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A Proof of Statement 2 Theorem 1

A.1 Construction of T-Period Strategy

Given that λ(α∗1) does not belong to the closure of Λ(θ∗, α∗1), I construct T ∈ N that depends only on λ(α∗1)

and players’ stage-game payoffs, as well as a T -period strategy for the strategic types such that:

• Every strategic type in Θb
(θ∗,α∗

1) plays an action that belongs to ∆(A∗1) in each of the T periods.

• Player 2’s posterior likelihood ratio vector in period T is bounded away from Λ(θ∗, α∗1) regardless of

player 1’s actions.

Let d(·, ·) be the Hausdorff distance. Let A∗1 ≡ supp(α∗1) and let Ht∗ be the set of period t histories such that

player 1 has played actions in A∗1 in every period from 0 to t− 1. Let λ(ht) be the likelihood ratio vector with

respect to α∗1 induced by player 2’s belief at history ht. Let ext(·) denote the exterior of a set.

Proposition A.1. For every ς > 0, every α∗1 ∈ A∗1 that is nontrivially mixed, and every prior likelihood

ratio vector λ(α∗1) ∈ ext
(
Λ(θ∗, α∗1)

)
, there exist T ∈ N as well as strategies for strategic types other than type

θ∗ denoted by {σθ̃}θ̃ 6=θ∗ such that there exists ς > 0 such that d
(
λ(hT ),Λ(θ∗, α∗1)

)
> ς for every hT ∈ HT∗ .

First, note that the conclusion of this proposition is trivially true when the prior likelihood ratio vector λ(α∗1)

does not belong to the closure of Λ(θ∗, α∗1). Therefore, it is without loss of generality to focus on the case in

which the prior likelihood ratio vector λ(α∗1) belongs to the set cl
(

Λ(θ∗, α∗1)
)∖

Λ(θ∗, α∗1).

Abusing notation, let λθ(ht) be the posterior likelihood ratio at history ht between strategic type θ and

commitment type α∗1, and let λθ(ht, a1) be this posterior likelihood ratio after observing action a1 at ht. Recall

that we are constructing strategies where every strategic type in Θb
(θ∗,α∗

1) plays a (potentially mixed) action

that belongs to ∆(A∗1) in each period, {λθ(ht)} is a martingale under the probability measure induced by
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commitment type α∗1, so we have Eα∗
1
[λθ(h

t+1)|ht] = λθ(h
t) for every ht ∈ Ht∗ and θ ∈ Θb

(θ∗,α∗
1). Pick an

arbitrary a1 ∈ A∗1 and let β ≡ α∗1(a1) for every a1 ∈ A1. Since α∗1 is nontrivially mixed, we have β ∈ (0, 1).

Consider strategies of player 1 that satisfy:

λθ(h
t, a′1) = λθ(h

t, a′′1) for every a′1, a
′′
1 ∈ A∗1\{a1}, θ ∈ Θb

(θ∗,α∗
1), and ht ∈ Ht∗.

If the strategic types other than θ∗ are playing mixed actions that belong to ∆(A∗1), then for every θ ∈ Θb
(θ∗,α∗

1),

the likelihood ratio between type θ and type α∗1 is a martingale. This implies that:

βλ(ht, a1) + (1− β)λ(ht, a′1) = λ(ht) for every a′1 ∈ A∗1\{a1}. (A.1)

Consider the following strategy for the strategic types that belong to Θb
(θ∗,α∗

1):

σθ̃(h
t)[ã1] ≡


βλ(ht,a1)[θ̃]

λ(ht)[θ̃]
if ã1 = a1

α∗
1(ã1)λ(ht,ã1)[θ̃]

λ(ht)[θ̃]
if ã1 ∈ A∗1\{a1}.

Let M ≡
∑

θ∈Θb
(θ∗,α∗1)

λθ
ψ∗
θ
< 1. The assumption that λ(α∗1) ∈ ext(Λ(θ∗, α∗1)) implies that M > 1. Let

Λ(M) ≡
{
λ̃
∣∣∣λ̃� 0 and

∑
θ∈Θb

(θ∗,α∗1)

λ̃θ
ψ∗θ

= M
}

(A.2)

and let Ψ(M) be the set of intersections of Λ(M) on the coordinates. We know that co(Ψ(M)) = Λ(M). Let

Λς0 ≡ int
({
λ ∈ Λ(M)

∣∣d(λ,Λ(θ∗, α∗1)
)
> ς
})
.

Given M > 1, when ς is small enough, we have d
(
Ψ(M),Λ(θ∗, α∗1)

)
< ς/2, in which case Ψ(M) ⊂ Λς0. So

there exists ς > 0 such that for every ς ∈ (0, ς), we have co(Ψ(M)) = co(Λς0) = Λ(M). Take such a small

enough ς > 0. I define a sequence of sets {Λςk}
+∞
k=1 recursively according to

Λςk ≡
{
λ
∣∣∣ there exist λ′, λ′′ ∈ Λςk−1 such that βλ′ + (1− β)λ′′ = λ

}
. (A.3)

By definition, Λςk−1 ⊂ Λςk for all k ∈ N. Let Λς ≡
⋃+∞
k=0 Λςk. I show the following lemma:

Lemma A.1. We have Λς = int(Λ(M)).
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PROOF OF LEMMA A.1: By definition, Λς ⊂ int(Λ(M)). In what follows, I show that Λς ⊃ int(Λ(M)). Let

k(θ∗, α∗1) ≡ |Θb
(θ∗,α∗

1)|. For every λ∗ ∈ int(Λ(M)), the Carathéodory Theorem (Eckhoff 1993) implies that

there exists X0 ≡ {λi}
k(θ∗,α∗

1)
i=1 ⊂ Λς0 such that λ∗ ∈ int(co(X0)). Define Xk with k ∈ N recursively according

to:

Xk ≡
{
λ
∣∣∣ there exist λ′, λ′′ ∈ Xk−1 such that βλ′ + (1− β)λ′′ = λ

}
. (A.4)

Let X ≡ ∪∞k=0Xk. I show the following Lemma:

Lemma A.2. We have X is a dense subset of co(X0).

PROOF OF LEMMA A.2: Let Υ ≡ int
(

co(X0)\X
)

. I show that Υ = {∅}. Suppose by way of contradiction

that Υ 6= {∅}, then for every λ ∈ ∂Υ and every η > 0, there exists λη ∈ Λς ∩ B(λ, η). Since there exist

λ∗ ∈ Υ and λ′, λ′′ ∈ ∂Υ such that λ∗ = βλ′ + (1 − β)λ′′. We know that when η is small enough, there also

exist λ∗∗ ∈ B(λ∗, η) ⊂ Υ and λ̂, λ̃ ∈ X such that λ∗∗ = βλ̂+ (1− β)λ̃, leading to a contradiction. The above

argument implies that Υ = {∅}, and therefore, co(X0)\X is hallow, so X must be dense in co(X0).

Back to the proof of Lemma A.1. If λ∗ ∈ X , then since X ⊂ Λς , we have λ∗ ∈ Λς . If λ∗ /∈ X , then for

every η > 0, there exists λ′ such that λ′ ∈ B(λ∗, η)∩X . According to the definition of X , there exists K ∈ N

such that:

λ′ =

k(θ∗,α∗
1)∑

i=1

%(i)λi,

where every %(i) can be written as the sum of terms in the form of (1−β)mβn with 0 ≤ m+n ≤ K,m,n ≥ 0.

Pick η > 0 small enough such that B(λi, η) ⊂ Λς0 for every i ∈ {1, 2, ..., k(α∗1, θ)}, we have:

λ∗ =

k(θ∗,α∗
1)∑

i=1

%(i)
(
λi + (λ∗ − λ′)

)
. (A.5)

Since λi + (λ∗ − λ′) ∈ Λς0 for every i. Equation (A.5) implies that λ∗ ∈ Λς0.

Since Λς = int(Λ(M)), int(Λ(M)) is compact, and {Λςk}
∞
k=1 is an open cover, the Heine-Borel Finite

Cover Theorem implies the existence of T ∈ N such that Λ(M) ⊂
⋃T
k=0 Λςk.

A.2 Upper Bound on Continuation Payoff after the First Deviation

I construct strategies for strategic types other than θ∗ at histories where player 2’s posterior belief attaches zero

probability to type θ∗, i.e., type θ∗ can reach such histories only after he deviates from his equilibrium strategy.

I derive a uniform upper bound on type θ∗’s continuation value after he has deviated from his equilibrium

strategy for the first time, no matter when and how he deviates. My construction modifies the one in the proof
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of Statement 1 (in Subsection 3.3 of the main text) while allowing for commitment action α∗1 to be mixed.

Throughout this section, I write a∗2 in short for a∗2(θ∗, α∗1). Let u1(θ, a1, a2) = 0 as long as θ 6= θ∗ or a2 6= a∗2.

Let A1 ≡ {a1
1, ..., a

n
1} and let vi ≡ u1(θ, ai1, a

∗
2) for i ∈ {1, 2, ..., n} with vi > 0 for all i. Without loss of

generality, I assume that v1 ≥ v2 ≥ ... ≥ vn. Let v ≡ (v1, ..., vn) ∈ Rn. I derive an upper bound on type θ∗’s

payoff at histories where player 2’s posterior belief µ̃ satisfies the following conditions:

• µ̃ attaches zero probability to strategic type θ∗.

• The distribution over strategic types is such that there exists a′2 6= a∗2 such that:

µ̃(α∗1)
(
u2(φα∗

1
, α∗1, a

′
2)− u2(φα∗

1
, α∗1, a

∗
2)
)

+
∑
θ̃∈Θ

µ̃(θ̃)
(
u2(θ̃, α∗1, a

′
2)− u2(θ̃, α∗1, a

∗
2)
)
> ς. (A.6)

• There exists η > 0 such that for every α1 ∈ Ã∗1 ≡ A∗1\{α∗1} such that µ̃(α1) > 0, we have:

v∗ ≡ α∗1 · v > η + α1 · v (A.7)

with “·” denote the inner product between two vectors in Rn.

Let µ∗ be the prior probability of commitment types other than α∗1 and let l be the number of commitment types

other than α∗1.

Proposition A.2. For every µ̃ that satisfies the above requirements, there exist σ1 ≡ {σθ̃}θ̃ 6=θ∗ and σ2 such

that:

1. σ2 is optimal for player 2 given σ1 and µ at every history.

2. No matter how type θ∗ plays at belief µ̃, his continuation value is no more than

v∗ − η + %(δ, µ∗, ς), (A.8)

where limδ→1 %(δ, µ∗, ς) = 0 for every (µ∗, ς) ∈ [0, 1)× (0,+∞).

If l = 0, then all the strategic types other than θ∗ play α∗1 in every period with probability 1, player 2’s

belief about player 1’s type remains constant. Since a∗2(θ∗, α∗1) is strictly suboptimal for player 2 under such

a belief according to (A.6). We know that type θ∗’s continuation value is 0, which concludes the proof for the

case where l = 0.
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If l 6= 0, the proof is similar to the constructive proof in the main text. Let p ∈ (0, 1) be chosen such that:

µ(α∗1)
(
u2(φα∗

1
, α∗1, a

′
2)− u2(φα∗

1
, α∗1, a

∗
2)
)

+ p
∑
θ̃∈Θ

µ(θ̃)
(
u2(θ̃, α∗1, a

′
2)− u2(θ̃, α∗1, a

∗
2)
)

= ς/2,

where a′2 is the same as (A.6). According to (A.6), such p exists. The strategic types play α∗1 in every period

with probability p, and adopts non-stationary strategy σ(α1) with probability (1 − p)/l for every α1 ∈ Ã∗1. I

use θ(α1) to denote the strategic type who plays σ(α1).

In what follows, I establish the existence of σ(α1) under which type θ’s payoff is bounded from above by

(A.8). Let µt be the belief in period t with µ0 ≡ µ. Let

βt(α1) ≡ µt
(
θ(α1)

)/
µt
(
α1

)
and β(α1) ≡ µ

(
θ(α1)

)/
µ
(
α1

)
.

I will be keeping track of the l-dimensional likelihood ratio vector {βt(α1)}
α1∈Ã∗

1
. First, for small enough

ε > 0, there exists αε1 ∈ ∆(A1) such that αε1(a1) > ε for all a1 ∈ A1 and

∑
θ̃∈Θb

(θ∗,α∗1)

µ(θ̃)u2(θ̃, αε1, a
′
2) >

∑
θ̃∈Θb

(θ∗,α∗1)

µ(θ̃)u2(θ̃, αε1, a
∗
2).

For every α1 ∈ Ã∗1, let

β(α1) ≡ inf
{
β ∈ R+

∣∣∣µ(α1)u2(φα1 , α1, a
′
2) + β

∑
θ̃∈Θb

(θ∗,α∗1)

µ(θ̃)u2(θ̃, αε1, a
′
2)

> µ(α1)u2(φα1 , α1, a
∗
2) + β

∑
θ̃∈Θb

(θ∗,α∗1)

µ(θ̃)u2(θ̃, αε1, a
∗
2)
}
. (A.9)

By definition, β(α1) ∈ (0,∞). Next, I describe strategy σ(α1).

1. If βt(α1) > β(α1) for all α1 ∈ Ã∗1 ≡ A∗1\{α∗1}, then type θ(α1) plays αε1 for every α1 ∈ Ã∗1. Since a∗2

is strictly dominated by a′2 in period t, type θ∗’s stage-game payoff in this period is 0.

2. If βt(α1) ≤ β(α1) for some α1 ∈ Ã∗1, type θ(α1) plays mixed strategy ᾰ1(α1) ∈ ∆(A1) for every

α1 ∈ Ã∗1, which will be described below. Abusing notation, I write ᾰ1 instead of ᾰ1(α1).

Next, I specify ᾰ1(α1). For every constant κ ∈ (0, 1), let

Gκ ≡ {i|vi > v∗ − κη} and Bκ ≡ {j|vj ≤ v∗ − κη}.
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By construction, Gκ and Bκ are non-empty, and {Gκ, Bκ} is a partition of A1. For every i ∈ Gκ and j ∈ Bκ,

let βκ(i, j) ∈ [0, 1] be defined as:

βκ(i, j)vi + (1− βκ(i, j))vj = v∗ − κη. (A.10)

I construct ᾰ1(α1) for every α1 ∈ Ã∗1 in the following lemma:

Lemma A.3. For every α1 ∈ Ã∗1, there exists ᾰ1 ∈ ∆(A1) such that for every i ∈ Gκ and j ∈ Bκ,

ᾰ1(ai1) > α(ai1) and ( ᾰ1(ai1)

α1(ai1)

)βκ(i,j)( ᾰ1(aj1)

α1(aj1)

)1−βκ(i,j)
> 1. (A.11)

PROOF OF LEMMA A.3: For every ι ∈ R+ and α1(i), α1(j) ∈ (0, 1), define the following function of ε > 0:

f
(
ε
∣∣ι, α1(i), α1(j)

)
≡
(
α1(i) + ε

)β(
α1(j)− ιε

)1−β
.

Expand f around ε = 0, we obtain:

f
(
ε
∣∣ι, α1(i), α1(j)

)
= α1(i)βα1(j)1−β +

(
βα1(i)β−1α1(j)1−β − ι(1− β)α1(i)βα1(j)−β︸ ︷︷ ︸ )ε+O(ε2).

The term in the curly bracket is strictly positive if and only if:

ι <
β

1− β
α1(j)

α1(i)
. (A.12)

For every i ∈ Gκ and j ∈ Bκ, replace β with βκ(i, j), and replace α1(i), α1(j) with α1(ai1) and α1(aj1), we

can define ι(i, j) analogously. According to (A.10), we have

βκ(i, j) =
v∗ − κη − vj

vi − vj
.

Plugging the above expression into (A.12), we have:

ι(i, j) <
α1(aj1)

α1(ai1)

v∗ − κη − vj

vi − (v∗ − κη)
.

For some ζ > 0 small enough, let

ᾰ1(ai1) ≡ α1(ai1) + ζα1(ai1)
[
vi − (v∗ − κη)

]
for every i ∈ Gκ, (A.13)
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and let

ᾰ1(aj1) ≡ α1(aj1)− ζα1(aj1)
[
(v∗ − κη)− vj

]
+ ζ(1− κ)η for every j ∈ Bκ. (A.14)

We can verify that first,
α1(aj1)− ᾰ1(aj1)

ᾰ1(ai1)− α1(ai1)
< ι(i, j),

for all i ∈ Gκ and j ∈ Bκ, and hence, inequality (A.11) holds when ζ is small enough. Second, ᾰ1(ai1) >

α1(ai1) for all i ∈ Gκ. Third,

∑
i∈Gκ

ᾰ1(ai1) +
∑
j∈Bκ

ᾰ1(aj1) =
∑
i∈Gκ

α1(ai1) +
∑
j∈Bκ

α1(aj1) = 1,

which guarantees that the constructed ᾰ1 is indeed a probability measure.

For some intuition behind the constructed ᾰ1 in Lemma A.3, player 1’s action is classified into good and

bad actions. Strategic type θ∗ can obtain a stage game payoff no less than v∗ − κη if and only if he plays an

action in Gκ and player 2 best responds by playing a∗2(θ∗, α∗1).

• By definition of β(α1), a∗2 is not a best respond when βt(α1) > β(α1) for all α1 ∈ Ã∗1.

• When βt(α1) ≤ β(α1) for some α1 ∈ Ã∗1, the constructed ᾰ1 implies that βt+1(α1) > βt(α1) if

a1,t ∈ Gκ. Moreover, there exists a constant χ > 0 such that βt+1(α1) ≥ χβt(α1) for all a1 ∈ A1.

In another word, in every period such that type θ obtains flow payoff no less than v∗ − κη, the likelihood

ratio βt(α1) increases. Since ᾰ1(a1) is bounded from below for every a1 ∈ A1, βt(α1) will not decline

too fast even when actions in Bκ are being played. Once βt(α1) > β(α1) for all α1 ∈ Ã∗1, a∗2 is strictly

dominated by a′2 and type θ obtains a low stage game payoff in that period.

• Equation (A.11) ensures that when δ is close enough to 1, type θ can obtain payoff no more than v∗−κη

while keeping at least one βt(α1) below its cutoff, β(α1).

This is because for every α1 ∈ Ã∗1, let r(ai1|α1) ≡ ᾰ1(ai1)

α1(ai1)
. Consider the following constraint optimization

problem:

max
α1∈∆(A1)

n∑
i=1

α(ai1)(vi − v∗ + κη),

subject to:

min
α1∈Ã∗

1

{ n∑
i=1

α(ai1) log r(ai1|α1)
}
≤ 0
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If the value of this program is non-negative, then there exists at least one α1 ∈ Ω̃ such that

n∑
i=1

α(ai1) log r(ai1|α1) ≤ 0

at the optimum. Focusing on a revised program with the same objective but just the above inequality

constraint. This is a relaxed program of the original one. Since the objective function and the constraint

both are linear, there exists an optimum in which there exists at most two ai1 such that α(ai1) > 0, i.e.

arg max
i∈Gκ

∣∣∣vi − v∗ + κη

log r(ai1|α1)

∣∣∣ and arg min
i∈Bκ

∣∣∣vi − v∗ + κη

log r(ai1|α1)

∣∣∣.
The value of the above program is strictly negative.

• Let

K ≡
⌈ − log ε

mina1∈Gκ log ᾰ1(a1)
α1(a1)

⌉
+ 1,

and when δ close enough to 1, choose M large enough such that

Kv1 < (K + 1)M. (A.15)

The above inequality puts an upper bound on type θ’s payoff and ensures that he cannot get more than

v∗ − κη by choosing actions in Gκ too frequently such that βt(α1) exceeds β(α1).

Therefore, under the constructed strategy, type θ’s highest continuation payoff after he first deviates is bounded

below v∗ − κη when δ is large enough. Since κ can take any value between 0 and 1, the bound in (A.8) is es-

tablished in the δ → 1 limit. Moreover, according to our construction, κ only depends on δ and {β(α1)}
α1∈Ã∗

1
,

and the latter only depend on µ∗ and ς .

A.3 Equilibrium Construction

Let n ≡ |A1|. Let A1 ≡ {a1
1, ..., a

n
1} and let A∗1 ≡ supp(α∗1) = {a1

1, ..., a
m
1 } with 2 ≤ m ≤ n. Recall the

definition of a′2 6= a∗2(θ∗, α∗1), which implies that there exists 1 ≤ j ≤ m such that a′2 /∈ BR2(θ∗, aj1). I write

a∗2 for player 2’s best reply to α∗1 at state θ∗. Every type other than θ∗ has the same stage-game payoff function,

which is constantly zero. Let type θ∗’s stage-game payoff function be given as:

u1(θ∗, ai1, a2) =

 vi if a2 = a∗2

0 otherwise
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where v = (v1, v2, ..., vm, 0, 0..., 0) ∈ Rn has the following properties:

• vi > 0 for all 1 ≤ i ≤ m.

• v∗ ≡ α∗1 · v > η + α1 · v for every α1 ∈ Ã∗1.

The existence of such v and η follows directly from the separating hyperplane theorem using the fact that

α∗1 /∈ co(Ã∗1). Moreover, one can verify that v∗ − η/2 > η/2 > 0. According to the above construction, type

θ∗’s commitment payoff from α∗1 is strictly greater than his commitment payoff from any other commitment

action in A∗1.

Since λ ∈ int
(
Λ(θ∗, α∗1)

∖
Λ(θ∗, α∗1)

)
, there exists M > 1 such that λ ∈ Λ(M). Let M̃ ≡ βM + (1 − β)

with β ∈ (0, 1) specified later. There exists λ∗ � λ such that λ∗ ∈ Λ(M̃) and

∑
θ̃∈Θb

(θ∗,α∗1)

(λ(θ̃)− λ∗(θ̃))
(
u2(θ̃, α∗1, a

′
2)− u2(θ̃, α∗1, a

∗
2)
)
> 0 (A.16)

for some a′2 6= a∗2. Let β be close enough to 1 such that for every λ̃ ∈ Λ(M̃) with d(λ̃,Λ(θ∗, α∗1)) > ς , we

have:

d
(
λ̃+ (λ− λ∗),Λ(θ∗, α∗1)

)
> ς/2.

Consider the following strategy profile. I start from describing player 1’s strategies for types other than θ.

• Strategic types that are not θ∗ and do not belong to Θb
(θ∗,α∗

1): Play any commitment strategy in A∗1
other than α∗1.

• Strategic types that belong to Θb
(θ∗,α∗

1):

– From period 0 to T − 1, type θ̃ plays σ∗ with probability λ∗(θ̃)/λ(θ̃); plays σ̂(α1) with probability(
λ(θ̃)− λ∗(θ̃)

)/
lλ(θ̃) for every α1 ∈ Ã∗1 ≡ A∗1\{α∗1}, where λ∗ ∈ Rk is defined in (A.16).

– In the beginning of period T , compute the likelihood ratio vector of all the bad strategic types and

the commitment types, denoted by λ(hT ) and plays σ̆(λ(hT )).1

In what follows, I describe strategies σ∗, σ̂(α1) and σ̆(α1).

• σ∗ : Consider prior belief λ̃. Since λ̃ ∈ Λ(M̃) with M̃ > 1, according to Proposition A.1, there exist

{σ
θ̃
}
θ̃ 6=θ∗ and T ∈ N such that d

(
λ(hT ),Λ(θ∗, α∗1)

)
> ς for every hT consisting of actions in supp(α∗1).

Under σ∗, type θ̃ plays according to strategy σ
θ̃

from period 0 to T − 1.

1If player 2 has ruled out commitment type α∗
1 by period T , then let λ(hT ) = (∞,∞, ...,∞).

9



• σ̂(α1) : Player 1 plays α1 from period 0 to T − 1.

• σ̆(λ(hT )) : Suppose an action a1 /∈ A∗1 has occurred in hT , then every strategic type in Θb
(θ∗,α∗

1) plays

σ(α1) starting from period T , where σ(α1) is constructed in Proposition A.2.

Suppose all actions played from period 0 to T − 1 belong to A∗1, according to the construction of β or

equivalently M̃ , we have d(λ(hT ),Λ(θ∗, α∗1)) > ς/2. There exists a2(hT ) 6= a∗2 such that:

∑
θ̃∈Θb

(α∗1,θ)

λ(hT )(θ̃)
(
u2(θ̃, α∗1, a2(hT ))− u2(θ̃, α∗1, a

∗
2)
)
> 0

Let p(hT ) ∈ (0, 1) be chosen such that

(
u2(φα∗

1
, α∗1, a2(hT ))−u2(φα∗

1
, α∗1, a

∗
2)
)

+p(hT )
∑

θ̃∈Θb
(θ∗,α∗1)

λ(hT )(θ̃)
(
u2(θ̃, α∗1, a2(hT ))−u2(θ̃, α∗1, a

∗
2)
)
> 0

Type θ̃ plays α∗1 in every period with probability p(hT ) and with probability (1 − p(hT ))/l, plays

σa2(hT )(α1) for every α1 ∈ Ã∗1, where σa2(hT )(α1) is the strategy σ(α1) constructed in Proposition

A.2 applying to a2(hT ) instead of a′2.

Play belongs to the normal phase in period t if ht occurs with positive probability under type θ∗’s equilibrium

strategy. Play belongs to the abnormal phase in period t if ht occurs with zero probability under type θ∗’s

equilibrium strategy. I describe type θ∗’s strategy in the normal phase, i.e. histories at which he has never

deviated. Later on, I will bound his continuation value after his first deviation. Type θ∗’s equilibrium strategy

is pure starting from period 0 until period Mδ ∈ N, where Mδ an integer that I will specify later in the proof.

• In period t ∈ {0, 1, ...,m− 1}, plays at−1
1 .

• From period m to period Mδ, plays aj1 with j ≤ m and vj < v∗ − η/4.

According to Proposition A.2, type θ∗’s continuation payoff after he deviates for the first time cannot exceed

v∗ − 3η/4 when δ is large enough.

Next I show how to compute Mδ for δ close enough to 1. For every M ∈ N and δ ∈ (0, 1), let V (M, δ) be

the set of continuation values (starting from period M + 1) for type θ∗ conditional on the following event:

• The period M history occurs with positive probability under type θ∗’s equilibrium strategy.

According to the folk theorem in Fudenberg and Maskin (1991), there exists δ ∈ (0, 1) such that for every

δ > δ, V (M, δ) is a convex subset of [0, v1] for every M . Under this assessment, player 2’s posterior belief in
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period M + 1 attaches probability 0 to all types in Θb
(θ∗,α∗

1).

For every 0 ≤ t ≤ M , let ut be type θ∗’s expected payoff in period t conditional on staying in the normal

phase. By definition, ut ≤ vj < v∗ − κη. When M = 1, there exists δ such that for all v ∈ V (1, δ) and δ > δ,

v > v∗ − η

4

and given δ is large enough,

(1− δ)vn + δv > v∗ − η

4
.

Moreover, for any δ ∈ (0, 1), there exists M δ ∈ N such that for all M > M δ,

(1− δ)
M∑
t=0

δtvj + δT+1v1 < v∗ − 3η

4
.

Therefore, for every δ > δ, either one of the two circumstances will occur:

1. There exists Mδ ∈ [0,M ] such that [v∗ − 3η/4, v∗ − η/4] ∩ V (Mδ, δ) 6= {∅},

2. Or there exists Mδ ∈ [0,M ] such that v > v∗ − η/4 for every v ∈ V (Mδ, δ), and v′ < v∗ − 3η/4 for

every v′ ∈ V (Mδ + 1, δ).

The second situation cannot occur when δ is close enough to 1 since by definition, the difference between

V (Mδ + 1, δ) and V (Mδ, δ) cannot be strictly greater than

1− δ
2

∣∣∣ max
θ,a1,a2

u1(θ, a1, a2)− min
θ,a1,a2

u1(θ, a1, a2)
∣∣∣,

which is strictly greater than η
2 when δ is sufficiently close to 1. Hence, there exists an on-path play such that

type θ∗’s continuation value is at least v∗ − 3η
4 under such a strategy, and given that his continuation value is

no more than v∗ − 3η
4 in the first period at which he reaches some off-path history. Hence, type θ∗ has a strict

incentive to play his equilibrium strategy, from which his expected payoff is v∗ − η
4 , i.e., it is strictly bounded

below v∗ his commitment payoff from α∗1.

B Equilibrium Construction in the Example

In this appendix, I verify a claim made on page 8 of the main text that the likelihood ratio between type θ2 and

type α∗1 is no less than 5 at every on-path history where I has been played in at least one period from 0 to T .
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Recall that T is the unique integer that satisfies 5
2(1−ε)T ∈ [5(1− ε)2, 5(1− ε)). In the example, I also assume

that ε ∈ (0, 1
8 ] and that player 2’s prior belief µ satisfies µ(θ2)

µ(α∗
1) = 5

2 , and for every t ∈ {0, ..., T − 1}, if I has

never been played before, then type θ2 plays H with probability

P (ε, t) =
2(1− ε)t+1 − 1

2(1− ε)t − 1
, (B.1)

and plays I with probability

1− P (ε, t) =
2ε(1− ε)t

2(1− ε)t − 1
.

First, I compute player 2’s posterior belief at on-path histories where player 1 first plays I in period t∗ for

t∗ ∈ {0, 1, ..., T − 1}. According to Bayes rule, after observing H from period 0 to t∗ − 1 and observing I in

period t∗, the posterior likelihood ratio between type θ2 and type α∗1 equals

µ(θ2)

µ(α∗1)︸ ︷︷ ︸
=5/2

·P (ε, t∗)

ε
·Πt∗−1

t=0

P (ε, t)

1− ε
=

5

2
· 2(1− ε)t∗

2(1− ε)t∗ − 1
· 2(1− ε)t∗ − 1

(1− ε)t∗
= 5.

Second, I compute player 2’s posterior belief when player 1 plays H from period 0 to T − 1 and plays I in

period T . Given that type θ2 plays I with probability 1 in period T if he plays H from period 0 to T − 1, player

2’s posterior likelihood ratio between type θ2 and type α∗1 equals

µ(θ2)

µ(α∗1)
· 1

ε
·ΠT−1

t=0

P (ε, t)

1− ε
=

5

2ε
· 2(1− ε)T − 1

(1− ε)T

Since 5
2(1−ε)T ∈ [5(1− ε)2, 5(1− ε)), we have

2(1− ε) ≥ 1

(1− ε)T
≥ 2(1− ε)2.

Hence,
5

2ε
· 2(1− ε)T − 1

(1− ε)T
=

5

2ε

(
2− 1

(1− ε)T
)
≥ 5

2ε
(2− 2(1− ε)) = 5.

The two cases together finish our proof.

C Proof of Lemma 3.1

For every n ∈ N, let X̂n ≡ δn(Xn−α∗1(a1)). Define a triangular sequence of random variables {Xk,n}0≤n≤k,k,n∈N,

such that Xk,n ≡ ξkX̂n, where ξk ≡
√

1
σ2

1−δ2
1−δ2k . Let Zk ≡

∑k
n=1Xk,n = ξk

∑n
k=1 X̂n. According to the
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Lindeberg-Feller Central Limit Theorem, Zk converges in law to N(0, 1). By construction,

∑k
n=1 X̂n

1 + δ + ...+ δk−1
= σ

√
1− δ2k

1− δ2

1− δ
1− δk

Zk.

The RHS of the above expression converges in law to a normal distribution with mean 0 and variance σ2 1−δ2k
1−δ2

(1−δ)2
(1−δk)2

.

The variance term converges to O
(

(1 − δ)
)

as k → ∞. According to Theorem 7.4.1 in Chung (1974), we

have:

sup
x∈R
|Fk(x)− Φ(x)| ≤ C0

k∑
n=1

|Xk,n|3 ∼ C1(1− δ)
3
2 ,

where C0 and C1 are constants, Fk is the empirical distribution of Zk and Φ(·) is the cdf of the standard normal

distribution. Both the variance and the approximation error converge to 0 as δ → 1.

Therefore, for every η > 0, there exists δ∗ ∈ (0, 1) such that for every δ > δ∗, there exists K ∈ N, such

that for all k > K,

P(α∗
1,σ2)

(∣∣∣ ∑k
i=1 X̂n

1 + δ + ...+ δk−1

∣∣∣ ≥ η) < η

n
.

The conclusion of Lemma 3.1 is obtained by taking k →∞.

References

[1] Chung, Kai-Lai (1974) A Course in Probability Theory, Third Edition, Elsevier.

[2] Pei, Harry (2021) “Reputation for Playing Mixed Actions: A Characterization Theorem,” Journal of
Economic Theory, forthcoming.

13


	Proof of Statement 2 Theorem 1
	Construction of T-Period Strategy
	Upper Bound on Continuation Payoff after the First Deviation
	Equilibrium Construction

	Equilibrium Construction in the Example
	Proof of Lemma 3.1

