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Motivation

Social learning with homogenous preferences and rational Bayesian agents.
e Agents’ actions are asymptotically efficient if
their private signals are unbounded (Smith and Sorensen),

or their action space is sufficiently rich (Lee).

Critiques of rational social learning models.

e Requires too much sophistication (e.g., double-counting problems).

Attempts to relax the rationality assumption.

e DeGroot (1974), Golub and Jackson (2010), Molavi et al. (2012,2018):
Non-Bayesian rule-of-thumb learning rules.

e Eyster and Rabin: Agents are Bayesian but fails to recognize the
double-counting problem when aggregating different sources of info.



Model

Social Learning in a Doubly Rich Setting

Social learning with unbounded signals and a continuum of actions.
e Time ¢t =1,2,... One agent arriving in each period.
e State @ € {0, 1}, equally likely.
e Action of agent #: g, € [0, 1].
e Agent ¢ observes s; and {ay,...,a;—1 } and then chooses ;.
e Agent t’s payoff is —(a;, — ®)?, so a; = E[@|s, ay,...,a,_1].
e Agent ¢’s private signal s, ~ G(-|®), conditionally independent.

— The signal structure can be represented by the distribution over
private beliefs conditional on , i.e., Fy € A[0, 1].

< We assume that for every @, F»(0) =0, Fp(l) =1, Fy is
differentiable, and has continuous and positive density f,.

— Unbounded private beliefs, no perfectly revealing signal.

o Letp; =Elo|s].

The log likelihood ratio (LLR) is /; = log 1£ I/ -




Model

Benchmark: Sophisticated Bayesian Social Learning

Suppose agents are Bayesian and rational (i.e., fully sophisticated).

Theorem: Smith and Sorensen (2000)

Suppose the agents’ private signals are unbounded, then conditional on
every ® € {0,1}, a; — @ almost surely.

Theorem: Lee (1993)

In environments where a, € [0, 1], then conditional on every ® € {0, 1},
a; — o almost surely.

Sophisticated Bayesian agents’ actions are asymptotically efficient.



Model

Naive Bayesian Agents

Form of naivete: Best response trailing naive inference (BRTNI)

e Each player best responds to the belief that each of her predecessors
follows their own signal.

e This reasoning neglects the fact that their predecessors also make
inferences from their own predecessors’ actions.

What are the beliefs of these naive players?

Player 1’s posterior log likelihood ratio is /;.

Player 2’s posterior log likelihood ratio is /1 + I>.

Player 3’s posterior log likelihood ratio is 211 + I + I3.

If P3 is rational, then they would ignore P1’s action and their posterior
should be I} + 1, + 13.

Player 4’s posterior log likelihood ratio is 41y + 21, + I3 + 4.



Model

Naive Bayesian Agents

What are players’ beliefs if they engage in BRTNI?
e Player 1’s posterior log likelihood ratio is /;.
e Player 2’s posterior log likelihood ratio is [} + /5.
e Player 3’s posterior log likelihood ratio is 21; + I, + /3.
e Player 4’s posterior log likelihood ratio is 41; + 21, + I3 + 4.

e Player n’s posterior log likelihood ratio is /,, + ZZ;} X

Players over-weight the private signals of early players.
e P1’s private signal s; should have weight 1/7 in Player t’s belief.

e When players are naive, s; has weight 1/2 in all players’ beliefs.

It is hard to correct early players’ mistakes even with rich action spaces and
unbounded private signals (will affect the asymptotic outcome).



Results

Inefficiencies in All Periods

When players are naive, for every r < 1, there exists 0 > 0 such that

Pr(at>rf0rallt€N‘a):O> > 0.

Naive players’ actions are bounded away from efficiency in all periods with
positive probability.

e Intuition: Since naive agents over-weigh the signals of earlier agents, it
is hard to correct earlier players’ mistakes.

Next: How the proof incorporates this intuition.



Results

Proof

When players are naive, for every r < 1, there exists 6 > 0 such that

Pr(at>rf0rallt€N’a):0) > 0.

Let L, be the log likelihood ratio after a naive player observes all
predecessors’ actions but before observing their own private signal.

e Given that the prior is uniform, log 1f’a[ =L +1,.

One can show by induction that ,, = 2L, | + 1, for every n € N.
e Public LLR in period n— 1: ¥"_7log 1%

1—az*

e Player n — 1’s action satisfies log 121771,1 =L, 1+,

e Public LLR in period n is L, | +log lf" L =20, 1+1,_1.

an—1



Results

Proof

When players are naive, for every r < 1, there exists 6 > 0 such that

Pr(at>rf0rallt€N’a):0> > 0.

When players are naive, L, satisfies L, = 2L, | +1,.
e Pick an arbitrary r € (1/2,1), let R = log > 0.
e Question: What if L, > 3R and /, > —R for every t € N?
Since L, = I;, LLR of P1’s action is greater than 3R.
Since P2’s LLR is L, + 1, and [, > —2R, we have log +2

1—ay

> R.
Since L3 = 2L, +1, > 6R—2R =4R and /3 > —3R, log +2~ —a > R.

IfL, > 3R and I, > —tR for every t € N, then L, > (n+ 1)R and

_ap

log 1~ - > R for every n > 2 (which implies that a; > r).




Results

Proof

When players are naive, for every r < 1, there exists 0 > 0 such that

Pr(at>rf0rallt€N‘a):O> > 0.

IfL, >3Rand I, > —tR for every t € N, then L, > (n+ 1)R and
log 1“” > R for everyn > 2.

Intuition behind the lemma: Suppose @ = 0,
e [, > 3R means that P1’s signal is in favor of @ = 1.
e [, > —tR: mistake of P1’s signal becomes harder to correct over time.

Why? Since P1’s signal carries a large weight I needs to be
sufficiently negative in order to drive log +<

1—



Results

Proof

When players are naive, for every r < 1, there exists 0 > 0 such that

Pr(at>rforallt€N‘a):O> > 0.

If Ly, > 3R and l; > —tR for everyt € N, then L, > (n+ 1)R and

log ~%— > R for every n > 2.

l1—ap

Since L, > 3R with positive prob conditional on @ = 0, we only need to
show that event
{l, > —tR forevery t € N}

occurs with prob bounded away from 0 conditional on @ = 0.



Results

Proof

‘We need to show that

Pr{l, > —tR forevery t € N‘w = 0} > 0.

By Markov inequality,

1

(IR)ZIE[lﬂw =0].

Pr{lt < ftR‘a) :0} §Pr{l,2 > (tR)z‘a):O} <
Bound the value of Q = E[/?|@ = 0] from above:

Blflo=0)= [ (1og ") fo(s)ds <maxiio(s)ls € 0.1)) [ (1og ) as

a bounded number
=n2/3

Hence, there exists a bounded Q such that for every ¢ € N,

Pr{z, > —tR’co:O} > 1 —%.



Results

Proof

We need to show that
Pr{lt > —tR forevery t € N‘w = 0} > 0.

We have shown that there exists Q > 0 such that for every r € N,

Q
(tR)>

Pr{l, > —tR’a):O} >1—

Let 7 € N be such that 1 — # > 0 for every t > 7.

e We know that Pr{l, > —tR for every ¢ < T‘a) = 0} > 0.

o We need to show that Pr{l, > —tR for every t > r‘a) = 0} > 0.



Results

Proof

We have shown that for every € N,

Pr{i > —Rlo=0}>1- R

We need to show that Pr{l, > —tR for every t > ”L“a) = 0} > 0.

Pr{lt > —tR for every t > fc‘w = ()} >0, (1 - %)

:exp{Zlog(l—%)} zexp{Z—%} zexp(—%)

>1 >7

uses inequality log(1—x)>—x
To summarize, both Pr {lt > —tR for every t > T‘ 0= O} and
Pr {l, > —tRforeveryt < 7|®w = O} are bounded away from 0, which

implies that Pr {lt > —tR for every t‘ o= O} is bounded away from O.



Results

Limit Points of Naive Agents’ Actions

When agents are naive, for every r < 1, there exists § > 0 such that

Pr(a,>rf0rallt€N‘a):O> > 0.

The agents’ limiting actions can be wrong, but what can they be?

When agents are naive, their beliefs (and hence their actions) converge
almost surely to either 0 or 1.

Lesson: If their beliefs are wrong in the long run, then they must be fully
confident in the wrong state.

e Cannot happen when agents are Bayesian and sophisticated.



Results

Proof

To show that players’ beliefs converge a.s. to 0 or 1, it is sufficient to show
that L, diverges to +oo or —eoo almost surely as n — oo,

Recall the formula for L,;:

n—

n—1 a
L,= Z log !
=1

1
_ 2n7tfll
1 — day 1 !

=
Therefore,

n—1
2!, =Y 27,
=1

If we can show that Z;’;ll 27!, converges as n — oo, then L,, must be
diverging to +-oo or —oo,



Results

Proof

We need to show that Y/~ 12711, converges as n — +oo.

Kolmogorov Three-Series Theorem (Theorem 5.3.3 in Chung’s textbook)

Suppose {X,, }nen are independent random variables. Then Y., X,, converges
a.s. if the following conditions hold for some A > 0

1. ¥, Pr(|X,| > A) converges,
2. YLE[X,1{|X,| < A}] converges,

3. Y, Var (X,11{|Xn\ < A}) converges.

Let X,, be 27", conditional on @ = 0.

Y Pr(|X,| > Alo=0) =Y Pr(27"|l,| > Alo =0) =Y Pr(4 ", > A*|o =0)

)

nip 72 2 =
47"E[l |a> 0] < E[ln\z’z—m (which is bounded)




Results

Proof

Kolmogorov Three-Series Theorem (Theorem 5.3.3 in Chung’s textbook)

Suppose {X,, }nen are independent random variables. Then Y, X,, converges
a.s. if the following conditions hold for some A > 0

1. ¥, Pr(|X,| > A) converges,
2. Y, EX,1{|X,| <A}] converges,

3. %, Var(X,,l{|X,,\ SA}) converges.

Let X,, be 27", conditional on @ = 0.

YE [2—"1n1{2—"1,, <A} ‘ o= o] <YE [2—"|1n|

0 =0] gZE[z-n(zﬁﬂ)‘w:o}

=Y 2"+Y 2"E[l}Jo =0] = 1+E[/;|]@=0] (which is bounded).



Results

Proof

Kolmogorov Three-Series Theorem (Theorem 5.3.3 in Chung’s textbook)

Suppose {X,, }nen are independent random variables. Then Y., X, converges
a.s. if the following conditions hold for some A > 0

1. ¥, Pr(|X,| > A) converges,
2. YLE[X,1{|X,| < A}] converges,

3., Var(X,11{|Xn\ §A}) converges.

Let X,, be 27", conditional on @ = 0.

ZVar(Xn1{|X,,| < A}‘a) - o) <YE {4*"15

wzo} <E[R|o=0].

The convergence of all three series uses the fact that E[2|@ = 0] is bounded.

e Hinges on the existence of continuous density f;,.



Results

Stable Interior Beliefs are Likely to Be Wrong

Suppose players’ beliefs remain stable at some interior level for a long time,
what happens?

For every [c,d] C (1/2,1), there exists T € N such that if a; € [c,d] for every
t€{1,2,...,T}, then

Pr (a) = 0)(a1,...7ar)> > Pr (a) = 1‘(a1,...,aT))

Why is @ = 0 more likely to be the correct state when agents’ belief stablize
at an interval above 1/2?

e Suppose a; € [¢,d] C (1/2,1). If ® = 1, then I, I3,...,], are likely to be
high, which means that a, will approach 1 in the long run.

e Hence, g, € [c,d] for a long time indicates that o is likely to be 0.



Results

Stable Interior Beliefs are Likely to Be Wrong

For every [c,d] C (1/2,1), there exists T € N such that if a; € [c,d| for every
t€{1,2,...,T}, then

Letu =log 1= and v = log 1%;.

e Iflog

l_al,...,log l—a

v>log : Gl _ Y log : aTa Fl > tutlg

which means that
liy1 <v—tu.

e When ¢ is large enough, s, is a signal in favor of state 0.

e When /1 <v—ruforallt <T and T being large enough, the posterior
prob of @ = 0 under a rational agent’s belief is less than 1/2.



Networks & General Redundancy Neglect

Network Among Players

Doubly rich setting, agents are Bayesian, but believe that all their
predecessors’ actions only reflect their own private signals.

e Agents’ belief converges to the wrong state with positive prob.

e Agents’ actions are asymptotically inefficient with positive prob.

How general is this finding?
e What if players cannot observe all their predecessors’ actions?

e What if players exhibit redundancy neglect, but not as extreme as in the
previous model?



Networks & General Redundancy Neglect

Eyster and Rabin (2014)

e Time t = 1,2, ... One agent arriving in each period.

e State @ € {0, 1}, equally likely.

e Action of agent t: a; € [0,1].

e Agent t’s payoff is —(a, — ®)?, so a, = E[0|s;, a1, ..., a,_1].

e Agent #’s private signal s, ~ G(-|), conditionally independent.
< same assumption as before (unbounded, no revealing signal).

e Agent 7 observes s; and {az}en, Where N, C {1,2,....1—1}.

— Players in N, are the neighbors of agent 7.
— The network is deterministic and is common knowledge.

e We write / > j if there exist k(0), ...,k(n) such that k(0) = j, k(n) =i,
k(m— 1) € Ny for every m € {1,2,...,n}.

Player i can observe player j’s action along some path.



Networks & General Redundancy Neglect

Strategies & Regularity Assumptions on Strategies

Let /; be the LLR of agent #’s private signal and let o = log litar'

Agent 1’s strategy is ot,(al, e at_l,lt), measurable w.r.t (lt7 (otr)TeN(,)).

Strictly Increasing Strategies

Players’ strategies are strictly increasing in private signals if for every t € N
and (0, ..., 1), 0 is a strictly increasing function of l;.

Boundedly Increasing Strategies

Players’ strategies are boundedly increasing if there exists K € R such that
foreveryteN, (ay,...,04_1), and l; # I, we have

<K|l,-1]

'
at(ala"-,at—lvlt) _at<al)~-~aat—lalt)




Networks & General Redundancy Neglect

General Redundancy Neglect Learning Rules

Redundancy Neglect Strategies

Players’ strategies exhibit redundancy neglect if
1. Foreverytandj < t, oy is weakly increasing in o; regardless of

(oa,...,04_1) and ;.

2. There exist N € N and x > 1 such that for every player t > N + 1 and
7 >z, o increases by at least x(7' — z) if each of Qy_p, ..., O
increases from z to 7.

This is a joint condition on the network and players’ learning rule.

e Player ¢ observes at least one of their last N predecessors.

The learning rule in the previous model satisfies both requirements.

[ ] al‘ = lt + {L’_:ll a‘[.

How does rational Bayesian learning violate these two properties?



Networks & General Redundancy Neglect

General Redundancy Neglect Learning Rules

Redundancy Neglect Strategies

Players’ strategies exhibit redundancy neglect if

1. Foreverytandj < t, 0y is weakly increasing in o; regardless of
(oq,...,04_1) and ;.

2. There exists N € N and x > 1 such that for every player t > N + 1 and
7 >z, o increases by at least x(7' — z) if each of Qy_p, ..., O
increases from z to 7.

Suppose there are four individuals.
e 2 and 3 can both observe 1, but cannot observe each other.
e 4 observes 1, 2, and 3.

1’s action is [, 2’s action is @ + I, 3’s action is o + 3.
e 4’s optimal actionis I} + 1 + 13+ 4.

e His strategy is Iy + 0 + 03 — ¢ (violates requirement 1).



Networks & General Redundancy Neglect

General Redundancy Neglect Learning Rules

Redundancy Neglect Strategies

Players’ strategies exhibit redundancy neglect if
1. Foreverytandj <t o is weakly increasing in o regardless of

(a1,...7at_1) and l[.

2. There exists N € N and x > 1 such that for every player t > N + 1, if
each of 04_n, ..., 01 increases by at least A, then oy increases by at
least xA.

Suppose every agent can observe all their predecessors.

e Agent n’s optimal action o, = oy, + 1, (violates requirement 2).



Networks & General Redundancy Neglect

Result

If players’ strategies are strictly and boundedly increasing, and exhibit
redundancy neglect, then

e conditional on ® = 0, ®; converges to +oo with positive prob,

e conditional on ® = 1, o; converges to —oo with positive prob.

The proof uses ideas similar to that of their earlier result.
e Since players over-react to earlier players’ private signals,
early players’ mistakes are hard to correct,

so incorrect actions can be taken asymptotically with positive prob.



Networks & General Redundancy Neglect

When will rational players anti-imitate?

Suppose that players are rational and Bayesian.
e Player r anti-imitates player j if ¢ > j and ¢ is a strictly decreasing
function of o.
Players i,j, k,l form a shield if
e jand k observe i,
e jand k cannot observe each other,

e [observes i, j, and k.

Suppose all players are rational. There exists anti-imitation in equilibrium if
and only if the network contains a shield.

Anti-imitation cannot arise under the canonical observation structure.
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