1− δ

δ
u1(a

∗, b′),

and f0(h
t, a) is such that (f0(h

t, a), f1(h
t, a)) ∈ F , the incentive constraint is satisfied. Suppose by

way of contradiction that the above statement is not true, then when V (ht, b′, a′) = −1−δ
δ u1(a

∗, b′),

we have the following inequality

f0(h
t, a)

(
(1− δ)u1(a

′, b∗) + δ
)
− (1− f0(h

t, a))(1− δ)u1(a
∗, b′) < −1− δ

δ
u1(a

∗, b′). (C.19)

Let v ≡ −1−δ
δ u1(a

∗, b′), we have f1(h
t, a) = v(1+δ)

1+δv and since a∗ is not strongly separable from a′,

we have

f0(h
t, a) ≥ ε

v(1 + δ)

1 + δv
.
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I bound the value of the following expression from below

ε
v(1 + δ)

1 + δv

(
(1− δ)u1(a

′, b∗)︸ ︷︷ ︸
>0

+δ
)
+
(
1− ε

v(1 + δ)

1 + δv

)
δv − v,

which is at least

ε
v(1 + δ)

1 + δv
+
(
1− ε

v(1 + δ)

1 + δv

)
δv − c = v

{ε(1 + δ)

1 + δv
(1− δv)− (1− δ)

}
Since v → 0 as δ → 1 and ε > 0 is independent of δ, the right-hand-side is strictly greater than

0 when δ is close enough to 1. This contradicts the hypothesis that (C.19), and the intermedi-

ate value theorem implies that the incentive constraint can be satisfied by some V (ht, b′, a′) ∈

[0,−1−δ
δ u1(a

∗, b′)], V (ht, b∗, a′) = 1, and V (ht, b′, a∗) = 0. The two cases together provide an algo-

rithm that defines the continuation values such that V = 1 when b∗ was played the period before,

and V ∈ [0,−1−δ
δ u1(a

∗, b′)] when b′ was played the period before.

Next, I specify players’ strategies at off-path histories and verify that player 1 has no incentive

to play any action other than a∗ and a′. For every st /∈ S′, player 2 believes that player 1’s action

is a′ and plays b′. If player 2t observes that at−1 /∈ {a∗, a′} , then player 2t believes that at = a′

and plays b′. I show that under this belief and player 2’s off-path strategies, player 1 does not

have a strict incentive to play actions other than a∗ and a′ at any on-path history. When his

continuation value V (ht, a) is 0, player 2 plays b′ no matter which signal he observes, so player

1’s payoff is strictly greater by playing his lowest action a′ compared to any action a† /∈ {a∗, a′}.

When V (ht, a) = 1, player 1’s continuation value is at most −1−δ
δ u1(a

∗, b′) in period t + 1 if

he plays a† /∈ {a∗, a′} in period t, which is strictly less than his payoff from playing a∗. Since

V (ht, a) ∈ [0,−1−δ
δ u1(a

∗, b′)] ∪ {1} at any on-path history, I only need show that player 1 has no

incentive to play a† when V (ht, a) ∈ (0,−1−δ
δ u1(a

∗, b′)]. For every (f0, f1) ∈ F , there exists a

monotone β such that f0(β) = f0 and f1(β) = f1. Let f †(β) be the probability of b∗ if player 1

plays a† and player 2 plays β when s ∈ S′ and plays a′ if s /∈ S′. Since f satisfies MLRP, we have

f †(β) < f1(β). Player 1’s expected payoff from playing a† is at most

f †(β)
(
(1− δ)u1(a

†, b∗)− (1− δ)u1(a
∗, b′)

)
− (1− f †(β))(1− δ)u1(a

†, b′)︸ ︷︷ ︸
<0

(C.20)

which is a strictly increasing function of f †(β). Since V (ht, b′, a∗) ≤ −1−δ
δ u1(a

∗, b′), we have
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f1(β) ≤ V (ht, a). Therefore, (C.20) is at most

f1(β)(1− δ)(u1(a
†, b∗)− u1(a

∗, b′)).

The above expression is no more than

V (ht, a)(1− δ)(u1(a
†, b∗)− u1(a

∗, b′)).

This upper bound is strictly less than V (ht, a) when δ is close to 1. This implies that player 1 has

no incentive to play any action other than a∗ and a′.

I verify that when the prior probability of commitment type satisfies π0 ≤
( q
2

)K( q

2−q

)
, player 2’s

posterior belief is uniformly bounded below q/2 at every history such that the previous period action

profile is not (a∗, b∗). Recall that M = +∞. When player 1 plays a∗ in every period from 0 to t, the

history of player 2’s actions cannot switch from b∗ to b′. Therefore, at every history in period t ≥ 1

where the previous period action profile is not (a∗, b∗), player 2’s posterior belief assigns positive

probability to the commitment type if and only if ht = {b′, ..., b′} and (at−K , ..., at−1) = (a∗, ..., a∗).

Let πt be the posterior probability of commitment type at such a history. I show that πt ≤ q/2 by

induction on calendar time t. When t = 0, π0 ≤ q/2 since π0 ≤
( q
2

)K( q

2−q

)
. Suppose πs ≤ q/2 for

every s ≤ t − 1. Since the unconditional probability with which player 1 plays a∗ is at least q in

every period and the induction hypothesis requires that πs ≤ q/2 for every s ≤ t−1, the probability

with which the strategic type plays H at each of those histories before period t must be at least q/2.

Let Pωs(·) be the probability measure induced by the equilibrium strategy of the strategic type.

Let Pωc(·) be the probability measure induced by the commitment type. Let Et be the event that

(amax{0,t−K}, ..., at−1) = (a∗, ..., a∗). Let Ft be the event that (b0, ..., bt−1) = (b′, ..., b′). According

to Bayes rule,
πt

1− πt

/ π0
1− π0

=
Pωc(Et ∩ Ft)

Pωs(Et ∩ Ft)
=

Pωc(Et)

Pωs(Et)
· P

ωc(Ft|Et)

Pωs(Ft|Et)
.

Since the strategic type plays a∗ with probability at least q/2 in every period before t and N occurs

with weakly lower probability under the strategy of type ωc compared to that under type ωs, we

have
Pωc(Et)

Pωs(Et)
≤ (q/2)−K and

Pωc(Ft|Et)

Pωs(Ft|Et)
≤ 1.

Since π0 ≤
( q
2

)K( q

2−q

)
, the above two inequalities together imply that πt ≤ q/2.
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D Counterexample: Short-Run Players Observe Calendar Time

I show that Proposition 1 in the main text relies on the assumption that the short-run players

cannot directly observe calendar time. Consider the following parametric configuration of the

product choice game:

- Trust No Trust

High Effort 1, 2 −1, 1

Low Effort 1.5,−1 0, 0

One can verify that players’ stage-game payoff functions satisfy the condition for Proposition 1

since cT = 0.5 which is strictly greater than 0 and is strictly less than cN = 1. I focus on the case

where π0 =
1
2 and (K,M) = (1, 0), which is allowed by Proposition 1.

Unlike Proposition 1, I assume that consumers can directly observe calendar time. Consumers’

strategy is {βt(H), βt(L)}+∞
t=1 ∪ {β0} where βt(a) is consumer t’s probability of playing T when the

seller’s action is a in period t− 1, and β0 is consumer 0’s probability of playing T . Let Vt(a) be the

seller’s continuation value in period t when his period t− 1 action was a.

I construct a class of equilibria in which the strategic-type seller’s discounted average payoff is

approximately 5
6 when δ is close to 1. This implies that his equilibrium payoff is bounded below

his Stackelberg payoff, which equals 1.

1. In period t ≡ 3k for every k ∈ N, the strategic seller plays L and β0 = βt(H) = 1
3δ and βt(L) =

0. Consumers believe that the seller is committed with probability 1/2 upon observing at−1 =

H and is committed with probability 0 upon observing at−1 = L.

2. In period t ≡ 3k + 1 for every k ∈ N, the strategic seller plays H and βt(H) = βt(L) = 1.

Consumers believe that the seller is committed with probability 1 upon observing at−1 = H

and is committed with probability 0 upon observing at−1 = L.

3. In period t ≡ 3k + 2 for every k ∈ N, the strategic seller plays H if at−1 = H and plays L

if at−1 = L. Consumers’ strategy is such that βt(H) = 1 and βt(L) = 0. Consumers believe

that the seller is committed with probability 1/2 upon observing at−1 = H and is committed

with probability 0 upon observing at−1 = L.

When the strategic-type seller follows his equilibrium strategy, his discounted average payoff equals

3
2 · 1

3δ + δ + δ2

1 + δ + δ2
,
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which converges to 5
6 as δ → 1. Verifying the consistency of consumers’ beliefs as well as consumers’

incentive constraints are straightforward. Next, I verify the strategic seller’s incentive constraints.

1. In period t ≡ 3k, the seller has a strict incentive to play L since βt+1(H) = βt+1(L) = 1.

2. In period t ≡ 3k + 1, the seller’s continuation value from playing H is

(1− δ) + (1− δ)δ + (1− δ)δ2
1

2δ
+ δ3Vt+3(L)

while his continuation value from a one-shot deviation (i.e., playing L in the current period

and follow the equilibrium strategy starting from the next period) is

(1− δ)
3

2
+ δ3Vt+3(L).

When δ is close to 1, we have (1− δ) + (1− δ)δ + (1− δ)δ2 1
2δ ≥ (1− δ)32 , which verifies the

seller’s incentive constraint.

3. In period t ≡ 3k + 2. If at−1 = H, then the seller’s continuation value from playing H is

(1− δ) + (1− δ)δ
1

2δ
+ δ2Vt+2(L),

and his continuation value after a one-shot deviation is

(1− δ)
3

2
+ δ2Vt+2(L).

The two payoffs are equal, which implies that the seller has an incentive to play H when

at−1 = H.

If at−1 = L, then the seller’s continuation value from playing L is δ2Vt+2(L), and his contin-

uation value from a one-shot deviation is

−(1− δ) + (1− δ)δ
1

2δ
+ δ2Vt+2(L),

which is strictly less than δ2Vt+2(L). This inequality verifies the seller’s incentive to play L

when at−1 = L.
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