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Abstract

We analyze situations where players build reputations for honesty rather than for playing particular 
actions. A patient player faces a sequence of short-run opponents. Before players act, the patient player 
announces their intended action after observing both a private payoff shock and a signal of what actions 
will be feasible that period. The patient player is either an honest type who keeps their word whenever their 
announced action is feasible, or an opportunistic type who freely chooses announcements and feasible ac-
tions. Short-run players only observe the current-period announcement and whether the patient player has 
kept their word in the past. We provide sufficient conditions under which the patient player can secure their 
optimal commitment payoff by building a reputation for honesty. Our proof introduces a novel technique 
based on concentration inequalities.
© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

Many economic actors have reputations for keeping or breaking their promises. For example, 
firms make non-binding promises to their employees about bonuses and promotions, with the op-
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tion to renege on them. However, failing to honor promises may make employees feel aggrieved 
and undermine workplace morale. Similarly, advertising can set customers’ expectations, and 
if those expectations are not aligned with the actual customer experience, the firm’s brand and 
business will suffer.

This paper examines when and whether a reputation for honesty might facilitate commitment. 
Compared to reputations for taking specific actions, a reputation for honesty allows decisions 
to better adapt to current circumstances, which is valuable when the environment changes over 
time. We focus on reputations for honestly announcing intended actions rather than reputations 
for honestly announcing payoff-relevant states. This is because in some applications, states could 
be difficult to verify ex post, and it seems unrealistic to make commitments based on future 
contingencies that are hard to describe in advance. Making promises about their intended actions 
may be simpler.

However, building a reputation for honesty can be challenging when some actions might turn 
out to be infeasible and the reputation-building player has imperfect information about the actions 
they will be able to take. As a result, players may renege on promises they had intended to keep, 
as happened to Lincoln Electric in 1992. It promised to share its domestic profits with its workers, 
but by the end of the year, its surplus in domestic business was unexpectedly wiped out by losses 
in recently acquired foreign operations, making it hard to pay high bonuses to its workers.

In our model, a patient player (e.g., a firm) faces a sequence of myopic opponents (e.g., con-
sumers). Each period, the patient player observes a private payoff shock (e.g., their production 
cost), as well as some information about which of their actions are currently feasible. Then the 
patient player announces the action they intend to play, after which players act. The myopic play-
ers cannot observe the patient player’s feasible actions or the payoff shocks, but can observe the 
patient player’s announcement in the current period and whether the patient player has kept their 
word in the past.1

The patient player is either an honest type, who strategically chooses their announcements 
but keeps their word whenever their announced action is feasible, or an opportunistic type, who 
strategically chooses both the announcements and the actions. Note that the honest type is not 
a “pure commitment” type, as it is not committed to any particular action-announcement pair. 
Instead, the honest type optimizes its announcements, but unlike the opportunistic type it is con-
strained to implement them whenever that is possible.

Our main result shows that if (1) the distribution over feasible action sets has full support, and 
(2) the patient player knows their feasible action set with high probability when they announce 
their intended action, then each type of the patient player receives at least their optimal com-
mitment payoff in every equilibrium. This does not follow from Fudenberg and Levine (1989), 
since the honest type may not announce the opportunistic type’s optimal commitment action. As 
a result, the opportunistic type cannot guarantee their optimal commitment payoff by playing the 
honest type’s equilibrium strategy.

To explain this result, first consider situations where the patient player knows which of their 
actions are feasible at the announcement stage. In this case, every type can guarantee their op-
timal commitment payoff by announcing their optimal commitment action in every period and 
keeping their word. Intuitively, when a myopic player fails to best respond to any announced 

1 In Section 5, we show that Theorem 1 generalizes to situations where player 2 observes a bounded history of player 
1’s past actions and announcements in addition to whether player 1 has kept their word. We also provide an example 
showing that when player 2 can observe the entire history of player 1’s past actions and announcements, there is an 
equilibrium in which player 1’s payoff is strictly less than his commitment payoff.
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action, their belief puts a significant probability on the event that the patient player is opportunis-
tic and will break their word. Hence, observing the patient player keep their word increases the 
posterior probability of the honest type. Thus, the event that the patient player is opportunistic 
and breaks their word with high probability can happen in at most a bounded number of periods, 
regardless of the equilibrium.

When the patient player makes their announcements without being certain about which ac-
tions will be feasible, their reputation may deteriorate in expectation even if they announce their 
optimal commitment action and keep their promise when their announced action is feasible, 
because the probability they will be forced to renege may differ under the honest type’s announce-
ment strategy and under the optimal commitment announcement. This feature is not present in 
Fudenberg and Levine (1989, 1992) and subsequent work that provides lower bounds for the 
value of a reputation. This is because in those models, when the long-run player plays a fixed 
commitment action, the probability that they are the corresponding commitment type weakly 
increases on average in every period.

Our methodological contribution is to analyze reputation with concentration inequalities. Con-
sider either type of patient player’s payoff from a deviation that (1) announces their optimal 
commitment action in “good” periods where the short-run player best replies to any announce-
ment, and plays the announced action whenever it is feasible, and (2) in the other “bad” periods, 
plays the honest type’s equilibrium strategy. Since the short-run players do not best reply to all 
announced actions in bad periods, and the distribution of feasible action sets has full support, 
the opportunistic type must be breaking their word with significant probability in equilibrium. 
This yields a lower bound on the expected increase in the log likelihood ratio between the hon-
est type and the opportunistic type. When the patient player knows their feasible action set with 
high probability, the honest type keeps their word with high probability in every good period. 
Although the log likelihood ratio may decrease in expectation, the magnitude of this decrease is 
bounded from above.

Based on these observations, we establish an upper bound on the undiscounted frequency 
of bad periods using the Azuma-Hoeffding inequality (Azuma, 1967) and then derive an upper 
bound on the discounted frequency of bad periods using summation by parts. The expected num-
ber of bad periods is unbounded, unlike in Fudenberg and Levine (1992), but the discounted 
frequency of the bad periods goes to zero as the patient player’s information about feasible ac-
tions becomes arbitrarily precise. This yields the lower bound on the patient player’s payoff from 
the deviation we proposed. Since such a deviation is feasible for both types, both the oppor-
tunistic and the honest type can obtain their respective optimal commitment payoffs in every 
equilibrium.

Section 2 sets up the baseline model and presents an example motivating the study of reputa-
tion for honesty and issues related to action feasibility. Sections 3 and 4 state and prove the main 
result. Section 5 presents extensions and discusses our assumptions on the monitoring structure. 
Section 6 explains our contributions to the reputation literature and Section 7 concludes.

2. Baseline model

Time is discrete, indexed by t = 0, 1.... A long-lived player 1 (e.g., a seller) with discount 
factor δ ∈ (0, 1) interacts with an infinite sequence of short-lived player 2s (e.g., consumers), 
with 2t denoting the short-lived player in period t .

Let A be the potentially feasible set of actions for player 1, with A ≡ 2A\{∅} the collection 
of all non-empty subsets of A. Each player 2’s action set is B . In period t , (θt , At) ∈ � × A is 
3
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drawn according to p ∈ �(� ×A), where θt ∈ � affects player 1’s stage-game payoff (e.g., their 
cost of supplying high quality), and At ⊂ A is the set of feasible actions for player 1. We assume 
that A, B , and � are finite sets. We also assume that for every s �= t , θt is independent of θs , At

is independent of As , and θt is independent of As .2

Each period consists of an announcement stage and an action stage. In the announcement 
stage, player 1 privately observes θt and a signal Ãt of their feasible actions, where At ⊆ Ãt ⊆ A

and Ãt is drawn according to G(·|At). Then player 1 announces to player 2t that they intend to 
play action mt ∈ A. In the action stage, player 1 observes At , and then players simultaneously 
choose their actions at ∈ At and bt ∈ B . Intuitively, player 1 learns at the announcement stage 
that some of their actions are infeasible, but at the action stage they may learn that other actions 
are infeasible as well.

Player 1 has persistent private information about their type γ ∈ {γh, γo}, where γh stands 
for an honest type and γo stands for an opportunistic type. The honest type is restricted (i) to 
announce an action that might be feasible, i.e., mt ∈ Ãt , and (ii) to take an action that matches 
their announced action if it is feasible, i.e., at = mt if mt ∈ At . The opportunistic type can 
announce any action, including ones that do not belong to Ãt , and can take any action in At

regardless of their announcement. Our baseline model focuses on the case of two types in order 
to simplify the exposition. We generalize our main result (Theorem 1) to any finite number of 
honest and opportunistic types in Section 5.

Let π0 ∈ (0, 1) be the common prior probability the short-run players assign to the honest 
type. Player 2t observes {y0, ..., yt−1} in addition to mt before choosing bt , where the record
ys ≡ 1{as = ms} tracks whether player 1 has kept their word but does not track their actions 
played or their announcements.

For every t ∈N , player 2t ’s history is ht
2 ≡ {y0, y1, ..., yt−1, mt }. Let Ht

2 ≡ {0, 1}t ×A be the 
set of player 2t ’s histories. Player 2t ’s strategy is σ t

2 : Ht
2 → �(B), with σ2 ≡ (σ t

2)t∈N . Player 
1’s history in the announcement stage of period t is3

h̃t
1 ≡ {γ, θ0, ..., θt , Ã0, ..., Ãt ,A0, ...,At−1,m0, ...,mt−1, a0, ..., at−1, b0, ..., bt−1}.

For every t ∈ N , let H̃t
1 be the set of ̃ht

1. Let H̃1 ≡ ⋃∞
t=0 H̃t

1 be the set of player 1’s histories at 
the announcement stage. Player 1’s history in the action stage of period t is

ht
1 ≡ {γ, θ0, ..., θt , Ã0, ..., Ãt ,A0, ...,At ,m0, ...,mt , a0, ..., at−1, b0, ..., bt−1}.

For every t ∈ N , let Ht
1 be the set of ht

1. Let H1 ≡ ⋃∞
t=0 Ht

1 be the set of player 1’s histories at 
the action stage. Type γ ’s strategy is (̃σγ , σγ ), with ̃σγ : H̃1 → �(A) and σγ : H1 → �(A). At 
each t , type γo can only take actions that belong to At . Type γh faces this constraint as well as 
the requirements that the support of σ̃γh

(̃ht
1) is a subset of Ãt , and that σγh

(ht
1) = mt whenever 

mt ∈ At .
Type γ ’s stage-game payoff is u1(γ, θt , at , bt ) and player 2t ’s is u2(at , bt ). Note that the 

stage-game payoffs of type γo and type γh can differ, and that player 2t ’s payoff does not depend 
on γ and θt .

2 Theorem 1 extends when the distribution of (θt , At ) varies over time, although the statement of the result becomes 
more involved. We do not know whether the result extends when (θt , At ) is correlated over time.

3 As in most of the literature on repeated games, we allow a history to be both an element of a set of histories and a 
random variable whose realization belongs to the set of histories. We will distinguish between the two in our proof, and 
in particular, highlight places where “history” is a random variable.
4



D. Fudenberg, Y. Gao and H. Pei Journal of Economic Theory 204 (2022) 105508
A Nash equilibrium is a strategy profile ({̃σγ , σγ }γ∈	, σ2), in which σ t
2 maximizes player 2t ’s 

stage-game payoff, and for each γ ∈ {γh, γo}, (̃σγ , σγ ) maximizes type γ ’s discounted average 
payoff 

∑∞
t=0(1 − δ)δtu1(γ, θt , at , bt ) subject to the constraints that type γ faces. Because the 

stage game and set of types are both finite and payoffs are discounted, the game is continuous 
at infinity in the sense of Fudenberg and Levine (1983), and it is straightforward to adapt their 
arguments to show that a Nash equilibrium exists.4

Example: product choice game Player 1 is a firm and player 2s are consumers. Every period, 
the firm privately observes their cost of production θt ∈ {θg, θb}. We assume that θt = θg with 
probability 1

2 for every t ∈ N , and θt is independent of θs for every s �= t . In this example, the 
honest and opportunistic types have the same payoff function, given by the matrices below.

θt = θg T N

H 1,2 −1,0
L 2,−3 0,0

θt = θb T N

H −1,2 −3,0
L 2,−3 0,0

Since the firm’s optimal (pure) commitment action is H when θt = θg and is L when θt = θb, 
they have an incentive to build a reputation for keeping their word by announcing their intended 
action in every period. This is better than a reputation for always playing H , since it lets the firm 
avoid the cost of choosing H when θt = θb .

Suppose that the firm can make an announcement mt about its intended action at to the 
period-t consumer after observing θt but before taking actions. The period-t consumer observes 
mt , as well as whether the firm’s announcement matched its action in previous periods. With 
positive probability, the firm is an honest type who strategically chooses their announcements 
but commits to keep their word. With complementary probability, the firm is an opportunistic 
type who can freely choose their announcements and actions. The period-t consumer observes 
mt , as well as whether the firm’s announcement matched its action in previous periods.

In this model, there are equilibria in which both types of the firm receive their minmax value 
0.5 This low-payoff equilibrium hinges on the assumption that all of the firm’s actions are feasible 
in every period. It does not fit a number of applications of interest, where with positive probability 
some of the firm’s actions might be infeasible. For example, when the firm is an individual 
contractor, they can occasionally be sick, and so unable to provide high-quality service. The firm 
may also face occasional regulatory inspections during which playing L can lead to a risk of 
fines and being shut down. In this situation, the firm will always choose to supply high quality.6

Another practical concern is that firms may not know their feasible action set when making 
announcements, and might be forced to renege on promises they intended to keep. For example, 
the patient player might be a contractor who believes that they can provide high-quality service 
with high probability, and promises to do that, but later realize that they cannot deliver on their 
promise due to technical difficulties or other priorities on their schedule.

4 Specifically the set of strategies is compact in the product topology and payoff functions are continuous in that 
topology, so any sequence of Nash equilibria of the finite-horizon truncation of the game has an accumulation point, and 
any accumulation point is a Nash equilibrium of the infinite horizon game.

5 See the working paper version Fudenberg et al. (2020) for an explicit construction.
6 Formally, if the firm chooses L in periods where they are inspected, they face a probability q ∈ (0, 1) of shutting 

down and a fine f > 0. One can show that there exist f > 0 and q ∈ (0, 1) such that when f > f and q > q , it is a 
dominant strategy for both types of the firm to choose at = H at the action stage.
5
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Motivated by these observations, we assume that the firm’s feasible action set At is drawn 
according to a full support distribution over {{H }, {L}, {H, L}}. At the announcement stage, 
the firm observes Ãt ⊃ At . That is, the firm knows that action H is infeasible when Ãt = {L}
and vice versa, and when Ãt = {H, L}, the firm recognizes the possibility that either H or L
may turn out to be infeasible. The honest type announces an action in Ãt and keeps their word 
whenever feasible. The opportunistic type only faces a feasibility constraint that the action they 
take belongs to At .

Our result shows that each type of the patient firm can secure their optimal pure-strategy 
commitment payoff in every equilibrium when (1) at the announcement stage, the firm knows 
their feasible action set with sufficiently high probability, and (2) the ratio between the probability 
with which H is infeasible when Ãt = {H, L} and the probability with which L is infeasible 
when Ãt = {H, L} is neither 0 nor infinity.7

Remark. In our model, the patient player privately observes the realization of an i.i.d. state 
before they announce their intended action. Our main result applies in environments where �
is a singleton, but in this case the patient player can also secure their commitment payoff by 
establishing a reputation for playing their optimal commitment action; the i.i.d. state makes a 
reputation for honesty more interesting. Alternatively, one could consider settings in which the 
patient player announces the realized state, but a reputation for truthfully announcing the state 
on its own does not guarantee the commitment payoff in all equilibria. For example, in the game 
we considered earlier, there exists an equilibrium in which both types of the patient player play 
L and the short-run players play N regardless of the announcement. Moreover, as we noted in 
the introduction, states may be hard to monitor ex-post. In Section 5, we show that our result 
extends to the case where the patient player announces the realized state in addition to announc-
ing his intended action, i.e., our main result applies when the patient player can make additional 
announcements.

3. Main result

Let BR2 : �(A) → 2B\{∅} be player 2’s best reply correspondence. Type γ ’s optimal com-
mitment payoff in state θt when the set of feasible actions is At is

U∗(γ, θt ,At ) ≡ max
a∈At

{
min

b∈BR2(a)
u1(γ, θt , a, b)

}
, (3.1)

and type γ ’s optimal commitment actions in At under state θt are the actions that attain this 
maximum. Type γ ’s (expected) optimal commitment payoff is

U
∗
(γ ) ≡

∑
(θt ,At )∈�×A

p(θt ,At )U
∗(γ, θt ,At ). (3.2)

Let Pr(·|Ãt ) ∈ �(A) be player 1’s belief about At after observing Ãt . Since At is distributed 
according to p and Ãt is distributed according to G(·|At) conditional on At , Pr(·|Ãt ) is derived 
from Bayes rule for every Ãt that occurs with positive probability under some on-path At .

Assumption 1.

7 A pure-strategy commitment is a map from (θ, At ) to At . Our results still hold if there are honest types that can 
announce mixed actions, as long as there is an honest type that can only make pure-strategy commitments.
6
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(i) Every Ãt ∈A occurs with positive probability.
(ii) For every Ãt ∈ A, either Pr(At = Ãt |Ãt ) = 1, or Pr(a /∈ At |Ãt ) > 0 for every a ∈ Ãt .

Assumption 1(i) requires that every non-empty subset of A is the set of feasible actions with 
positive probability; it rules out situations in which all of player 1’s actions are feasible with 
probability 1. When that is the case, our example in Section 2 implies that the patient player can 
receive their minmax value in some equilibria. Assumption 1(ii) requires that upon observing Ãt , 
either player 1 knows that At = Ãt , or every action in Ãt is infeasible with positive probability. 
A sufficient condition for Assumption 1(ii) is that there exists M > 0 such that G(Ãt |A′

t ) ≥
M · G(Ãt |A′′

t ) for every A′
t � Ãt and A′′

t � Ãt .

Theorem 1. Fix an ε > 0. Then there exist δ ∈ (0, 1) and η > 0 such that if p and G satisfy 
Assumption 1, δ > δ, and G(Ãt = At |At) ≥ 1 − η for every At ∈ A, then each type γ ∈ {γo, γh}
receives payoff at least U

∗
(γ ) − ε in every equilibrium.

Theorem 1 shows that each type of patient player can secure (approximately) their optimal 
commitment payoff when they know their feasible action set with probability above some cutoff 
at the announcement stage. Section 5 discusses several extensions, including situations where 
player 1 has more than two types, or when player 2t observes {y0, ..., yt−1} with noise, or when 
player 2t can also observe a bounded number of signals of player 1’s past actions and announce-
ments in addition to {y0, ..., yt−1} and mt , or when At � Ãt with small but positive probability, 
and more generally, the role of our modeling assumptions.

Section 5 also presents an example where Theorem 1 fails when player 2’s observe the entire 
history of player 1’s actions and announcements. Here the opportunistic type cannot build a 
reputation for honesty by simply keeping their word, they also need to announce actions that 
the honest type announces with high probability. Since the honest type and the opportunistic 
type can have different stage-game payoff functions, the opportunistic type may face a tradeoff 
between announcing actions that lead to a high payoff and announcing actions that lead to a 
better reputation.

For a snapshot of our argument, fix any equilibrium, and consider type γ ’s payoff when they 
announce an optimal commitment action for Ãt under state θt , that is

a∗(γ, θt , Ãt ) ∈ arg max
a∈Ãt

{
min

b∈BR2(a)
u1(γ, θt , a, b)

}
, (3.3)

and keep their word whenever feasible. We call this the “naive commitment strategy”.
Let us start from the case in which player 1 has perfect information about their feasible action 

set At at the announcement stage, i.e. G(Ãt = At |At) = 1 for every At . The naive commitment 
strategy generates the same distribution over {y0, y1, ..., yt−1} as the honest type’s equilibrium 
strategy since the honest type always keeps their word.8 Because every Ãt occurs with positive 
probability, the honest type announces each of their actions with positive probability, so player 2t

cannot rule out the honest type regardless of player 1’s period-t announcement. Thus if player 2t

fails to best reply to the announced action, their belief must assign a significant probability to the 
event that at �= mt , which implies that observing at = mt increases the posterior probability with 
which player 1 is honest. As a result, the expected number of “bad” periods where player 2 does 

8 In this sentence, {y0, y1, ..., yt−1} is a random variable rather than an element of a set.
7
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not best reply to all announcements is bounded from above uniformly in δ, which is why each 
type of patient player receives at least their optimal commitment payoff in every equilibrium.

Next, suppose the patient player has imperfect information about which of their actions are 
feasible, i.e., G(Ãt = At |At) < 1, and consider type γ ’s payoff from the “naive commitment 
strategy”: announce the optimal commitment action a∗(γ, θt , Ãt ), play the announced action 
whenever a∗(γ, θt , Ãt ) ∈ At , and otherwise play an arbitrary action in At . Because the an-
nounced action may not be feasible, the following issues arise:

1. When type γ deviates to the naive commitment strategy, it can induce a different distribu-
tion of y than that induced by player 1’s equilibrium strategy,9 and the induced distribution 
may not be absolutely continuous with respect to the equilibrium distribution. This precludes 
the direct application of the results in Fudenberg and Levine (1989, 1992) and Sorin (1999). 
Moreover, the short-run players observe the long-run player’s announcement before mov-
ing, and announcements and actions are imperfectly recalled, which makes the payoff lower 
bounds provided by Gossner (2011) and Ekmekci et al. (2012) not directly applicable.10

2. The opportunistic type’s reputation can deteriorate in expectation under the naive commit-
ment strategy.11 This is the case when announcing the optimal commitment action induces a 
distribution that is closer to the distribution induced by the opportunistic type’s equilibrium 
strategy than to the honest type’s equilibrium strategy. This is not the case when the deviation 
is to imitate the play of a positive-probability commitment type.

Our proof bounds the patient player’s payoff by examining an auxiliary misspecified learning 
problem faced by the short-run players where the true data generating process is the one induced 
by the patient player’s deviating strategy, and the data generating processes in the support of their 
prior belief are the ones induced by the honest type’s and the opportunistic type’s equilibrium 
strategies.12

We develop a novel argument using concentration inequalities. For any given equilibrium, 
consider type γ ’s payoff from the following deviation: (1) In “good periods” where player 2t

best replies to any announcement, announce a∗(γ, θt , Ãt ) and play the announced action when-
ever it is in At ; (2) in other “bad periods”, imitate the honest type’s equilibrium strategy. The 
opportunistic type’s probability of playing honestly is bounded away from 1 in every bad period, 
which leads to a lower bound on the Kullback-Leibler divergence between its induced distribu-
tion over outcomes and that under the honest type’s equilibrium strategy.13 In every good period, 

9 This occurs when type γ ’s optimal commitment action is less likely to be feasible than the action announced by the 
honest type in equilibrium. In the example in Section 2, suppose Pr(At = {H }|Ãt = {H, L}) = ε and Pr(At = {L}|Ãt =
{H, L}) = 2ε. Type γh announces L in equilibrium when θt = θg and Ãt = {H, L} while type γ ’s optimal commitment 
action when θt = θg and Ãt = {H, L} is H .
10 Ekmekci et al. (2012) studies a reputation model in which the patient player’s type changes over time. The key step 
in their proof is to bound payoffs by a function of the discounted sum of divergences between the equilibrium histories 
seen by player 2n and the histories when player 1 imitates the commitment type. In the limit when the probability of 
type change in every period goes to 0, the sum goes to 0 and the bound approaches the optimal commitment payoff. 
Appendix B explains why an analogous argument does not work here.
11 The expectation here is taken at the ex-ante stage before player 1 observes θt and Ãt .
12 Past work on misspecified learning, e.g. Esponda and Pouzo (2016), Bohren and Hauser (2021), Esponda and Pouzo 
(2020), Fudenberg et al. (2021), Esponda et al. (2021), Bohren and Hauser (2021), and He (2021) either assumes i.i.d. 
signals or does not bound the limit frequencies of actions or beliefs.
13 For two distributions P, Q ∈ �(X), the Kullback-Leibler divergence between P and Q is 

∑
x∈X P(x) log P(x) .
Q(x)

8
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the Kullback-Leibler divergence between observed outcomes under type γ ’s deviation and those 
under the honest type’s equilibrium strategy is bounded from above by a strictly positive function 
of η that converges to zero as η → 0.

Applying the Azuma-Hoeffding inequality to the log likelihood ratio between the honest type 
and the opportunistic type,14 we provide an upper bound on the fraction of bad periods from 
period 0 to T for every large enough T . Intuitively, this is because when η is small, the honest 
type keeps their word with high probability conditional on every announcement, which implies 
that the myopic players have a strict incentive to best reply to any announcement when the log 
likelihood ratio is above a certain cutoff. We then translate the upper bound on the undiscounted 
frequency of bad periods to an upper bound on the discounted average frequency of bad periods 
that converges to 0 as η becomes arbitrarily small. For a sufficiently patient player of type γ , this 
deviation gives a payoff arbitrarily close to their optimal commitment payoff.

4. Proof of Theorem 1

Fix a Nash equilibrium ({̃σγ , σγ }γ∈	, σ2), and define random variable νt taking values in 
{0, 1} by

1. νt = 1 if for every a ∈ A, when player 1 announces a in period t , player 2 strictly prefers one 
of the actions in BR2(a) to all actions that do not belong to BR2(a),

2. νt = 0 otherwise.

Now define a strategy for type γ , (̃σ ′
γ , σ ′

γ ), by:

1. At histories where νt = 1, type γ announces a∗(γ, θt , Ãt ) defined in (3.3) upon observing 
(θt , Ãt ) and keeps their word if a∗(γ, θt , Ãt ) ∈ At , and uniformly mixes between all actions 
in At otherwise.

2. At histories where νt = 0, type γ plays the honest type’s equilibrium strategy, that is, ̃σ ′
γ = σ̃γh

and σ ′
γ = σγh

at every such history.

We will bound type γ ’s payoff from (̃σ ′
γ , σ ′

γ ) when player 2s uses their equilibrium strategy. 
As a first step, note that there exists ξ ∈ (0, 1) that depends only on u2 such that for every 
a ∈ A, all actions outside of BR2(a) are strictly inferior for player 2 when they believe that 
player 1 plays a with probability more than ξ . Let p ≡ mina∈A p(Ãt = {a}), which is strictly 
positive by Assumption 1. Markov’s inequality implies that in every period where νt = 0, the 
probability that mt = at is less than 1 − p(1 − ξ) conditional on player 1 being opportunistic. 
Since G(Ãt = At |At) ≥ 1 − η for every At ∈ A, the probability that mt = at is at least 1 − η

under (̃σ ′
γ , σ ′

γ ).
Let π̃t ∈ (0, 1) be the probability player 2t ’s belief assigns to the honest type after observes 

{y0, ..., yt−1} but not mt . Let πt ∈ (0, 1) be the probability of honest type after player 2t observes 
{y0, ..., yt−1} and mt . Let ̃lt ≡ log π̃t

1−π̃t
and lt ≡ log πt

1−πt
, where we view π̃t , πt , ̃lt , and lt as 

random variables. If νt = 0, then according to Bayes rule, we have

E
[̃
lt+1 − l̃t

∣∣∣̃σ ′
γ , σ ′

γ

]
≥ D(1 − η||1 − p(1 − ξ)) ≡ α,

14 In order to apply the Azuma-Hoeffding inequality, we subtract the expected increment of this process in every period 
and construct a martingale process under the proposed deviation for type γ .
9
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where D(x1||x2) stands for the Kullback-Leibler divergence between a distribution that attaches 
probability x1 to yt = 1 and one that attaches probability x2 to yt = 1.

In every period where νt = 1, Assumption 1(ii) and the fact that p has full support together 
imply the existence of ρ ∈ (0, 1) that is independent of η such that the probability that mt = at

is less than 1 − ρη under the equilibrium strategy of the honest type. Since the probability that 
mt = at is at least 1 − η under (̃σ ′

γ , σ ′
γ ),

E
[̃
lt+1 − l̃t

∣∣∣̃σ ′
γ , σ ′

γ

]
≥ −D(1 − η||1 − ρη) ≡ −β.

Therefore, for every L ∈R+, there exists η > 0 such that α/β > L when η ∈ [0, η].
Recall that p ≡ mina∈A p(Ãt = {a}) > 0. When η ∈ [0, η] the honest type announces a and 

takes action a with probability at least p(1 −η) for every a ∈ A. Therefore, lt − l̃t ≥ logp(1 −η). 
As a result, there exists l∗ ∈R+ such that ̃lt ≥ l∗ implies that νt = 1.

We establish a lower bound for the expected value of 
∑∞

t=0(1 − δ)δt νt when δ is close to 1. 
Let Zt be a random variable such that for every yt ∈ {0, 1},

Zt = log
Pr(yt |̃σγh

, σγh
)

Pr(yt |̃σγo , σγo)
with probability Pr(yt |̃σ ′

γ , σ ′
γ ). (4.1)

By definition, E[Zt |̃σ ′
γ , σ ′

γ ] ≥ −β when νt = 1 and E[Zt |̃σ ′
γ , σ ′

γ ] ≥ α when νt = 0. By construc-
tion, ̃lt+1 = l̃t + Zt for every t ∈N .

Lemma 1. For every ε > 0, there exists T ∈ N such that for every t ≥ T ,

t−1∑
s=0

E
[
νs

∣∣∣̃σ ′
γ , σ ′

γ

]
≥ t

( α

α + β
− ε

)
. (4.2)

Our proof uses the Azuma-Hoeffding inequality.

Azuma-Hoeffding Inequality. Let {X0,X1, · · · } be a martingale such that |Xk − Xk−1| ≤ ck . 
For every n ∈N and ε̄ > 0,

Pr
(
Xn − X0 ≥ ε̄

)
≤ exp

(
−ε̄2

2
∑n

k=1 c2
k

)
.

Proof of Lemma 1. Construct a martingale process {̂lt }t∈N recursively from {̃lt }t∈N . Let ̂l0 ≡
l̃0, and for every t ∈ N , let ̂lt+1 ≡ l̂t + Zt − E[Zt |̃σ ′

γ , σ ′
γ ]. The process {̂lt }t∈N is a martingale. 

Since ̃lt+1 = l̃t + Zt , we have

l̂t = l̃t −
t−1∑
s=0

E
[
Zs

∣∣∣̃σ ′
γ , σ ′

γ

]
.

If 1
t

∑t−1
s=0 νs ≤ α

α+β
− ε1 for some ε1 > 0, then

t−1∑
s=0

E
[
Zs

∣∣∣̃σ ′
γ , σ ′

γ

]
≥ tε1(α + β).

This is because E[Zt |̃σ ′ , σ ′ ] ≥ −β when νt = 1 and E[Zt |̃σ ′ , σ ′ ] ≥ α when νt = 0.
γ γ γ γ

10
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Applying the Azuma-Hoeffding inequality, we obtain:

Pr(̃lt ≤l∗|̃σ ′
γ , σ ′

γ )=Pr
(̂
lt − l̂0 ≤ l∗− l̃0 − tε1(α+β)

∣∣∣̃σ ′
γ , σ ′

γ

)
≤exp

(
− (l∗ − l̃0 − tε1(α + β))2

2tC2

)
,

(4.3)

where C > 0 is the difference between the largest realization of Zt and the smallest realization 
of Zt . The right-hand-side of (4.3) vanishes to zero exponentially as t → +∞.

Since νt = 1 when l̃t ≥ l∗, we know that for every ε0 > 0, there exists T0 ∈ N , such that 

for every t ≥ T0, if 
∑t−1

s=0 νs ≤ t
(

α
α+β

− ε1

)
, then νt = 1 with probability at least 1 − ε0 under 

(̃σ ′
γ , σ ′

γ ). By setting ε0 <
β

α+β
, we have E[νt |̃σ ′

γ , σ ′
γ ] ≥ 1 − ε0 > α

α+β
. Then for every t > T0, 

we have E[∑t−1
s=0 νs |̃σ ′

γ , σ ′
γ ] ≥ (t − T0 − 1)( α

α+β
− ε1). The conclusion of Lemma 1 follows by 

choosing any ε > ε1 > 0, and T ≥ α(T0+1)
(ε−ε1)(α+β)

. �
Since νt is either 0 or 1, we can use summation by parts to obtain:

E
[ ∞∑

t=0

(1 − δ)δt νt

∣∣∣̃σ ′
γ , σ ′

γ

]
= (1 − δ)2

+∞∑
t=0

δt

t∑
s=0

E
[
νs

∣∣∣̃σ ′
γ , σ ′

γ

]
. (4.4)

Lemma 1 implies that (4.2) applies to every large enough t . Plugging (4.2) into (4.4), we know 
that for every ̂ε > 0, there exists δ ∈ (0, 1), such that for every δ ∈ (δ, 1), we have

E
[ ∞∑

t=0

(1 − δ)δt νt

∣∣∣̃σ ′
γ , σ ′

γ

]
≥ α

α + β
− ε̂. (4.5)

Since α
β

→ +∞ as η → 0, and type γ ’s stage-game payoff is at least U
∗
(γ ) in every period 

where νt = 1, we can find η small enough that each type’s payoff from strategy (̃σ ′
γ , σ ′

γ ) can be 

an arbitrarily large fraction of U
∗
(γ ).

5. Extensions & discussion

Multiple types: Theorem 1 extends to any finite number of honest types and opportunistic types, 
who can potentially have different stage-game payoffs. Let 	h be the set of honest types and 
let 	o be the set of opportunistic types, with 	h and 	o being finite. Let 	 ≡ 	h ∪ 	o. For 
every γh ∈ 	h, type γh is restricted to choose mt ∈ Ãt and to choose at = mt if mt ∈ At . For 
every γo ∈ 	o, type γo only faces the restriction that at ∈ At . Type γ ∈ 	’s stage-game payoff is 
u1(γ, θt , at , bt ). Player 2’s payoff does not depend on γ and θ .

If we define U∗(γ, θt , At) and U
∗
(γ ) in the same way as in (3.1) and (3.2), we can show that 

under the conditions in Theorem 1, type γ ’s payoff in every equilibrium is at least U
∗
(γ ) − ε for 

every γ ∈ 	. The proof uses a similar argument as that of Theorem 1, except for the construction 
of (̃σ ′

γ , σ ′
γ ) at histories where νt = 0, which is given by

σ̃ ′
γ ≡

∑
γh∈	h

π̃t (γh)∑
γ ′
h∈	h

π̃t (γ
′
h)

σ̃γh

and
11



D. Fudenberg, Y. Gao and H. Pei Journal of Economic Theory 204 (2022) 105508
σ ′
γ ≡

∑
γh∈	h

πt (γh)∑
γ ′
h∈	h

πt (γ
′
h)

σγh

where π̃t ∈ �(	) is player 2t ’s belief after they observe {y0, ..., yt−1} but before they observe 
mt , and πt ∈ �(	) is player 2t ’s belief after they observe both {y0, ..., yt−1} and mt . The rest of 
the proof follows from the same step as that of Theorem 1.

Noisy signals of feasible actions: In our baseline model, the patient player knows that actions 
in A\Ãt will not be feasible in period t . This assumption is not necessary for Theorem 1, which 
extends to settings where actions in A\Ãt can be feasible at the action stage with small but 
positive probability (i.e., G(Ãt = At |At) is close to 1 for every At ), provided that the honest 
type continues to only announce actions in Ãt .

Noisy observation of past honesty: In many applications of interest, such as retail markets, 
information about the seller’s honesty is passed on to future consumers via word-of-mouth com-
munication, and errors are likely in the process of information transmission.

For this reason it is interesting to note that Theorem 1 extends to settings where yt is ob-
served with noise. In particular, let xt ∈ X be a noisy signal of yt , distributed according to 
F(·|yt ) ∈ �(X). We assume that X is finite and moreover, F(·|y = 1) �= F(·|y = 0), that is, 
xt can statistically identify yt . Corollary 1 generalizes Theorem 1 when player 2t observes 
{x0, ..., xt−1} instead of {y0, ..., yt−1}

Corollary 1. Suppose the distributions p and G satisfy Assumption 1 and xt can statistically 
identify yt . For every ε > 0, there exist δ ∈ (0, 1) and η > 0 such that when δ > δ and G(Ãt =
At |At) ≥ 1 − η for every At ∈ A, then each type γ receives payoff at least U

∗
(γ ) − ε in every 

equilibrium.

The proof resembles that of Theorem 1, so it is omitted. Intuitively, observing a noisy signal 
of yt reduces the responsiveness of player 2’s posterior belief with respect to their observations. 
In the proof of Theorem 1, the monitoring noise reduces the absolute value of E[̃lt+1 − l̃t ] both 
in good periods (i.e., periods where νt = 1) and in bad periods (i.e., periods where νt = 0). 
Nevertheless, when η is small enough, the ratio between the expected increase in ̃lt during bad 
periods and the expected decrease in ̃lt during good periods remains large. The same argument 
implies that the fraction of bad periods is small and the patient player can secure their optimal 
commitment payoff in every equilibrium.

Announcing the state & observability of the state In some applications, the patient player also 
announces the state θt in addition to their intended action at , and the state can be observed by the 
future short-run players. The honest type announces the state truthfully and plays their announced 
action whenever it is available.

Our main result applies in this setting. Intuitively, suppose type γ uses the deviation we con-
structed in the proof of Theorem 1 to announce and to take actions, and to truthfully report the 
state in every period. Since truthfully announcing the state can never decrease the log likelihood 
ratio between the honest type and the opportunistic type, one can use the same argument as 
the proof of Theorem 1 to show that every type of patient player receives at least their optimal 
commitment payoff.

Announcing the state is different from announcing an intended action, since the true state is 
fixed when player 1 makes their announcement while player 1’s action is not fixed. As a result, 
12
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there are multiple ways in which player 1’s announced action matches their realized action (e.g., 
announcing any available action and playing it afterward), while there is only one way in which 
they can announce the true state. As a result, truthfully announcing the state cannot lead to a 
decrease in the patient player’s reputation, while announcing an intended action and playing the 
announced action may lead to a decrease in reputation, since in equilibrium, the honest type may 
announce that action with lower probability than the opportunistic type does.

Bounded observation of past actions and announcements: Our baseline model excludes the 
possibility that player 2 observes player 1’s past actions and announcements in addition to 
whether they coincide. We extend Theorem 1 so that the player 2s can also observe a noisy signal 
zt about at and mt , in addition to yt , as long as each of them can only observe the realizations of 
zt in a bounded number periods.

Formally, let zt ∈ Z, where zt is distributed according to H(·|mt, at ) ∈ �(Z), where Z is 
a finite set. Suppose for every t ∈ N , player 2t can observe player 1’s announcement mt , the 
history of whether player 1 has kept their word {y0, ..., yt−1} and a (possibly stochastic) subset 
of {z0, ..., zt−1} that has at most K elements, with K ∈N an exogenous parameter.

Our assumption on the asymmetry between player 2s’ observations of yt and zt is motivated 
by retail markets in developing economies, or more generally, markets without well developed 
recording-keeping institutions. In those markets, detailed information about sellers’ actions and 
announcements (e.g., the quality of their services, various attributes of their products, the content 
of their advertisements, and so on, which correspond to zt ) is likely to get lost over time. By 
contrast, simple coarse information about sellers’ records, such as whether they have kept their 
word (which corresponds to yt ), is likely to be more persistent.15

Corollary 2. Suppose Assumption 1 is satisfied, each player 2 observes at most K realizations 
of z, and at least one of the following two conditions is satisfied:

1. H(·|a, m) has full support for every (a, m) ∈ A × A,
2. G(Ãt = At |At) = 1 for every At ∈ A,

then for every ε > 0, there exist δ ∈ (0, 1) and η > 0 such that when δ > δ and G(Ãt = At |At) ≥
1 −η for every At ∈ A, then each type γ receives payoff at least U

∗
(γ ) − ε in every equilibrium.

Intuitively, the honest type announces every a ∈ A with positive probability. Therefore, if any 
type of the patient player adopts the deviation in the proof of Theorem 1, no realization of z can 
rule out the honest type, so the decrease in the log likelihood ratio between the honest type and 

15 This justification only applies to situations in which the patient player’s optimal commitment action is different in 
different states.
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the opportunistic type is bounded from above for every z ∈ Z.16 If player 2 observes at most K
realizations of z, then the decrease in the log likelihood ratio must also be bounded from above.

Let l̃t be the log likelihood ratio between the honest type and the opportunistic type after 
player 2t observes {y0, ..., yt−1} but before they observe mt and the past realizations of z. Both 
m and z being boundedly informative implies the existence of l∗ > 0 such that player 2t has a 
strict incentive to best reply to any announcement when ̃lt > l∗. The rest of the proof follows 
from that of Theorem 1.

Unbounded observation of past actions and announcements: We show that there are equilibria 
where the opportunistic type’s payoff is bounded below their commitment payoff when player 
2’s can observe the entire history of player 1’s past actions and announcements. The intuition is 
that the honest type and the opportunistic type can have different stage-game payoff functions, 
so the opportunistic type may receive a low payoff when they play the honest type’s equilib-
rium strategy. To illustrate, consider an example where � is a singleton and players’ stage-game 
payoffs are given by:

γ = γo T N

H 2,1 0,0
L 3,0 1,1

γ = γh T N

H 0,1 0,0
L 0,0 0,1

These payoff functions satisfy the assumptions in our paper since player 2’s payoff does not 
depend on player 1’s type. We assume that G(Ãt = At |At) = 1 for every At ⊂ {H, L}, that is, 
player 1 perfectly observes the set of feasible actions before making their announcement. The 
distribution of At is such that At = {H, L} with probability 1 − ε, At = {H } with probability ε

2 , 
and At = {L} with probability ε

2 . Throughout, we fix an ε ∈ (0, 2/5).
Such a distribution of (At , Ãt ) satisfies Assumption 1 in our paper. The opportunistic-type 

player 1’s commitment payoff equals
ε

2
+ (1 − ε

2
)2 = 2 − ε

2
.

This payoff can be obtained if player 1 commits to play H when H is feasible, and commits to 
play L when H is not feasible.

Theorem 2. Suppose player 2s’ prior belief attaches probability no more than 1
2 to the honest 

type. There exists δ ∈ (0, 1) such that for every δ > δ, there exists an equilibrium where the 
opportunistic type’s payoff equals 7

4 .

We provide a constructive proof of Theorem 2 in Appendix A. The comparison between The-
orem 2 and Theorem 1 implies that allowing the short-run players to receive more information 
can hurt the patient player’s incentives to build reputations for honesty.

16 This requires either the distribution of z to have full support, or player 1 to perfectly observe the set of available 
actions when making announcements. Intuitively, if G(Ãt = At |At ) �= 1 and the distribution of z does not have full 
support, e.g., zt = (at , mt ), then suppose the honest type announces a∗ if and only if Ãt = {a∗}, and the opportunistic 
type’s optimal commitment action in Ãt = {a∗, a′} is a∗ , then under the deviation we construct, the opportunistic type 
announces a∗ after observing Ãt = {a∗, a′} and plays a′ when At = {a′}. If the distribution of zt does not have full 
support, then some realizations of zt may occur with positive probability if and only if (at , mt ) = (a′, a∗), which does 
not occur under the honest type’s equilibrium strategy so the opportunistic type fully reveals their type with positive 
probability through z under the deviation we construct.
14
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Short-run players’ payoffs depending on the state: Our baseline model assumes that the short-
run players’ payoffs do not depend on θ . Our reputation result fails when u2 is a function of θ . 
For example, suppose players’ payoffs are given by:

θ1 T N

H 2,2 0,0
L 3,−3 0,0

θ2 T N

H 3,−3 0,0
L 2,2 0,0

The two states θ1 and θ2 are equally likely. In state θ1, the Stackelberg action is H and the 
Stackelberg payoff is 2 for both types of the long-run player. In state θ2, the Stackelberg action is 
L and the Stackelberg payoff is 2 for both types of the long-run player. The expected Stackelberg 
payoff is thus 2.

Suppose At = Ãt with probability 1, i.e., player 1 always knows the set of feasible actions at 
the announcement stage. In each period, with probability 1 − ε, player 1 chooses from the set 
{H, L}, with probability ε/2 they must choose H , and with probability ε/2 they must choose 
L. This environment satisfies our other assumptions except that player 2’s payoff depends on θ . 
Now consider the following strategy profile:

• Short-run players play N at every history and never revise beliefs about the long-run player’s 
type.

• Both types of the long-run player announce and play L whenever it is feasible, and announce 
and play H otherwise.

The short-run players are always playing their myopic best responses, since the long-run play-
er’s announcements reveal no information about the state, so N is a best response to both H and 
L. Since the actions of the two types of the long-run player coincide, the short-run players never 
learn anything about the long-run player’s type. Both types of the long-run player are playing 
best responses since short-run players always play N . Hence, we have an equilibrium in which 
the payoffs of both types of the long-run player are bounded below their Stackelberg payoffs 
even when ε → 0 and δ → 1.

6. Related literature

Our paper contributes to the reputation literature by showing that the patient player can secure 
their optimal commitment payoff in all Nash equilibria when every type’s behavior is endoge-
nous. This contrasts to reputation models in which at least one type is committed to an exogenous 
strategy (Sobel, 1985; Fudenberg and Levine, 1989, 1992; Benabou and Laroque, 1992; Math-
evet et al., 2019; Gossner, 2011; Ekmekci et al., 2012), as well as other reputation models without 
commitment types that focus on Markov equilibria (Schmidt, 1993; Daley and Green, 2012; 
Board and Meyer-ter-Vehn, 2013),17 or establishing folk theorems (Pei, 2020, 2021). Our model 
also differs from those that posit that an exogenous value for a reputation, e.g. Olszewski (2004)
and Ottaviani and Sørensen (2006).

Our work is related to the literature on repeated communication games e.g. Sobel (1985), 
Benabou and Laroque (1992), Best and Quigley (2020), Mathevet et al. (2019), and Pei (2020). 

17 Section 3 of Ely and Valimaki (2003) studies reputation models without commitment types and shows that reputation 
concerns can generate perverse incentives that lead to low-payoff equilibria for the long-run player.
15



D. Fudenberg, Y. Gao and H. Pei Journal of Economic Theory 204 (2022) 105508
In those papers, a sender communicates with a receiver about a payoff-relevant state, which 
stands in contrast to our model where the sender communicates their intended action. As we 
have commented in Section 6, communicating the payoff-relevant state and allowing the short-
run players to observe the state ex post do not affect our conclusions.

Our model is also related to the literature on reputational bargaining, e.g. Kambe (1999), 
Abreu and Gul (2000), Abreu and Pearce (2007), Bagwell (2018), Kim (2009), and Sanktjo-
hanser (2020), in which players announce their bargaining postures in the beginning of the game 
and decide when to concede to their opponents’ offers. In contrast to those papers, the honest 
type’s announcement in our model is only valid for only one period; they are free to make any 
announcement in the future.

The fact that many people prefer to be honest has been established experimentally by e.g. 
Gneezy (2005), Charness and Dufwenberg (2006) and Gneezy et al. (2018). Kartik et al. (2007)
and Kartik (2009) show how costs of lying change the equilibrium outcomes of strategic com-
munication games. Instead of positing that some players have a cost of lying, we follow Chen et 
al. (2008) and Chen (2011) and assume that the patient player is either an honest type who never 
lies, or an opportunistic type who faces no cost of lying. Since Theorem 1 allows for different 
types to have different preferences as well as any finite number of types, it extends to cases with 
strictly positive and possibly heterogeneous lying costs.

Jullien and Park (2020) studies repeated buyer-seller games in which a seller privately ob-
serves their product quality, which is a noisy signal of their effort, and shows that communication 
about quality improves the maximum social welfare if and only if the seller’s cost of effort is 
intermediate.18 Our paper examines whether a patient player can guarantee high payoffs in all
equilibria by building reputations for honesty. Successful reputation building in our model hinges 
on the patient player’s knowledge about their feasible action set when making announcements, 
but does not depend on the players’ payoff functions. In a working paper version (Fudenberg et 
al., 2020), we extend our analysis to Jullien and Park (2020)’s setting where the seller announces 
a private signal of their effort before buyers act. We establish a reputation result when the signal 
has full support and show that reputation fails when the signal perfectly reveals the agent’s effort.

Our requirement that the feasible action set is stochastic is related to Celentani et al. (1996), 
and Atakan and Ekmekci (2015), which show that full support monitoring can help reputation 
building when the uninformed player is long-lived. Their results, unlike ours, require that the 
informed player cannot perfectly observe the uninformed player’s actions.

7. Conclusion

This paper provides sufficient conditions under which a patient player can obtain a high payoff 
by building a reputation for honestly announcing their intended actions, rather than for playing 
particular actions. We establish a reputation result when the uninformed players can observe 
whether the reputation-building player has kept their word in the past, and face uncertainty about 
which of the reputation-building player’s actions are feasible.

18 Jullien and Park (2014) shows that communication accelerates consumer learning when product quality is determined 
by the seller’s type, and the high type seller is non-strategic and always tells the truth. Awaya and Krishna (2016) identify 
a class of games in which players can achieve perfectly collusive payoffs with communication, but not without it.
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Appendix A. Proof of Theorem 2

We construct a class of equilibria where the opportunistic type’s payoff equals v∗ ≡ 7
4 , which 

is strictly lower than the opportunistic type’s optimal commitment payoff 2 − ε
2 when ε is small 

enough. As a convention, we say that type γ plays (a, a′) at history ht if he announces action a
and takes action a′ at ht .

State variables: Our construction keeps track of two state variables:

1. Let l(ht ) be the log likelihood ratio between the honest type and the opportunistic type under 
player 2’s belief at ht after they observe {a0, ..., at−1, m0, ..., mt−1} but before they observe 
player 1’s period t announcement. Let L(ht) ≡ el(ht ) be the likelihood ratio at ht .

2. Let v(ht ) denote the opportunistic type’s continuation value at ht .

The initial values of these state variables are v(h0) = 7
4 and l(h0) = log π0

1−π0
≤ 0.

Let

v ≡ 2 + δ

1 + δ
, (A.1)

which is strictly between 1 and 7
4 when δ is close to 1.

In equilibrium, learning takes place if and only if l(ht) /∈ {−∞, +∞}, and learning stops 
if l(ht ) ∈ {−∞, +∞}. The set of histories where learning takes place is partitioned into two 
classes: histories where v(ht ) > v and histories where v(ht ) ≤ v. We will verify later that at 
every history where l(ht ) /∈ {−∞, +∞} and v(ht ) ≤ v, it must be the case that l(ht ) ≤ 0.

We claim that by our construction, at every history at which active learning takes place,

v − 2(1 − δ)

δ
≤ v(ht ) ≤ 2 − ε

2
, (A.2)

which implies, when δ > 1 − ε
7 , that the opportunistic type’s continuation value is between v − ε

2
and 2 − ε

2 once learning stops. The upper bound holds if, at every history where the opportunistic 
type plays (H, L) with positive probability, they are indifferent between playing (H, L) and 
playing either (H, H) or (L, L), at least one of which yields a stage-game payoff less than 
2 − ε

2 . Since v∗ > v for large enough δ, the lower bound holds if in every active learning period, 

either v(ht ) ≥ v(ht−1), or v(ht−1) ≥ v and v(ht ) ≥ v(ht−1)−2(1−δ)
δ

.
We first describe players’ strategies when lt = −∞ by showing that every payoff v ∈ [1 −

ε
2 , 2 − ε

2 ] can be attained in some equilibrium of the game where player knows that player 1 is 
the opportunistic type. Then we describe players’ strategies when active learning takes place.

No reputation phase: We show that there exists δ ∈ (0, 1) such that for every δ > δ and v ∈
[1 − ε, 2 − ε

2 ], there exists an equilibrium where the opportunistic type’s continuation value is v
in the repeated complete information game where player 1 is known to be the opportunistic type 
and their discount factor is δ.

According to Fudenberg and Maskin (1991), for every η > 0, there exists δ ∈ (0, 1) such that 
when δ > δ, there exists a sequence v∗

0, v∗
1 , ..., v∗

n.... ∈ {1 − ε
2 , 2 − ε

2 } such that

v = (1 − δ)

+∞∑
δtv∗

t ,
t=0

17
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and for every s ∈N ,

(1 − δ)

+∞∑
t=s

δt−sv∗
t ∈ (v − η, v + η).

Next, the opportunistic type’s payoff is 1 − ε
2 in the following equilibrium: Player 1 announces 

L regardless of the realization of At , player 1 plays L as long as L ∈ At and player 2 plays N . 
Hence, for every v ∈ [1 − ε, 2 − ε

2 ], player 1’s continuation value is v in an equilibrium where:

1. For every t such that v∗
t = 2 − ε

2 , player 1 announces H when H ∈ At and announces L
otherwise, and takes an action that coincides with their announcement. Player 2 best replies 
to player 1’s announcement. If player 1 plays an action different from their announcement, 
then play the continuation equilibrium where player 1’s payoff is 1 − ε

2 .
2. For every t such that v∗

t = 1 − ε
2 , player 1 announces L no matter what and plays L no matter 

what. Player 2 plays N regardless of player 1’s announcement.

In what follows, we assume that δ > max{δ, 1 − ε/7}.

Active learning phase: high continuation values If ht is such that v(ht ) > v, then there are two 
subcases. If v(ht ) is such that

v(ht ) − (1 − δ)

δ
> 2 − ε

2
, (A.3)

The honest type plays (L, L) with probability 3
4 and plays (H, H) with probability 1

4 . The op-
portunistic type plays (H, L) with probability 1

2 and plays (H, H) with probability 1
2 . Player 2 

best replies to player 1’s announced action.

1. After observing (L, L) at ht , the posterior log likelihood ratio is lt+1 = +∞, and starting 
from period t + 1, player 2 best replies to player 1’s announced action in every future period 
until they have observed player 1 not keeping their word (after which they play N in all future 
periods). Hence, the opportunistic type’s continuation value after playing (L, L) is 2 − ε

2 . 
Inequality (A.3) implies that the opportunistic type has no incentive to play (L, L) at ht .

2. After observing (H, L) at ht , the posterior log likelihood ratio is lt+1 = −∞ and the op-
portunistic type’s continuation value in period t + 1 equals v(ht+1) ≡ v(ht )−3(1−δ)

δ
. Since 

v(ht ) < 2 − ε
2 , we have 1 < v(ht+1) < v(ht ) < 2 − ε

2 , which means that v(ht+1) can be de-
livered by some continuation equilibrium after player 2 knows that player 1 is opportunistic.

3. After observing (H, H) at ht , player 1’s continuation value in period t + 1 is v(ht+1) ≡
v(ht )−2(1−δ)

δ
, which is strictly less than v(ht ) since v(ht ) < 2 − ε

2 . The posterior likelihood 
ratio after observing (H, H) is l(ht ) − log 2.

If v(ht ) is such that

v(ht ) − (1 − δ)

δ
≤ 2 − ε

2
,

then player 2 best replies to player 1’s announced action. The honest type plays (L, L) with 
probability 1 − ε

2 and plays (H, H) with probability ε
2 . The opportunistic type plays (H, H)

with probability ε and plays (L, L) with probability 1 − ε. Player 1’s continuation value in 
18
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period t + 1 is v(ht )−(1−δ)
δ

after playing (L, L) at ht and is v(ht )−2(1−δ)
δ

after playing (H, H)

at ht . The log likelihood ratio is l(ht ) + log
1− ε

2
1−ε

after playing (L, L) and is l(ht ) − log 2 after 
playing (H, H).

Active learning phase: low continuation values If ht is such that v(ht ) ≤ v, then player 2 plays 
N when player 1 announces L and plays T with probability v(ht )

2 when player 1 announces H . 
The honest type plays (L, L) with probability 1 − ε

2 and plays (H, H) with probability ε
2 . The 

opportunistic type plays (H, H) with probability ε2 , plays (H, L) with probability (L(ht ) + 1) ε
2 , 

and plays (L, L) with complementary probability. One can verify that as long as l(ht) ≤ 0, i.e., 
L(ht ) ≤ 1, the above mixed strategy is feasible and player 2 is indifferent between T and N
when player 1 announces H .

By construction, if (H, H) is played at ht , then l(ht+1) = l(ht ) and the opportunistic type 
stage-game payoff equals their continuation value at ht , and let their continuation value in period 
t + 1 to equal v(ht ). After playing (L, L),

l(ht+1) = l(ht ) + log
1 − ε/2

1 − (L(ht ) + 2)ε/2

and the opportunistic type’s continuation value is v(ht )−(1−δ)
δ

.
After playing (H, L), l(ht+1) = −∞ and the opportunistic type’s continuation value is

v(ht ) − (1 − δ)(2v(ht ) + 1)

δ
.

The above payoff is between 3
2 −ε and 2 −ε when δ > 1 − ε

7 , which means that it can be delivered 
by an equilibrium when player 2 knows that player 1 is opportunistic. With these continuation 
values, the opportunistic type is indifferent between playing (L, L) and playing (H, L).

Verifying feasibility of opportunistic type’s equilibrium strategy: By construction (A.2) holds 
at every history where active learning takes place, and since δ > 1 − ε

7 , the opportunistic type’s 
continuation value is between v − ε

2 and 2 − ε
2 once learning stops.

In order to show that player 1’s mixed strategy in the low continuation value phase is well-
defined, we show that l(ht ) is less than 0 at every history where l(ht ) is finite and v(ht ) ≤ v. This 
is sufficient for the existence of a mixed strategy for the opportunistic type that makes player 2 
indifferent between N and T after player 1 announces H .

Learning takes place in the next period only if player 1 plays (H, H) or (L, L) so it is suffi-
cient to keep track of histories in which either (H, H) or (L, L) is played. In particular, player 
2’s beliefs and the opportunistic type’s continuation value are the same when (H, H) is played at 
a low continuation value history, so every history in which (H, H) or (L, L) is played is equiv-
alent to a shortened history in which all instances of (H, H) played in a low continuation value 
period are removed. In such a shortened history, whenever (L, L) is played, the opportunistic 
type gets a within-period payoff of 1, while when (H, H) is played, the payoff is 2.

Let {ξt }t∈N be such that ξt ∈ {H, L}. Let

u(ξt ) ≡
{

2 if ξt = H

1 if ξt = L
(A.4)

be the stage-game payoffs in periods where active learning takes place and H or L are announced. 
For a given finite sequence ξ ≡ {ξ0, ..., ξs}, let NL(ξ) be the number of L in this sequence and 
let NH (ξ) be the number of H in this sequence.
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Recall that the opportunistic type’s discounted average payoff is v∗ > v ≡ 2+δ
1+δ

. If player 1 re-
ceives stage-game payoff u(ξt ) in period t for every t ∈ {0, 1, ..., s}, then player 1’s continuation 
value in period s + 1, denoted by vs+1 satisfies

v∗ =
s∑

t=0

(1 − δ)δtu(ξt ) + δs+1vs+1,

Lemma 2. Suppose δ is large enough such that (1 − δ)2 + δv < v∗. For every s ∈ N and every 
finite sequence {ξ0, ..., ξs}. If

v∗ −
s∑

t=0

(1 − δ)δtu(ξt ) ≤ δs+1v (A.5)

v∗ −
k∑

t=0

(1 − δ)δtu(ξt ) > δk+1 v − 2(1 − δ)

δ
for every k ≤ s, (A.6)

then

NL(ξ) < NH (ξ ). (A.7)

The payoff bound in (A.2) implies that (A.6) must hold at any s at which active learning is 
still ongoing, and (A.5) holds at every low continuation value history.

Proof. We show that for every finite sequence ξ satisfying NL(ξ ) ≥ NH (ξ), ξ cannot satisfy 
both (A.5) and (A.6). We show by strong induction on NL(ξ). For every ξ such that NL(ξ ) = 1
and NL(ξ) ≥ NH (ξ), inequality (A.5) is violated since (1 − δ)2 + δv < v∗ and there can be at 
most one H in such a sequence given that NL(ξ) ≥ NH (ξ).

Suppose for every ξ such that NL(ξ) ≤ N and NL(ξ) ≥ NH (ξ ), ξ violates either (A.5) or 
(A.6). Suppose by way of contradiction that there exists ξ̂ ≡ {ξ̂0, ..., ξ̂s} such that NL(ξ̂) = N +1, 
NL(ξ̂) ≥ NH (ξ̂), and ξ̂ satisfies both (A.5) and (A.6). We consider two cases, depending on the 
largest t ∈ {0, 1, ..., s} such that ξ̂t = L, which we denote by t̂ .

1. Suppose t̂ = s, i.e., L appears in the last period of sequence ξ̂ . Then the presumption that ξ̂
satisfies (A.6) implies that the continuation value in period s−1 is strictly more than v−2(1−δ)

δ
, 

and ξ̂ satisfies (A.5) implies that the continuation value in period s is weakly less than v. 
Hence

v − 2(1 − δ)

δ
< v̂t = (1 − δ)u(ξ̂s) + δv̂t+1 ≤ (1 − δ) + δv. (A.8)

Plugging in the expression that v ≡ 2+δ
1+δ

, we have

v − 2(1 − δ)

δ
= (1 − δ) + δv.

This leads to a contradiction.
2. Suppose t̂ < s, i.e., L does not appear in the last period of sequence ξ̂ . By definition, ξ̂t̂+1 =

H . Consider another sequence ξ ′ ≡ {ξ ′ , ..., ξ ′ } defined as ξ ′ ≡ ξ̂t for every t ≤ t̂ − 1, and 
0 s−2 t
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ξ ′
t ≡ ξ̂t+2 for every t ≥ t̂ . Since NL(ξ̂) = N + 1 and NL(ξ̂) ≥ NH (ξ̂), we have NL(ξ ′) = N

and NL(ξ ′) ≥ NH (ξ ′). Since ξ̂ satisfies (A.5) and (A.6), we have

v∗ ≤
{ t̂−1∑

t=0

(1 − δ)δtu(ξ̂t )
}

+ (1 − δ){δt̂ + 2δt̂+1} +
{ s∑

t=t̂+2

(1 − δ)δtu(ξ̂t )
}

+ δs+1v

and for every t̂ + 2 ≤ k ≤ s,

v∗ >
{ t̂−1∑

t=0

(1−δ)δtu(ξ̂t )
}
+(1−δ){δt̂ +2δt̂+1}+

{ k∑
t=t̂+2

(1−δ)δtu(ξ̂t )
}
+δs+1 v − 2(1 − δ)

δ
.

Additionally, since ξ̂t̂ = L and N = NL(ξ̂1, . . . , ξ̂t̂−1) ≥ NH (ξ̂1, . . . , ξ̂t̂−1), and (A.6) must 
hold because t − 1 < s,

v∗ >
{ t̂−1∑

t=0

(1 − δ)δtu(ξ̂t )
}

+ δt̂+1v,

since otherwise, ξ̂1, . . . , ξ̂t̂−1 would contradict the inductive hypothesis. Since

v − 2(1 − δ)

δ
= 1 + 2δ

1 + δ
<

2 + δ

1 + δ
= v,

we have:

v∗ ≤
t̂+1∑
t=0

(1 − δ)δtu(ξ̂t ) +
s−2∑
t=t̂

(1 − δ)δtu(ξ̂t+2) + δs−1v + (1 − δ2)(
1 + 2δ

1 + δ
δt̂ − δs−1v)

− (1 − δ2)

s−2∑
t=t̂+1

(1 − δ)δtu(ξ̂t+2)

≤
t̂∑

t=0

(1 − δ)δtu(ξ̂t ) +
s−2∑
t=t̂

(1 − δ)δtu(ξ̂t+2) + δs−1v + (1 − δ2)(δt̂ − δs−1)v

− (1 − δ2)(δt̂ − δs−1)v

≤
{ t̂−1∑

t=0

(1 − δ)δtu(ξ̂t )
}

+
{ s−2∑

t=t̂

(1 − δ)δtu(ξ̂t+2)
}

+ δs−1v.

(A.9)

Since v(ht̂ ) > v, by the construction of ξ ′, either ξ ′
t = H or ξ ′

t = L and the continuation 
value is greater than v; therefore, the lower bound on continuation values in (A.2) continues 
to hold, and

v∗ >

t̂+1∑
t=0

(1 − δ)δtu(ξ̂t ) +
k−2∑
t=t̂

(1 − δ)δtu(ξ̂t+2) + δk−1.
v − 2(1 − δ)

δ
(A.10)

That is, ξ ′ satisfies both (A.5) and (A.6). This contradicts our induction hypothesis since 
NL(ξ ′) = N and NL(ξ ′) ≥ NH (ξ ′).
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The two parts together imply that for every ξ such that NL(ξ) ≥ NH (ξ), ξ cannot satisfy both 
(A.5) and (A.6). So in order for ξ to satisfy both (A.5) and (A.6), we need NL(ξ) < NH (ξ). �

The change in the log-likelihood ratio in each active learning period in which (H, H) is played 
is 0 if v(ht ) ≤ v and − log(2) if v(ht ) > v. In the active-learning periods in which (L, L) is 

played, if v(ht ) > v it increments by log
1− ε

2
1−ε

, and if v(ht ) ≤ v, then if L(ht ) ≤ 1, the log-

likelihood ratio increments by at most log
1− ε

2

1− 3ε
2

. Let

�(ξt ) ≡
{ − log 2 if ξt = H

log
1− ε

2

1− 3ε
2

if ξt = L.
(A.11)

By definition, this is an upper bound on the change in the log likelihood ratio if l(ht) ≤ 0. There-
fore, if lt ≤ 0 for every period t ≤ s in which v(ht ) ≤ v, then player 2’s posterior log likelihood 
ratio in period s + 1, denoted by ls+1 satisfies:

ls+1 ≤ l0 +
s∑

t=0

�(ξt ).

Indeed, l0 ≤ 0, so by Lemma 2 and by induction on periods in which v(ht) ≤ v, we have

l0 +
s∑

t=0

�(ξs) ≤ 0. (A.12)

Hence l(ht ) ≤ 0 at every history ht such that l(ht ) is finite and v(ht ) ≤ v. Thus, the constructed 
strategy profile is feasible for all ε < 2/5 and δ > max{δ, 1 − ε/7}.

Appendix B. Comparison with existing approaches

Ekmekci et al. (2012) (hereafter, EGW) derives a lower bound on the patient player’s payoff 
using the entropy approach. Their approach does not apply directly to our setting, because the 
short-run players observe the long-run player’s announcement before moving, and announce-
ments and actions are imperfectly recalled.

To summarize, EGW considers a model where the long-lived player 1 is replaced in every 
period with probability ρ > 0 and their type is redrawn after each replacement. They show that 
when player 1 is commitment type ω̂ with probability μ(ω̂), the rational type’s payoff from 
imitating commitment type ω̂ is at least:

wω̂

(
− (1 − δ) logμ(ω̂) − log(1 − ρ)

)
,

where wω̂(x) decreases in x and converges to type ̂ω’s optimal commitment payoff when x → 0. 
Their result implies that player 1 can guarantee his commitment payoff when δ is close to 1 and 
ρ is close to 0. Their proof uses the following bound on the divergence between the equilibrium 
distribution of player 2 histories and that induced by the commitment type. In particular, let P 2,n

σ

be the probability measure over player 2n’s histories under equilibrium σ , and let P̂ 2,n
σ ′ be the 

probability measure over player 2n’s histories when player 1 deviates and imitates commitment 
type ω̂. Let d(·||·) be the KL-divergence between two distributions. They show that for every 
n ∈N ,
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n−1∑
t=0

E[d(Prσ (ht+1
2 |ht

2)||Prω̂(ht+1
2 |ht

2))] = d
(
P̂

2,n
σ ′

∥∥∥P 2,n
σ

)
≤ − logμ(ω̂) − n log(1 − ρ),

(B.1)

i.e., that the chain rule for relative entropy applies to hn and d
(
P̂

2,n
σ ′

∥∥∥P 2,n
σ

)
is bounded from 

above by a linear function of n, with coefficient − log(1 − ρ).
Let dσ,ω̂

δ be the expected discounted-average relative entropy between the predictions of 
player 2s over their next signal when they rely on the equilibrium distribution and when they 
rely on the distribution under player 1’s deviation. EGW shows that

d
σ,ω̂
δ := (1 − δ)

∞∑
t=0

δtE[d(Prσ (ht+1
2 |ht

2)||Prω̂(ht+1
2 |ht

2))]

≤ −(1 − δ) logμ(ω̂) − log(1 − ρ).

(B.2)

Following the argument in Gossner (2011), the ex-ante expected payoff of the long-run player 
from imitating commitment type ω̂ is bounded by wω̂(d

σ,ω̂
δ ).

To directly apply EGW’s approach to show that player 1 receives at least their commitment 
payoff, we need the coefficient in the RHS of (B.1) to converge to 0 in the relevant limit, and 
the limit of ε-confirming best response payoffs to approach the commitment payoff. However, 
in our setting the announcements occur prior to the short-run player’s move. Recall that ht

2 =
{y1, . . . , yt−1, mt }. We cannot apply the chain rule for relative entropy to conclude that the sum 
of expected relative entropy under equilibrium and ω̂ is equal to the ex-ante KL divergence of 
histories under the two strategy profiles: because mt is imperfectly recalled, it is part of ht

2 but 
no other period’s history, so the left-hand side of (B.1) fails to hold.

Intuitively, the deviating strategy (e.g., the naive commitment strategy) may not coincide with 
the equilibrium strategy of any type. The expected discounted entropy approach uses the chain 
rule to bound the expected total discounted surprise of the short run player over histories by 
a constant term, irrespective of δ, using the fact that the long run player plays exactly like the 
positive-probability commitment type ω̂. In our setting, there is always a nonzero probability 
that an honest player makes a sequence of unlikely announcements, but this event depends on 
independent draws of Ãt , period by period. Although the decrease in the long-run player’s repu-
tation (i.e., likelihood ratio between the honest type and the opportunistic type) after every such 
announcement is bounded, the sum over all periods may be unbounded as δ → 1, and so the 
discounted average does not vanish.

Note that the average expected entropy of outcomes for short run players prior to their ob-
servation of the announcement, i.e. with respect to histories ĥt

2 = {y1, . . . , yt−1}, does vanish. 
However, it does not yield the desired payoff bound. The reason is that, prior to knowing the pe-
riod’s announcement, the distribution of yt does not identify which promises the long-run player 
will keep. Indeed, if, under ω̂ the long-run player breaks their promise with small probability 
(say, η), then the set of strategies for the long-run player that generate the same outcome distri-
bution includes a profile in which they announce ω̂ with probability η

2−3η
; and conditional on 

doing so, they keep their promise with probability only η, whereas if they announce a different 
action, they keep their promise with probability (1 − η). This distribution of play is possible 
when the long-run player is very likely to be opportunistic (note that there is no explicit bound 
on the distribution of the long-run player’s type, only on the induced distribution of outcomes). 
The short-run player’s best response to such a strategy need not yield the long-run player playing 
ω̂ a payoff approaching what they achieve when the short-run player best responds to ω̂. As a 
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result, one cannot directly apply EGW’s approach to show that player 1 can secure his commit-
ment payoff in the limit where η approaches 0 and δ approaches 1 by playing as if they were a 
commitment type.
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