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1. Introduction

I examine patient players’ returns from building reputations for playing mixed actions. To fix 
ideas, consider a profit-maximizing firm that needs to decide whether to imitate the behavior of 
an ethical firm that intrinsically cares about its worker and customers. Suppose the ethical firm 
commits to provide good customer service unless its worker is sick, and consumers can only 
observe the quality of service but not whether the worker is sick or healthy, then the ethical firm 
behaves as if it is mixing between providing good service and bad service.

The reputation results in Fudenberg and Levine (1989, 1992) imply that when consumers’ 
payoffs depend only on their actions and the firm’s action, there is no qualitative difference be-
tween establishing reputations for playing pure actions and establishing reputations for playing 
mixed actions. They show that in every equilibrium, a patient firm receives at least its commit-
ment payoff if it plays its commitment action in every period, no matter whether this commitment 
action is pure or mixed.

This paper shows that in interdependent value environments, whether the commitment action 
is pure or mixed has significant effects on a patient player’s payoff. I study a repeated game 
between a patient player 1 (e.g., firm) and a sequence of short-lived player 2s (e.g., consumers). 
Player 1 privately observes the realization of a state (e.g., product safety or durability) that is 
constant over time and affects both players’ stage-game payoffs, in addition to knowing whether 
he is strategic or committed. The strategic player 1 maximizes his discounted average payoff. 
The committed player 1 mechanically plays the same commitment action in every period, which 
can be pure or mixed and can depend on the state. This differs from Pei (2020) which assumes 
that all commitment types play pure strategies. Player 2s can observe all the actions taken in the 
past, but they cannot directly observe the state or the mixing probabilities.

My main result characterizes the set of interdependent value environments under which the pa-
tient player receives at least his commitment payoff in all equilibria regardless of his stage-game 
payoff function. My characterization implies that securing commitment payoffs from mixed ac-
tions requires more demanding conditions than securing commitment payoffs from pure actions. 
I also show by example that small perturbations to a pure commitment action can significantly 
reduce the patient player’s lowest equilibrium payoff.

Intuitively, when a commitment action is mixed, some pure actions in the support of this 
mixed commitment action can be played with strictly higher probability by some strategic types 
than by the mixed-strategy commitment type. If this is the case, then playing these pure actions 
increases the likelihood ratios between these strategic types and the mixed-strategy commitment 
type. In contrast, when the patient player plays a pure commitment action in every period, the 
likelihood ratio between every strategic type and that pure-strategy commitment type must be 
non-increasing. Therefore, more posterior beliefs are plausible in equilibrium when the com-
mitment action is mixed, making it harder for player 1 to secure his commitment payoff in all
equilibria.

My analysis unveils another difference between private and interdependent value environ-
ments, that when player 2’s best reply to the mixed commitment action depends on the state, 
player 1 cannot secure his mixed commitment payoff by imitating the mixed-strategy commit-
ment type. Again, this is because playing some actions in the support of a mixed commitment 
action can increase the likelihood ratio between some strategic types and this mixed-strategy 
commitment type. Since the state is persistent and affects player 2’s best reply to the commit-
ment action, player 2’s belief about the state in any given period can have a long-lasting effect on 
her future actions, which in turn affects the patient player’s continuation value. This suggests the 
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need for the patient player to take actions selectively in the support of the mixed commitment ac-
tion. To the best of my knowledge, this observation is novel in the reputation literature, since the 
existing reputation results are shown by bounding a patient player’s discounted average payoff 
when he imitates one of the commitment types.

However, taking actions selectively in the support of the mixed commitment action raises two 
new concerns. First, player 1 may play some low-payoff actions too frequently, in which case 
his expected payoff may fall below his commitment payoff. Second, given that player 1 may not 
play the mixed commitment action in every period, he may fail to convince his opponents that 
the mixed commitment action will be played in the future.

I establish a learning result that addresses both concerns. It shows that for every strategy pro-
file, player 1 can find a deviation under which (1) player 2 has an incentive to play the desirable 
best reply to the commitment action in every period under her posterior belief; (2) with probabil-
ity close to one, the discounted frequency of player 1’s action is close to the mixed commitment 
action; (3) in expectation, player 2 believes that player 1’s action is close to the mixed com-
mitment action in all except for a bounded number of periods. My proof uses the upcrossing 
inequality, the central limit theorem, and the entropy techniques in Gossner (2011).

This paper contributes to the reputation literature by examining players’ guaranteed returns 
from building reputations when values are interdependent and their opponents cannot perfectly 
monitor whether they have honored their commitment. It highlights the differences between 
building reputations for playing mixed actions and that for playing pure actions, as well as the 
role of interdependent values in driving these differences.

My analysis unveils the challenges to build reputations when learning is confounded. Even 
though the informed player can convince his opponents about his future actions, he may not 
teach them how to best reply when their payoff functions depend on a persistent state. This is 
related to Yang (2019) and Deb and Ishii (2021), in which confounded learning is caused by 
uncertainty in the monitoring structure. Yang (2019) focuses on private value environments and 
provides sufficient conditions under which the patient player can secure his commitment payoff. 
Deb and Ishii (2021) allow for interdependent values and uncertainty in the monitoring structure. 
They assume that for every pair of states, there exists an action of the long-run player such that 
the distribution over public signals induced by this action in the first state is different from that 
induced by any action in the second state. Their identification condition is violated in my model 
where the uninformed players learn about the informed player’s type only through the latter’s 
actions.

Ekmekci and Maestri (2019) and Ekmekci, Gorno, Maestri, Sun and Wei (2021) character-
ize an informed player’s payoffs and behaviors when monitoring is imperfect and a long-lived 
uninformed player decides whether to irreversibly stop interacting with the informed player. By 
contrast, my result highlights the challenges for a patient player to build reputations when his 
opponents can freely choose their actions.

2. Model

Time is discrete, indexed by t = 0, 1, 2.... A long-lived player 1 (he, e.g., a seller) with dis-
count factor δ ∈ (0, 1) interacts with an infinite sequence of short-lived player 2s (she, e.g., 
consumer), arriving one in each period and each plays the game only once. In period t , players 
simultaneously choose their actions (a1,t , a2,t ) ∈ A1 × A2.

Player 1 has private information about the state θ ∈ �, and whether he is strategic or com-
mitted. Both are drawn and fixed before period 0. If player 1 is strategic, then he can flexibly 
3
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choose his actions in order to maximize his discounted average payoff. If player 1 is committed, 
then he mechanically follows one of the several commitment plans. A typical commitment plan 
is denoted by γ : � → �(A1), according to which the committed player plays γ (θ) ∈ �(A1)

in every period when the realized state is θ . Let � be an exogenous set of feasible commitment 
plans that the committed player 1 can follow. Let

A∗
1 ≡ {α∗

1 ∈ �(A1)| there exist γ ∈ � and θ ∈ � such that γ (θ) = α∗
1} ⊂ �(A1), (2.1)

be the set of commitment actions. Intuitively, α∗
1 belongs to A∗

1 if and only if α∗
1 is played in at 

least one state under at least one commitment plan in �. Let γ s stand for player 1 being strategic. 
Let

μ ∈ �
(
� × ({γ s} ∪ �

)︸ ︷︷ ︸
player 1’s characteristics

)
, (2.2)

be player 2’s prior belief, which is a joint distribution of the state θ and player 1’s characteristics, 
namely, whether he is strategic or committed, and if he is committed, which commitment plan in 
� he is following.

For every θ ∈ �, I say that player 1 is (strategic) type θ if he is strategic and knows that the 
state is θ . Let μ(θ) be the prior probability of type θ . For every α∗

1 ∈ A∗
1, I say that player 1 is 

(commitment) type α∗
1 if he is committed and plays α∗

1 in every period. Let μ(α∗
1) be the prior 

probability of type α∗
1 .

Assumption 1. Sets �, �, A1, and A2 are finite, |A1| ≥ 2, |A2| ≥ 2, and μ has full support.2

Let ht ≡ {a1,s , a2,s}t−1
s=0 ∈Ht be a public history. Let H ≡ ⋃+∞

t=0 Ht be the set of public histo-
ries. Player 2’s history coincides with the public history. Player 1’s history consists of the public 
history and his type. Let σ1 ≡ (σθ )θ∈� be player 1’s strategy, with σθ : H → �(A1) the strategy 
for type θ . Let σ2 : H → �(A2) be player 2’s strategy. Let σ ≡ (

σ1, σ2
)

be a typical strategy 
profile. Let 
 be the set of strategy profiles.

For i ∈ {1, 2}, player i’s stage-game payoff in period t is ui(θ, a1,t , a2,t ), which is naturally 
extended to mixed actions and distributions over states. This formulation allows for interdepen-
dent values since u2 can depend on player 1’s private information θ . The solution concept is 
Bayes Nash equilibrium, or equilibrium for short. Let NE(δ) be the set of equilibria. For every 
θ ∈ �, type θ ’s lowest equilibrium payoff is denoted by:

vθ (δ) ≡ inf(
(σθ̃ )θ̃∈�,σ2

)∈NE(δ)
E(σθ ,σ2)

[ +∞∑
t=0

(1 − δ)δtu1(θ, a1,t , a2,t )
]
, (2.3)

where E(σθ ,σ2)[·] is the expectation induced by type θ ’s strategy σθ and player 2’s strategy σ2.
For every φ ∈ �(�) and α1 ∈ �(A1), let BR2(φ, α1) ⊂ A2 be player 2’s pure best replies to 

α1 when the state is distributed according to φ. Abusing notation, let BR2(θ, α1) ⊂ A2 be player 
2’s pure best replies to α1 when the state is θ . I make the following assumption that is satisfied 
for generic u2:

Assumption 2. For every α∗
1 ∈ A∗

1 and θ ∈ �, BR2(θ, α∗
1) is a singleton.

2 Cases in which |A1| = 1 or |A2| = 1 are trivial since either player 1 or player 2 has no choice to make.
4
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I use a∗
2(θ, α∗

1) to denote the unique element of BR2(θ, α∗
1). Type θ ’s commitment payoff from 

α∗
1 is3

vθ (α
∗
1) ≡ u1

(
θ,α∗

1 , a∗
2(θ,α∗

1)
)
. (2.4)

For given θ∗ ∈ � and α∗
1 ∈A∗

1, my main result provides conditions on μ and u2 under which

lim inf
δ→1

vθ∗(δ)︸ ︷︷ ︸
type θ∗’s lowest equilibrium payoff

≥ vθ∗(α∗
1)︸ ︷︷ ︸

type θ∗’s commitment payoff from α∗
1

for all u1. (2.5)

Benchmark: When u2 does not depend on θ , or more generally, player 2’s best reply to α∗
1 does 

not depend on θ , inequality (2.5) is implied by the results in Fudenberg and Levine (1989, 1992)
and player 1 can guarantee his commitment payoff by playing α∗

1 in every period. The intuition 
is that after observing player 1’s action frequency matches α∗

1 for a long time, player 2s will be 
convinced that player 1’s action is close to α∗

1 in all future periods, in which case they will play 
their myopic best reply to α∗

1 . Hence, by playing α∗
1 in every period, type θ∗ receives payoff 

vθ∗(α∗
1) in all except for a bounded number of periods.

3. Result

3.1. An example

I use an example to explain why establishing reputations for playing pure actions and that for 
playing mixed actions are different under interdependent values. Suppose � ≡ {θ∗, θ1, θ2} and 
players’ payoffs are:

θ∗ G M1 M2

H 1,3 − 1
2 ,0 − 1

2 ,0
I 2,−1 0,− 1

2 0,− 1
2

L 3,−2 1
2 ,−1 1

2 ,−1

θ1 G M1 M2

H 2, 1
2 2, 3

2 2,0
I 2,0 2,1 2,− 1

2
L 2,−2 2,−1 2,−1

θ2 G M1 M2

H 2, 1
2 2,0 2, 3

2
I 2,0 2,− 1

2 2,1
L 2,−2 2,−1 2,−1

Intuitively, player 1 is a firm that chooses between high (H ), intermediate (I ), and low (L) effort, 
and each player 2 is a consumer who chooses between buying a good product (G), a mediocre 
product with the first characteristic (M1), and a mediocre product with the second characteristic 
(M2). If the state is θ∗, then exerting effort is costly for the firm and purchasing the good product 
is strictly optimal for consumers when the firm exerts high effort. If the state is θi ∈ {θ1, θ2}, then 
effort is not costly and consumers prefer the mediocre product with characteristic i as long as the 
firm exerts intermediate or high effort.

Let α∗
1 ≡ (1 − ε)H + εI and let A∗

1 ≡ {α∗
1}. The parameter of interest is ε ∈ [0, 18 ]. Player 2’s 

best reply to α∗
1 in state θ∗ is G. Suppose state θ∗ occurs with probability 1 conditional on player 

1 being commitment type α∗
1 , player 2 has a strict incentive to play G if her belief satisfies the 

following three assumptions:

3 Notice that BR2(·) and a∗
2 (·) also depend on u2, vθ (·) also depends on u1 and u2, and NE(·) and vθ (·) also depend 

on μ, u1, and u2. I omit μ, u1, and u2 in those functions in order to avoid cumbersome notation.
5



H. Pei Journal of Economic Theory 201 (2022) 105438
1. Both the likelihood ratio between strategic type θ1 and commitment type α∗
1 , and the likeli-

hood ratio between strategic type θ2 and commitment type α∗
1 are no more than 5

2 .
2. Player 1 is either strategic type θ1 or strategic type θ2 or commitment type α∗

1 .
3. Both strategic type θ1 and strategic type θ2 play α∗

1 .

In what follows, I assume that player 2’s prior belief satisfies4:

μ(θ1)

μ(α∗
1)

= μ(θ2)

μ(α∗
1)

= 5

2
.

I make no restriction on the probability of type θ∗. When I vary ε later on in order to discuss the 
differences between pure and mixed commitment actions, I keep the probability of type θ∗ fixed 
throughout.

In the benchmark where ε = 0, i.e., α∗
1 = H . All the commitment actions are pure. Theorem 1’ 

in Pei (2020) implies that as δ → 1, type θ∗ receives at least his commitment payoff from α∗
1 in 

all equilibria. This is because μ(θ1)
μ(α∗

1 )
= μ(θ2)

μ(α∗
1 )

= 5
2 under player 2’s prior belief, and the likelihood 

ratio between each strategic type and commitment type α∗
1 cannot increase when player 1 plays 

the commitment action α∗
1 = H in every period.

However, for every ε ∈ (0, 18 ], there are equilibria where type θ∗’s payoff is no more than 
3
4 when he is arbitrarily patient, and this payoff is lower than his commitment payoff vθ∗(α∗

1) =
1 +ε. First, I construct such a low-payoff equilibrium when ε = 1

8 , which is relatively simple and 
can highlight the differences between pure and mixed commitment actions. After that, I construct 
low-payoff equilibria for any ε ∈ (0, 18 ].

• Type θ∗ plays L in every period. In period 0, type θ1 plays H and type θ2 plays I . In every 
period after period 1, both type θ1 and type θ2 play α∗

1 .
• Player 2’s beliefs at on-path histories are pinned down by her prior belief and player 1’s 

behavior.
– At histories where player 1 played H in period 0 and L has not occurred before, player 

2’s posterior belief assigns probability 5
7−2ε

to type θ1 and probability 2−2ε
7−2ε

to type α∗
1 .

– At histories where player 1 played I in period 0 and L has not occurred before, player 2’s 
posterior belief assigns probability 5

5+2ε
to type θ2 and probability 2ε

5+2ε
to type α∗

1 .
– At histories where player 1 played L in all previous periods, player 2’s posterior belief 

assigns probability μ(L)
μ(L)+μ(θ∗) to type L and probability μ(θ∗)

μ(L)+μ(θ∗) to type θ∗.
Next, I specify player 2’s posterior beliefs at off-path histories. If L was played in period 0
but H or I has been played after period 0, then player 2’s belief assigns probability 1 to type 
θ∗. If H was played in period 0 but L has been played after period 0, or if I was played in 
period 0 but L has been played after period 0, then player 2’s belief assigns probability 1

2 to 
type θ1 and assigns probability 1

2 to type θ2.
• Player 2’s action in period 0 is irrelevant for player 1’s incentives and payoffs when δ is close 

to 1. I left it unspecified in order to avoid detours. Starting from period 1,

4 I set ( μ(θ1)

μ(α∗
1 )

, μ(θ2)

μ(α∗
1 )

) = ( 5
2 , 52 ) since when player 2’s prior belief satisfies this condition, player 1 can guarantee his 

commitment payoff from α∗
1 if α∗

1 is pure, but cannot do so when α∗
1 is mixed. The same conclusion holds as long as 

(
μ(θ1)∗ , μ(θ2)∗ ) belongs to an open neighborhood of ( 5

2 , 52 ).

μ(α1 ) μ(α1 )

6
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– Player 2 plays M1 if player 1 played H in period 0 and L has not occurred before. I verify 
her incentive to do that. First, conditional on facing type θ1, her payoff gain from playing 
M1 instead of G is 1, and type θ1 occurs with probability 5

7−2ε
under her posterior. Second, 

since ε = 1
8 , conditional on facing type α∗

1 , her payoff gain from playing G instead of M1

is 41
16 and type α∗

1 occurs with probability 2−2ε
7−2ε

under her posterior. Her best reply is M1

since 5
7−2ε

> 41
16 · 2−2ε

7−2ε
.

– Player 2 plays M2 if player 1 played I in period 0 and L has not occurred before. I 
verify her incentive to do that. First, conditional on facing type θ2, her payoff gain from 
playing M2 instead of G is 1, and type θ2 occurs with probability 5

5+2ε
under her posterior. 

Second, conditional on facing type α∗
1 , her payoff gain from playing G instead of M2 is 

41
16 , and type α∗

1 occurs with probability 2ε
5+2ε

under her posterior. Her best reply is M2

since 5
5+2ε

> 2ε
5+2ε

· 41
16 when ε = 1

8 .

– Player 2 plays 1
2M1 + 1

2M2 at other histories. This is incentive compatible since at those 
histories, either she believes that L will be played for sure (by type θ∗ and type L), or she 
believes that both type θ1 and type θ2 occur with probability 1

2 and that none of these two 
types will play L.

• Type θ∗’s payoff from playing L in every period is no more than 3(1 − δ) + δ
2 , which is close 

to 1
2 as δ → 1. He has no incentive to play H or I since doing so reduces his stage-game 

payoff but cannot increase his continuation value. The latter is because player 2 will never 
play G starting from period 1, so type θ∗’s continuation value after period 1 is at most 1

2
regardless of his actions.

Intuitively, when α∗
1 is mixed, playing some actions in the support of α∗

1 can increase the 
likelihood ratio between some strategic type and mixed commitment type α∗

1. This cannot happen 
when α∗

1 is pure, in which case playing α∗
1 cannot increase the likelihood ratio between any 

strategic type and commitment type α∗
1 . The above equilibrium highlights this difference between 

pure and mixed commitment actions. In particular, (1) if player 1 plays H in period 0, then the 
likelihood ratio between type θ1 and type α∗

1 increases, after which player 2 prefers M1 to G; (2) 
if player 1 plays I in period 0, then the likelihood ratio between type θ2 and type α∗

1 increases, 
after which player 2 prefers M2 to G; (3) if player 1 plays L in period 0, then he separates from 
commitment type α∗

1 , after which player 2 believes that player 1 will play L instead of α∗
1 .5

In order to highlight the discontinuity in type θ∗’s equilibrium payoff at ε = 0, for any ε ∈
(0, 18 ], I construct an equilibrium in which type θ∗’s payoff is approximately 3

4 when δ is close 
to 1. Let T be the unique integer that satisfies 5

2(1−ε)T
∈ [5(1 − ε)2, 5(1 − ε)). By definition, T

depends on ε but does not depend on δ. Since ε ≤ 1
8 , we have T ≥ 1. Type θ1 plays H from 

period 0 to T , and plays α∗
1 starting from period T + 1. Type θ∗ plays L from period 0 to T , 

plays I in period T + 1, and starting from period T + 2, he plays H in odd periods and L in even 
periods.6 For the behavior of type θ2,

5 Under other strategies of player 1, there can exist an action such that taking that action increases the likelihood ratio 
between type θ1 and type α∗

1 and the likelihood ratio between type θ2 and type α∗
1 . For example, suppose both type θ1

and type θ2 play H with probability 1 in period 0, and α∗
1 = (1 − ε)H + εI with ε ∈ (0, 1). Then after observing H in 

period 0, both the likelihood ratio between type θ1 and type α∗
1 and the likelihood ratio between type θ2 and type α∗

1
increase.

6 When ε is large enough such that T = 1, I can let type θ∗ playing L in every period starting from period 1. When 
T > 1, player 2 may have an incentive to play G in period t ∈ {1, 2, ..., T − 1} after observing H in period 0. I let type 
7
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• In period t ∈ {0, ..., T − 1}, if I has never been played before, then type θ2 plays H with 
probability

P(ε, t) ≡ 2(1 − ε)t+1 − 1

2(1 − ε)t − 1
, (3.1)

and plays I with probability 1 −P(ε, t). Since 5
2(1−ε)T

< 5(1 − ε), P(ε, t) ∈ (0, 1) for every 
t ≤ T − 1.

• If I has never been played before period T , then type θ2 plays I for sure in period T .
• For every t ≥ 1, if I has been played before period t , then type θ2 plays α∗

1 in period t .

At every off-path history, player 2’s posterior belief assigns zero probability to both commit-
ment types, and assigns positive probability only to strategic types. She believes that all strategic 
types play L at those off-path histories, in which case player 2 plays 1

2M1 + 1
2M2. Next, I specify 

player 2’s beliefs and behaviors at on-path histories starting from period 1.7

• If she observes L in period 0, then her posterior belief assigns positive probability only to 
strategic type θ∗ and commitment type L. She plays 1

2M1 + 1
2M2 from period 1 to T + 1. 

Starting from period T + 2, if period T + 1 action was I , and H has been played in every 
odd period starting from period T + 2, she plays G in odd periods and plays 1

2M1 + 1
2M2 in 

even periods. Otherwise, she plays 1
2M1 + 1

2M2.
• After observing H from period 0 to T , player 2’s belief assigns positive probability only 

to type θ1 and type α∗
1 . Since μ(θ1)

μ(α∗
1 )

= 5
2 , the posterior likelihood ratio between type θ1 and 

type α∗
1 equals 5

2(1−ε)T +1 . This is at least 5(1 − ε) ≥ 35
8 since 5

2(1−ε)T
∈ [5(1 − ε)2, 5(1 − ε))

and ε ≤ 1
8 . She strictly prefers M1 to G starting from period T + 1, since her payoff gain 

from playing M1 instead of G is 1 when facing type θ1 and her payoff gain from playing G
instead of M1 is at most 3 when facing type α∗

1 .
• At every on-path history where I has been played in at least one period from 0 to T , player 

2’s belief assigns positive probability only to type θ2 and type α∗
1 . This is because type θ1

plays H from period 0 to T and type θ∗ plays L from period 0 to T . I verify in Online Ap-
pendix B that the likelihood ratio between type θ2 and type α∗

1 is at least 5 at such histories. 
This uses the assumption that player 2’s prior belief satisfies μ(θ2)

μ(α∗
1 )

= 5
2 . Under such a poste-

rior belief, player 2 strictly prefers M2 to G starting from period T +1, since her payoff gain 
from playing M2 instead of G is 1 when facing type θ2, and her payoff gain from playing G
instead of M2 is 41

16 when facing type α∗
1 .

Type θ∗ has a strict incentive to follow his equilibrium strategy when δ is close to 1 regardless 
of player 2’s actions from period 0 to T . This is because his equilibrium payoff is at least δT +1 · 3

4 , 
while his continuation value after any deviation is at most 3(1 − δT +1) + δT +1 1

2 . When δ is close 

θ∗ playing H with positive frequency in order to make sure that his payoff from following his equilibrium strategy is no 
less than his payoff from any deviation.

7 I leave some of player 2’s actions from period 0 to period T unspecified. This is because type θ1 and type θ2’s 
incentive constraints are trivial, and in my equilibrium construction, type θ∗’s continuation value after playing L for T
periods is approximately 3

4 , and his continuation value when he does not play L from period 0 to T is 1
2 . Hence, player 

2’s behaviors from period 0 to T do not affect type θ∗’s incentives when δ is close enough to 1.
8
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to 1, his equilibrium payoff is approximately 3
4 , which is bounded below vθ∗(α∗

1) but is strictly 
greater than his payoff after any deviation.

Remark 1. The above constructions do not work when ε = 0. This is because the key to these 
constructions is that in period 0, playing H increases the likelihood ratio between strategic type 
θ1 and commitment type α∗

1 , and playing I increases the likelihood ratio between strategic type 
θ2 and commitment type α∗

1 . When ε = 0, the posterior likelihood ratios between type θ1 and 
type α∗

1 and that between type θ2 and type α∗
1 cannot increase when player 1 plays α∗

1 in every 
period. Given that μ(θ1)

μ(α∗
1 )

= μ(θ2)
μ(α∗

1 )
= 5

2 , player 2 has a strict incentive to play G against α∗
1 under 

her posterior belief. This implies that type θ∗’s payoff is no less than 1 as δ → 1.

Remark 2. In this example, when δ is close to 1, type θ∗’s payoff is at least 1 in every equilibrium 
when ε = 0, but is no more than 3

4 in some equilibria when ε ∈ (0, 18 ]. Type θ∗’s commitment 
payoff from α∗

1 equals 1 + ε, which is increasing in ε. However, due to the presence of interde-
pendent values, his lowest equilibrium payoff decreases when ε increases from 0 to something 
strictly positive. That being said, a small perturbation to a pure commitment action can signifi-
cantly reduce the patient player’s lowest equilibrium payoff.

3.2. Statement of result

Let m ≡ |�|. For every θ ∈ � and α∗
1 ∈ A∗

1, let λθ (α
∗
1) ≡ μ(θ)

μ(α∗
1 )

be the prior likelihood ratio 

between strategic type θ and commitment type α∗
1 . Let λ(α∗

1) ≡ {
λθ (α

∗
1)

}
θ∈�

∈Rm+ be the prior 
likelihood ratio vector with respect to α∗

1 . Let φα∗
1

∈ �(�) be the state distribution conditional 
on player 1 being commitment type α∗

1 . Assumption 1 requires μ to have full support, under 
which both λ(α∗

1) and φα∗
1

are well-defined and can be computed from μ. Let �(θ∗, α∗
1) ⊂ Rm+

be the set of {λθ }θ∈� such that a∗
2(θ∗, α∗

1) is the unique element of

arg max
a2∈A2

{
u2(φα∗

1
, α∗

1 , a2) +
∑
θ∈�

λ̃θu2(θ,α∗
1 , a2)

}
for every {̃λθ }θ∈� that satisfies 0 ≤ λ̃θ ≤ λθ for all θ ∈ �.

For the example of Subsection 3.1, I depict �(θ∗, α∗
1) in the left panel of Fig. 1. When μ

is such that μ(θ1)
μ(α∗

1 )
= μ(θ2)

μ(α∗
1 )

= 5
2 , we have λθ1(α

∗
1) = λθ2(α

∗
1) = 5

2 , so that λ(α∗
1) ∈ �(θ∗, α∗

1) for 

every ε ∈ [0, 18 ].
Theorem 1’ in Pei (2020) shows that when all commitment actions are pure, inequality (2.5)

is true if λ(α∗
1) ∈ �(θ∗, α∗

1). Intuitively, λ(α∗
1) ∈ �(θ∗, α∗

1) implies that (1) a∗
2(θ∗, α∗

1) is player 
2’s best reply to α∗

1 conditional on the event that player 1 is either strategic or is the commitment 
type who plays α∗

1 in every period, and (2) a∗
2(θ∗, α∗

1) remains player 2’s best reply to α∗
1 when 

the likelihood ratio between every strategic type and commitment type α∗
1 weakly decreases 

(relative to the prior likelihood ratio). The patient player receives at least his commitment payoff 
in all equilibria since when α∗

1 is pure, no entry of the likelihood ratio vector can increase when 
he plays α∗

1 in every period. The argument in Fudenberg and Levine (1989) implies that when 
player 1 plays α∗

1 in every period, player 2 plays a∗
2(θ∗, α∗

1) in all except for a bounded number 
of periods, so type θ∗’s payoff is at least his commitment payoff from α∗

1 when he is sufficiently 
patient. This result straightforwardly extends when α∗

1 is pure while other commitment actions in 
A∗

1 may be mixed, since the probabilities of other commitment types vanish exponentially when 
player 1 plays α∗ in every period.
1

9
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λθ1

λθ2
ψ∗

θ2

ψ∗
θ1

�(θ∗, α∗
1)

λθ1

λθ2

ψ∗
θ2

ψ∗
θ1

�(θ∗, α∗
1)

λ after observing H

λ after observing I

λ under prior belief

Fig. 1. The relevant sets of likelihood ratio vectors in the example of Subsection 3.1 when ε = 1
8 and μ(θ1)

μ(α∗
1 )

= μ(θ2)

μ(α∗
1 )

= 5
2 , 

with �(θ∗, α∗
1 ) in the left panel, and �(θ∗, α∗

1 ) in the right panel.

By contrast, inequality (2.5) fails when λ(α∗
1) does not belong to the closure of �(θ∗, α∗

1). The 
proof is substantially different from that in Pei (2020) due to the presence of other commitment 
types that can play mixed strategies. I state this observation as Statement 1 in Theorem 1.

When α∗
1 is nontrivially mixed, λ ∈ �(θ∗, α∗

1) is no longer sufficient for (2.5) since playing 
some actions in the support of α∗

1 may increase some entries of the likelihood ratio vector. Such 
a possibility is highlighted in the example of Subsection 3.1 when the commitment action is 
α∗

1 ≡ (1 − ε)H + εI with ε ∈ (0, 18 ].
I propose a sufficient condition under which the aforementioned problem disappears. Let

�b
(θ∗,α∗

1 )
≡ {

θ ∈ �
∣∣a∗

2(θ∗, α∗
1) �= a∗

2(θ,α∗
1)

}
(3.2)

be the set of states under which player 2’s best reply to α∗
1 differs from that in state θ∗. In the 

example of Subsection 3.1, �b
(θ∗,α∗

1 )
= {θ1, θ2}. The result and proof in Fudenberg and Levine 

(1992) extend to the case where �b
(θ∗,α∗

1 )
= ∅. If �b

(θ∗,α∗
1 )

�= ∅, then for every θ ∈ �b
(θ∗,α∗

1 )
, let 

ψ∗
θ be the largest ψ ∈R+ such that:

a∗
2(θ∗, α∗

1) ∈ arg max
a2∈A2

{
u2(φα∗

1
, α∗

1 , a2) + ψu2(θ,α∗
1 , a2)

}
. (3.3)

Intuitively, ψ∗
θ is the intercept of �(θ∗, α∗

1) on the axis for λθ , which is depicted in Fig. 1. Let

�(θ∗, α∗
1) =

{
(λθ )θ∈� ∈ Rm+

∣∣∣ ∑
θ∈�b

(θ∗,α∗
1 )

λθ /ψ
∗
θ < 1

}
. (3.4)

Since �(θ∗, α∗
1) is characterized by a linear inequality, both �(θ∗, α∗

1) and Rm+\�(θ∗, α∗
1) are 

convex sets. For the example of Subsection 3.1, I depict �(θ∗, α∗
1) in the right panel of Fig. 1

(which is the gray triangle). When the prior belief μ is such that μ(θ1)
μ(α∗

1 )
= μ(θ2)

μ(α∗
1 )

= 5
2 , we have 

λ(α∗
1) /∈ �(θ∗, α∗

1).
In order to understand intuitively why the patient player can secure his commitment payoff 

from mixed action α∗ when λ(α∗) ∈ �(θ∗, α∗), notice that every entry of the likelihood ratio 
1 1 1

10
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vector is a non-negative supermartingale under the probability measure induced by type α∗
1 .8

Since Rm+\�(θ∗, α∗
1) is convex, if the prior likelihood ratio vector belongs to �(θ∗, α∗

1), then 
there exists at least one pure action a1 in the support of α∗

1 such that the posterior likelihood 
ratio vector belongs to �(θ∗, α∗

1) after observing a1. Hence, as long as player 1 plays a1 in that 
period, player 2 will have an incentive to play a∗

2(θ∗, α∗
1) in the next period when she believes 

that α∗
1 will be played with high enough probability.

By contrast, Rm+\�(θ∗, α∗
1) is not necessarily convex. Hence, it is possible that λ(α∗

1) belongs 
to �(θ∗, α∗

1) but the posterior likelihood ratio vector does not belong to �(θ∗, α∗
1) no matter 

which action player 1 plays in the current period. As a result, player 2 may have an incentive not 
to play a∗

2(θ∗, α∗
1) even when they are convinced that player 1 will play commitment action α∗

1. 
In the example of Subsection 3.1, λ(α∗

1) belongs to �(θ∗, α∗
1)\�(θ∗, α∗

1). In the equilibrium I 
constructed for ε = 1

8 , no matter which action player 1 plays in period 0, the posterior likelihood 
ratio vector in period 1 does not belong to �(θ∗, α∗

1) and player 2 has no incentive to play G even 
when she is convinced that player 1 will play α∗

1. Similarly, in the equilibrium I constructed for 
any ε ∈ (0, 18 ], the posterior likelihood ratio vector after period T does not belong to �(θ∗, α∗

1)

no matter which actions player 1 played from period 0 to period T .

Theorem 1. For every pure commitment action α∗
1 ∈A∗

1 and every θ∗ ∈ �,

1. If λ(α∗
1) does not belong to the closure of �(θ∗, α∗

1) and BR2(φα∗
1
, α∗

1) is a singleton, then 
there exists u1 such that lim supδ→1 vθ∗(δ) < vθ∗(α∗

1).

For every nontrivially mixed commitment action α∗
1 ∈A∗

1 and every θ∗ ∈ �,

2. If λ(α∗
1) does not belong to the closure of �(θ∗, α∗

1), BR2(φα∗
1
, α∗

1) is a singleton, and α∗
1 does 

not belong to the convex hull of A∗
1

∖
{α∗

1}, then there exists u1 such that lim supδ→1 vθ∗(δ) <

vθ∗(α∗
1).

3. If λ(α∗
1) ∈ �(θ∗, α∗

1), then lim infδ→1 vθ∗(δ) ≥ vθ∗(α∗
1) for every u1.

Theorem 1 points out the failure of reputation effects in repeated incomplete information 
games with interdependent values. According to this interpretation, my model is obtained by per-
turbing a repeated incomplete information game with a small probability of commitment types. 
When every commitment type is arbitrarily unlikely relative to every strategic type and player 
2’s best reply to α∗

1 depends on the state, the prior likelihood ratio vector λ(α∗
1) does not belong 

to the closures of �(θ, α∗
1) and �(θ, α∗

1) for any θ ∈ �.
Theorem 1 also evaluates the robustness of reputation effects in private value reputation games 

against interdependent value perturbations. Under this interpretation, a private value reputation 
game is perturbed with a small probability of other strategic types. Such a perturbation captures 
situations such as buyers facing uncertainty about the safety or durability of the seller’s products, 

8 The likelihood ratio may not be a martingale since α∗
1 may not have full support. For example, suppose the commit-

ment type plays α∗
1 ≡ a∗

1 ∈ A1, and type θ plays a∗
1 with probability 1/2 and plays another action a1 with probability 

1/2. Conditional on the probability measure induced by α∗
1 , action a∗

1 occurs with probability 1. After observing a∗
1 , the 

likelihood ratio between type θ and type α∗
1 is multiplied by 1/2. Hence, the expected posterior likelihood ratio is strictly 

lower than the expected prior likelihood ratio.
11
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which the seller knows more about. My sufficient conditions are satisfied when the short-run 
players’ doubt on their own payoffs is sufficiently small.

In the rest of this subsection, I explain the ideas behind the proof of Theorem 1. The full 
proofs can be found in Subsection 3.3 (statement 1), Online Appendix A (statement 2), and 
Subsection 3.4 (statement 3).

Idea behind the proof of Statement 1: I replace α∗
1 with a∗

1 given that α∗
1 is pure. I replace 

a∗
2(θ∗, a∗

1) with a∗
2 in order to simplify notation. Similar to Pei (2020) which studies the case 

where all commitment actions are pure, I take player 1’s stage-game payoff function to be 
u1(θ, a1, a2) ≡ 1{θ = θ∗, a1 = a∗

1 , a2 = a∗
2}.

The key challenge is to handle commitment types other than a∗
1 who play mixed strategies. 

To illustrate, suppose for example, � = {θ∗, ̃θ}, A1 = {a∗
1 , a′

1}, θ̃ ∈ �b
(θ∗,a∗

1 )
, A∗

1 = {a∗
1 , α′

1}, α′
1

is mixed, with BR2(φa∗
1
, a∗

1) = BR2(φα′
1
, α′

1) = a∗
2 . Given the assumption that BR2(φα′

1
, α′

1) =
a∗

2 and the fact that my result makes no restriction on the probability of type α′
1, the presence 

of commitment type α′
1 encourages player 2 to play a∗

2 , which can help type θ∗ to obtain a 
high payoff. Unlike commitment types who play pure strategies, commitment type α′

1 plays a 
completely mixed strategy, so it occurs with positive probability at every history. Hence, type α′

1
needs to be taken into account when verifying player 2’s incentive constraints at every history.

My proof constructs an equilibrium in which the strategic types in �b
(θ∗,a∗

1 )
play non-

stationary mixed strategies. In the above example, type θ∗ plays a pure strategy on the equi-
librium path. In all periods except for a few periods in the beginning, he plays either a∗

1 or a′
1. 

With probability close to 1, type ̃θ plays a∗
1 in every period, which makes sure that player 2 has 

no incentive to play a∗
2 after observing a∗

1 in period 0. With complementary probability, type θ̃
uses strategy σα′

1
described as follows:

• He plays α′
1 at histories that occur with positive probability under type θ∗’s equilibrium 

strategy.
• At every history that occurs with zero probability under type θ∗’s equilibrium strategy, he 

plays a completely mixed action ̂α′
1 that attaches a higher probability to a∗

1 compared to α′
1.

The above construction ensures that type θ∗’s continuation value is bounded away from 1 after 
he deviates from his equilibrium strategy, no matter how and when he deviates. This is because 
first, the likelihood ratio between type θ̃ who plays σα′

1
and type α′

1 remains unchanged when 
type θ∗ follows his equilibrium strategy. Hence, no matter when and how type θ∗ deviates from 
his equilibrium strategy, the above likelihood ratio is the same after his first deviation. Second, 
after type θ∗ deviates in period t ≥ 1, player 2’s posterior belief attaches positive probability 
only to type θ̃ and type α′

1.9 Since α̂′
1 attaches higher probability to a∗

1 compared to α′
1, player 

2’s posterior belief about type θ̃ increases every time she observes a∗
1 . When the probability of 

type θ̃ is large enough, player 2 has no incentive to play a∗
2 . This leads to an upper bound on 

the frequency with which player 1 can play a∗
1 while inducing player 2 to play a∗

2 , which also 
bounds type θ∗’s payoff from above.

9 Another possibility is that type θ∗ deviates in period 0 by playing a∗
1 in every period, in which case player 2’s 

posterior belief attaches positive probability to type α′
1, type a∗

1 , and type ̃θ . Since type ̃θ plays a∗
1 in every period with 

probability close to 1 and λ(a∗
1 ) /∈ cl(�(θ∗, a∗

1 )), player 2 has no incentive to play a∗
2 after observing player 1 has played 

a∗ in every period.
1

12
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One can then pick the frequency with which type θ∗ plays a∗
1 on the equilibrium path to be 

such that his continuation value at every on-path history is bounded below his commitment payoff 
1 but is strictly greater than the upper bound on his continuation value after any of his deviation. 
This verifies type θ∗’s incentive to play his equilibrium strategy and finishes the construction of 
a low-payoff equilibrium.

Idea behind the proof of Statement 2: The proof of Statement 2 requires four additional steps, 
which are summarized below with details in Online Appendix A. First, player 1’s stage-game 
payoff is 0 if θ �= θ∗ or if a2 �= a∗

2(θ∗, α∗
1). Player 1’s stage-game payoff when θ = θ∗ and 

a2 = a∗
2(θ∗, α∗

1) satisfies:

u1(θ
∗, α∗

1 , a∗
2(θ∗, α∗

1)) > max
α1∈A∗

1\{α∗
1 }

u1(θ
∗, α1, a

∗
2(θ∗, α∗

1)). (3.5)

According to the separating hyperplane theorem, such u1 exists given that α∗
1 /∈ co

(
A∗

1\{α∗
1}

)
.

Expression (3.5) implies that type θ∗’s commitment payoff from every commitment action 
in A∗

1\{α∗
1} is strictly lower than his commitment payoff from α∗

1 . This is required since my 
result imposes no restriction on the probabilities of commitment types other than α∗

1. When other 
commitment types occur with high probability, type θ∗ may secure his commitment payoff from 
actions other than α∗

1 . This is why I require his commitment payoff from any action in A∗
1\{α∗

1}
to be strictly lower than his commitment payoff from α∗

1 .
In Online Appendix A.1, I construct strategies for strategic types other than θ∗ under which 

there exists T ∈ N such that player 2’s posterior in period T is bounded away from �(θ∗, α∗
1)

no matter which actions player 1 played from period 0 to T . This is feasible as long as the prior 
likelihood ratio vector λ(α∗

1) does not belong to the closure of �(θ∗, α∗
1). An example of such 

a T -period strategy is displayed in Subsection 3.1 when constructing low-payoff equilibria for 
ε arbitrarily close to 0. In general, when there are multiple strategic types in �b

(θ∗,α∗
1 )

and α∗
1 is 

nontrivially mixed,10 one can construct strategies for strategic types that belong to �b
(θ∗,α∗

1 )
such 

that no matter which pure action player 1 plays in the support of α∗
1, the likelihood ratio between 

some strategic type in �b
(θ∗,α∗

1 )
and commitment type α∗

1 increases, and moreover, the posterior 

likelihood ratio vector does not belong to �(θ∗, α∗
1) after T periods no matter which actions 

player 1 played in T periods.
In Online Appendix A.2, I construct a strategy for strategic types other than θ∗ at histories 

where player 2 has ruled out type θ∗. This is to make sure that type θ∗’s continuation value is 
bounded below vθ∗(α∗

1) after any of his deviations. Similar to the proof of Statement 1, I construct 
strategies for types in �b

(θ∗,α∗
1 )

such that playing actions where type θ∗ receives a high payoff 

increases the probability of types in �b
(θ∗,α∗

1 )
.11 Hence, if player 1 plays high-payoff actions 

too frequently, player 2 will have no incentive to play a∗
2(θ∗, α∗

1) until she observes some low-
payoff actions. This bounds the frequency with which type θ∗ can play high-payoff actions while 
inducing player 2 to play a∗

2(θ∗, α∗
1). This in turn bounds type θ∗’s continuation value from 

above.

10 If �b
(θ∗,α∗

1 )
has only one element, then by definition, �(θ∗, α∗

1 ) = �(θ∗, α∗
1 ). If this is the case, then λ(α∗

1 ) /∈
�(θ∗, α∗

1 ) implies that λ(α∗
1 ) /∈ �(θ∗, α∗

1 ), which means that the step in Online Appendix A.1 is redundant.
11 Type θ∗’s payoff is 0 if a2 �= a∗

2 (θ∗, α∗
1 ), and his payoff if a2 = a∗

2 (θ∗, α∗
1 ) is constructed via the separating hyper-

plane theorem.
13
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In Online Appendix A.3, I construct players’ strategies at histories where player 2’s belief 
attaches positive probability to type θ∗. The key step is to ensure that type θ∗’s continuation 
value is bounded below his commitment payoff vθ∗(α∗

1), but is greater than the upper bound on 
his continuation value after reaching any history where player 2’s posterior belief attaches zero 
probability to type θ∗. There exist such strategies since the upper bound on type θ∗’s continua-
tion value after he deviates is bounded below vθ∗(α∗

1). This accomplishes the construction of an 
equilibrium where type θ∗’s payoff is bounded below vθ∗(α∗

1).

Idea behind the proof of Statement 3: Since playing actions in the support of α∗
1 can increase

the likelihood ratios between some strategic types in �b
(θ∗,α∗

1 )
and commitment type α∗

1 , player 

1 may not secure his commitment payoff by playing α∗
1 in every period. This is because when 

some of these likelihood ratios are too large so that the posterior likelihood ratio vector does not 
belong to �(θ∗, α∗

1), player 2 may not have incentive to play a∗
2(θ∗, α∗

1) even if she is convinced 
that player 1 will play α∗

1 .
My proof constructs a strategy for type θ∗ under which he can guarantee his commitment 

payoff from mixed action α∗
1 . Under such a strategy, type θ∗ takes actions selectively from the 

support of α∗
1 . The key step of the proof is to show that as long as the prior likelihood ratio vector 

satisfies λ(α∗
1) ∈ �(θ∗, α∗

1), one can construct a deviation for type θ∗ that achieves the following 
objectives (see Proposition 1 in Subsection 3.4):

1. The posterior likelihood ratio vector belongs to �(θ∗, α∗
1) in every period.

2. For every a1 ∈ supp(α∗
1), the frequency with which type θ∗ plays a1 is approximately α∗

1(a1).
3. Player 2s believe that actions close to α∗

1 will be played in all except for a bounded number 
of periods.

3.3. Proof of Statement 1: constructing low payoff equilibria

In this subsection, I replace α∗
1 with a∗

1 , a∗
2(θ∗, a∗

1) with a∗
2 , and λ(a∗

1) with λ.

Step 1: I show that when the prior likelihood ratio vector with respect to a∗
1 , denoted by λ, does 

not belong to the closure of �(θ∗, a∗
1), there exist a′

2 �= a∗
2 and λ′ ≡ {λ′

θ }θ∈� that satisfy the 
following four conditions:

1. λ′
θ∗ = 0,

2. 0 ≤ λ′
θ ≤ λθ for every θ ∈ �,

3. ∑
θ∈�

λ′
θ

(
u2(θ, a∗

1 , a′
2) − u2(θ, a∗

1 , a∗
2)

)
> 0, (3.6)

4.

u2(φa∗
1
, a∗

1 , a′
2) − u2(φa∗

1
, a∗

1 , a∗
2) +

∑
θ∈�

λ′
θ

(
u2(θ, a∗

1 , a′
2) − u2(θ, a∗

1 , a∗
2)

)
> 0. (3.7)

Recall Statement 1 requires that BR2(φa∗
1
, a∗

1) is a singleton. I consider two cases. First, suppose 
the unique element in BR2(φa∗

1
, a∗

1) is a∗
2 . According to the definition of �(θ∗, a∗

1), there exists 
λ′′ ≡ {λ′′}θ∈� such that 0 ≤ λ′′ ≤ λθ for every θ ∈ � and
θ θ

14
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a∗
2 /∈ arg max

a2∈A2

{
u2(φa∗

1
, a∗

1 , a2) +
∑
θ∈�

λ′′
θu2(θ, a∗

1 , a2)
}
.

Let λ′ ∈Rm+ be defined as λ′
θ∗ ≡ 0 and λ′

θ ≡ λ′′
θ for all θ �= θ∗. By definition, there exists a′

2 �= a∗
2

such that

u2(φa∗
1
, a∗

1 , a′
2) +

∑
θ∈�

λ′
θu2(θ, a∗

1 , a′
2) > u2(φa∗

1
, a∗

1 , a∗
2) +

∑
θ∈�

λ′
θu2(θ, a∗

1 , a∗
2).

Inequalities (3.6) and (3.7) hold under likelihood ratio vector λ′ and action a′
2.

Second, suppose the unique element in BR2(φa∗
1
, a∗

1) is some a′
2 that is not a∗

2 . Then there 
exists θ ′ ∈ � such that u2(θ

′, a∗
1 , a′

2) > u2(θ
′, a∗

1 , a∗
2). Let λ′ ≡ (λ′

θ )θ∈� ∈ Rm+ be defined as 
λ′

θ ′ ≡ λθ ′ and λ′
θ ≡ 0 for all θ �= θ ′. Then (3.6) and (3.7) are true for likelihood ratio vector λ′

and action a′
2.

Step 2: Let

u1(θ, a1, a2) ≡ 1{θ = θ∗, a1 = a∗
1 , a2 = a∗

2}. (3.8)

By definition, type θ∗’s commitment payoff from a∗
1 is 1. On the equilibrium path, type θ∗ plays 

a different pure action in each period from period 0 to |A1| − 1, in order to separate from all 
pure-strategy commitment types. Starting from period |A1|, there exists an integer k∗ specified 
by the end of Step 3 such that type θ∗’s action rotates every k∗ + 1 periods: he plays a∗

1 for k∗
periods and then plays some action a1 �= a∗

1 for one period.
I construct equilibrium strategies for strategic types other than θ∗. Find λ′ ∈ Rm+ and a′

2 �= a∗
2

according to Step 1. Since inequality (3.7) is strict, there exists ε > 0 such that:

u2(φa∗
1
, a∗

1 , a′
2) − u2(φa∗

1
, a∗

1 , a∗
2) + (1 − ε)

∑
θ∈�

λ′
θ

(
u2(θ, a∗

1 , a′
2) − u2(θ, a∗

1 , a∗
2)

)
> 0.

(3.9)

For every ̃θ �= θ∗, with probability 
(
λθ̃ −λ′̃

θ

)/
λθ̃ , strategic type ̃θ plays a′

1 �= a∗
1 in every period; 

with probability (1 − ε)λ′̃
θ
/λθ̃ , strategic type ̃θ plays a∗

1 in every period. For every α1 ∈ A∗
1 that 

is nontrivially mixed, strategic type ̃θ plays strategy σα1 with probability ε
k
λ′̃

θ

/
λθ̃ , where k ∈ N

is the number of nontrivially mixed actions in A∗
1. I will specify σα1 in the next paragraph. If 

k = 0, then one can set ε = 0.
Now I describe strategy σα1 . Since A∗

1 is a finite set, there exists η > 0 such that 
maxα1∈A∗

1\{a∗
1 } α1[a∗

1 ] < 1 − η, where α1[a∗
1 ] is the probability α1 attaches to a∗

1 , and further-
more, given that inequality (3.6) is strict, one can find η > 0 small enough such that∑

θ∈�

λ′
θu2(θ,α′

1, a
′
2) >

∑
θ∈�

λ′
θu2(θ,α′

1, a
∗
2), (3.10)

for every α′
1 ∈ �(A1) satisfying α′

1[a∗
1 ] ≥ 1 −η. At every ht that occurs with positive probability 

under type θ∗’s equilibrium strategy, σα1(h
t ) = α1. At every ht that occurs with zero probability 

under type θ∗’s equilibrium strategy, σα1(h
t ) = α̂1(α1) ∈ �(A1) where

α̂1(α1) ≡ (1 − η

2
)a∗

1 + η

2
α̃1(α1) (3.11)

and ̃α1(α1) ∈ �(A1) attaches probability 0 to a∗ and probability α1[a1]∗ to every a1 �= a∗.
1 1−α1[a1 ] 1
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Step 3: I verify type θ∗’s incentive constraints by deriving a uniform upper bound on his continu-
ation payoff after his first deviation, i.e., at a history ht such that ht occurs with zero probability 
under type θ∗’s equilibrium strategy but its immediate predecessor ht−1 occurs with positive 
probability under type θ∗’s equilibrium strategy. For every α1 ∈ A∗

1\{a∗
1 }, let μt(θ(α1)) be the 

probability that player 1 is strategic and follows strategy σα1 . Let βt (α1) ≡ μt(θ(α1))/μt (α1). 
The value of βt (α1) equals β0(α1) at period-t histories that occur with positive probability under 
type θ∗’s equilibrium strategy since σα1 asks player 1 to play α1 at those histories.

Next, consider histories that occur with zero probability under type θ∗’s equilibrium strat-
egy. Recall that maxα1∈A∗

1\{a∗
1 } α1[a∗

1 ] < 1 − η, so when a∗
1 is observed in period t , βt+1(α1) ≥

1−η/2
1−η

βt (α1) for every α1 ∈ A∗
1\{a∗

1 }. Let κ ≡ 1 − minα1∈A∗
1\{a∗

1 } α1[a∗
1 ]. If a1 �= a∗

1 is ob-

served in period t , then the definition of α̃1(α1) implies that βt+1(α1) ≥ η
2κ

βt (α1). Let k ≡⌈
log 2κ

η

/
log 1−η/2

1−η

⌉
. For every α1 ∈A∗

1, let β(α1) be the smallest β ∈ R+ such that:

u2(φα1 , α1, a
′
2)+β

∑
θ∈�

λ′
θu2(θ, α̂1(α1), a

′
2) ≥ u2(φα1 , α1, a

∗
2)+β

∑
θ∈�

λ′
θu2(θ, α̂1(α1), a

∗
2)

(3.12)

Let β ≡ 2 maxα1∈A∗
1\{a∗

1 } β(α1) and β ≡ minα1∈A∗
1\{a∗

1 } μ(θ(α1))
μ(α1)

. Let T1 ≡
⌈

log β
β

/
log 1−η/2

1−η

⌉
. 

At any history right after type θ∗’s first deviation, βt (α1) ≥ β for all α1 ∈ A∗
1\{a∗

1 }. After player 
2 observes a∗

1 for T1 consecutive periods, a∗
2 is strictly dominated by a′

2 until some a′
1 �= a∗

1 is 
observed. Moreover, every time player 1 plays some a′

1 �= a∗
1 , he can induce outcome (a∗

1, a∗
2)

for at most k consecutive periods before a∗
2 is strictly dominated by a′

2 again. Therefore, type 

θ∗’s continuation payoff after his first deviation is at most (1 − δT1) + δT1

{
(1 − δk−1) + δk(1 −

δk−1) + δ2k(1 − δk−1) + ...
}

, which converges to k

1+k
as δ → 1.

Let k∗ ≡ 2k. When δ → 1, type θ∗’s payoff at any on-path history converges to 2k

2k+1
, which 

is strictly greater than k

1+k
. This verifies type θ∗’s incentive to play his equilibrium strategy.

3.4. Proof of Statement 3: bounding equilibrium payoffs

For every ψ ≡ (ψθ )θ∈� ∈Rm+ and χ > 0, let

�(ψ,χ) ≡
{
(̃λθ )θ∈� ∈Rm+

∣∣∣ ∑
θ∈�

λ̃θ/ψθ < χ
}
. (3.13)

Abusing notation, let μ(ht) and λ(ht ) be player 2’s posterior belief and the likelihood ratio vector 
with respect to α∗

1 at ht . Let A∗
1 ≡ supp(α∗

1). For every σθ : H → �(A1) and σ2 : H → �(A2), 
let P(σθ ,σ2) be the probability measure over H induced by (σθ , σ2), let H(σθ ,σ2) be the set of 
histories that occur with positive probability under P(σθ ,σ2), and let E(σθ ,σ2) be the expectation 
induced by probability measure P(σθ ,σ2).

Proposition 1. Suppose λ ∈ �(ψ, χ). For every ε > 0, there exist T ∈ N and δ ∈ (0, 1) such 
that for every δ > δ and every equilibrium σ ≡ ((σθ )θ∈�, σ2), we can find a deviation ̃σθ : H →
�(A∗) and a continuous function β(δ) satisfying limδ→1 β(δ) = 0 such that:
1

16



H. Pei Journal of Economic Theory 201 (2022) 105438
λ(ht ) ∈ �(ψ,χ + ε) for every ht ∈ H(̃σθ ,σ2), (3.14)

P (̃σθ ,σ2)
(∣∣∣ ∞∑

t=0

(1 − δ)δt1{h∞
t = a1} − α∗

1(a1)

∣∣∣ < ε for every a1 ∈ A1

)
> 1 − β(δ), (3.15)

E(̃σθ ,σ2)
[
#
{
t ∈N

∣∣∣||α∗
1 − α1(·|ht )|| > ε

}]
< T. (3.16)

Proof. I show Proposition 1 in three steps.

Step 1: Let P(α∗
1 ,σ2) be the probability measure over H when player 1 plays α∗

1 in ev-

ery period and player 2 plays according to σ2. Let χ(ht ) ≡ ∑m
i=1

λi(h
t )

ψi
. By definition, λ ∈

�(ψ, χ) if and only if χ(h0) < χ . Let {F t }t∈N be the filtration induced by the public his-
tory. Since {λi(h

t ), P(α∗
1 ,σ2), F t }t∈N is a non-negative supermartingale for every i ∈ {1, 2, ..., m}, 

{χt , P(α∗
1 ,σ2), F t }t∈N is also a non-negative supermartingale. For every a < b, let U(a, b) be the 

number of upcrossings from a to b.12 The Doob’s Upcrossing Inequality implies:

P(α∗
1 ,σ2)

{
U(χ,χ + ε) = 0

}
≥ ε

χ + ε
. (3.17)

Let H̃∞ be the set of histories such that χt < χ + ε for every t ∈ N . According to (3.17), H̃∞
occurs with probability at least ε

χ+ε
under probability measure P(α∗

1 ,σ2).

Let P̃ be a probability measure defined as P̃(E) ≡ P(α∗
1 ,σ2)

(E∩H̃∞)

P(α∗
1 ,σ2)

(H̃∞)
. I construct a strategy 

σ̃θ such that when player 1 uses σ̃θ and player 2s use their equilibrium strategy, the induced 
probability measure over histories is P̃ . For every ht such that χ(ht ) < χ + ε, let A1(h

t ) ⊂
supp(α∗

1) be such that a1 ∈ A1(h
t ) if and only if χ(ht , a1) < χ + ε. The set A1(h

t ) is not empty 
since χ(ht ) < χ + ε and {χt , P(α∗

1 ,σ2), F t }t∈N is a supermartingale, and moreover, ht ∈ H̃∞ if 
and only if for every s < t , hs ∈ H̃∞ and player 1’s action in period s belongs to A1(h

s). Let 
P̃(·|ht ) be the probability measure induced by P̃ conditional on the history being ht , which is 
well-defined for every ht ∈ H̃∞. Suppose σ̃θ is such that at every ht satisfying χ(ht ) < χ + ε, 
player 1 plays a1 with zero probability if a1 /∈ A1(h

t ), and plays a1 with probability P̃(a1,t =
a1|ht ) if a1 ∈ A1(h

t ); at every ht such that χ(ht ) ≥ χ + ε, ̃σθ can be arbitrary. By construction, 
σ̃θ induces probability measure P̃ .

Step 2: I show that when δ is close enough to 1, there exists a subset of H∞ that occurs with 
probability close to 1 under probability measure P(α∗

1 ,σ2), such that the discounted frequency 
of every a1 ∈ A1 is close to α∗

1(a1). For every a1 ∈ A1, let {Xt } be a sequence of i.i.d. random 
variables such that:

Xt =
{

1 when a1,t = a1
0 otherwise.

Under probability measure P(α∗
1 ,σ2), Xt = 1 occurs with probability α∗

1(a1). Let n ≡ |A1|.

12 For real numbers a < b, the number of upcrossings of {Xt }t∈N from a to b is the maximum nonnegative integer n
such that there exist sk, tk ∈N such that s1 < t1 < s2 < ... < sn < tn and Xs < a < b < Xt for every k ∈ {1, 2, ..., n}.
k k
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Lemma 3.1. For every η > 0, there exists δ∗ ∈ (0, 1), such that for all δ ∈ (δ∗, 1),

lim sup
δ→1

P(α∗
1 ,σ2)

(∣∣∣ +∞∑
t=0

(1 − δ)δtXt − α∗
1(a1)

∣∣∣ ≥ η
)

≤ η

n
. (3.18)

The proof of this lemma is standard, which is relegated to Online Appendix C. According to 
Lemma 3.1, for every a1 ∈ A1 and η > 0, there exists δ∗ ∈ (0, 1), such that for every δ > δ∗, 
there exists H∞

η,a1
(δ) ⊂ H∞, such that the discounted frequency of a1 is η-close to α∗

1(a1) for 

every h∞ ∈ H∞
η,a1

(δ), and P(α∗
1 ,σ2)(H∞

η,a1
(δ)) ≥ 1 − η

n
. Let H∞

η (δ) ≡ ⋂
a1∈A1

H∞
η,a1

(δ), we have 

P(α∗
1 ,σ2)(H∞

η (δ)) ≥ 1 − η.

Step 3: Recall that H̃∞ is the set of histories such that χt < χ + ε for every t ∈N , which occurs 
with probability at least ε

χ+ε
. Therefore, the probability of Ĥ∞ ≡ H̃∞ ⋂

H∞
η (δ) conditional on 

H̃∞ is at least 1 − η(χ+ε)
ε

. Intuitively, Ĥ∞ is the event in which χt < χ + ε for every t ∈ N and 
the discounted frequency of every player 1’s pure action is η-close to its probability in α∗

1. Since 
η is arbitrarily close to 0 as δ → 1, 1 − η(χ+ε)

ε
can be arbitrarily close to 1, which means that 

the probability that the discounted frequency of every action being close to its probability in the 
mixed commitment action is arbitrarily close to 1 conditional on H̃∞.

Let d(·‖·) denote the Kullback-Leibler divergence between two distributions. Gossner 
(2011)’s result implies that:

E(α∗
1 ,σ2)

[ +∞∑
τ=0

d(α∗
1 ||α1(·|hτ ))

]
≤ − logμ(α∗

1). (3.19)

Since the Kullback-Leibler divergence must be non-negative, Markov Inequality implies that:

E(α∗
1 ,σ2)

[ +∞∑
τ=0

d(α∗||α(·|hτ ))

∣∣∣H̃∞]
≤ − (χ + ε) logμ(α∗

1)

ε
. (3.20)

Recall that σ̃θ is strategic-type player 1’s strategy that induces probability measure P̃, i.e., 

the probability measure such that P̃(E) ≡ P(α∗
1 ,σ2)

(E∩H̃∞)

P(α∗
1 ,σ2)

(H̃∞)
. If player 1 deviates to strategy 

σ̃θ , then the expected number of periods in which d(α∗
1 ||α(·|ht )) > ε2/2 is at most T ≡⌈

− 2(χ+ε) logμ(α∗
1 )

ε3

⌉
. The Pinsker’s inequality implies that the expected number of periods where 

||α∗
1 − α(·|ht )|| > ε is at most T . �
Proposition 1 implies the following corollary:

Corollary 1. If λ(α∗
1) ∈ �(θ∗, α∗

1) and δ is large, then for every equilibrium σ , there exists a 
deviation for strategic type θ∗, denoted by σ̃θ∗ : H → �(A∗

1) such that when player 1 uses σ̃θ∗
and player 2s use their equilibrium strategy,

1. With probability 1, player 2’s posterior likelihood ratio vector in every period belongs to 
�(ψ, 1 − ε).

2. With probability close to 1, the discounted frequency of every a1 ∈ A1 is approximately 
α∗(a1).
1
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3. In all but a bounded number of periods, player 2’s prediction about player 1’s action is close 
to α∗

1

This is because �(θ∗, α∗
1) coincides with �(ψ, χ) when χ = 1, ψθ ≡ ψ∗

θ for every θ ∈
�b

(θ∗,α∗
1 )

, and ψθ ≡ +∞ for every θ /∈ �b
(θ∗,α∗

1 )
. Let ε ≡ 1

2

(
1 − ∑

θ∈�

λθ (α∗
1 )

ψθ

)
. Since λ(α∗

1) ∈
�(θ∗, α∗

1), we have ε > 0.
Corollary 1 does not directly imply that type θ∗ can guarantee payoff vθ∗(α∗

1) for every u1 in 
every equilibrium. This is because due to the potential correlation between player 1’s action and 
the state θ , player 2s may not have incentives to play a∗

2 despite λ(α∗
1) belongs to the interior 

of �(θ∗, α∗
1) and player 1’s average action is close to α∗

1 . The remaining proof proceeds in two 
steps, which I summarize below before presenting the details.

1. Suppose all entries of λ(α∗
1) except for at most one are sufficiently close to 0, then player 2

has a strict incentive to play a∗
2 when player 1’s average action is close to α∗

1 . Let �0 be the 
set of type distributions with this feature. One can then directly apply Corollary 1 to establish 
inequality (2.5).

2. If player 1’s average action is close to α∗
1 but player 2 does not have a strict incentive to play 

a∗
2 , then different types of player 1’s actions at that history must be significantly different. 

This implies that player 1’s action at that history must be informative about his type, in which 
case he can pick a particular action that induces player 2 to learn. I show that for every 
λ(α∗

1) ∈ �(θ∗, α∗
1), there exists an integer K(λ) and a strategy for type θ∗ such that if type 

θ∗ follows this strategy, then after at most K(λ) such periods, player 2’s belief about his type 
belongs to �0, which concludes the proof.

Step 1: When at most one entry of λ(α∗
1) is large In order to simplify notation, I index the set 

of states by {1, 2, ..., m} instead of θ ∈ � when doing summation. For every ξ > 0, a likelihood 
ratio vector λ is of ‘size ξ ’ if there exists ψ̃ ≡ (ψ̃1, ..., ̃ψm) ∈ Rm+ such that ψ̃i ∈ (0, ψi) for all i
and moreover,

λ ∈
{̃
λ ∈Rm+

∣∣∣ m∑
i=1

λ̃i/ψ̃i < 1
}

⊂
{̃
λ ∈ Rm+

∣∣∣#{i |̃λi ≤ ξ} ≥ m − 1
}
. (3.21)

Intuitively, λ is of size ξ if there exists a downward sloping hyperplane such that every non-
negative likelihood ratio vector below this hyperplane has at least m − 1 entries no larger than 
ξ . By definition, for every ξ ′ ∈ (0, ξ), if λ is of size ξ ′, then it is also of size ξ . Proposition 2
establishes (2.5) when λ is of size ξ for ξ small enough.

Proposition 2. There exists ξ > 0, s.t. lim infδ→1 vθ∗(δ) ≥ vθ∗(α∗
1) for every λ of size ξ .

Proof. Let � ≡ � ∪A∗
1 stand for the set of types, where every element in � stands for a strategic 

type and every element in A∗
1 stands for a commitment type. I use ω ∈ � to denote a typical 

element of �. Let α1(·|ht , ωi) ∈ �(A1) be the equilibrium action of type ωi at history ht . Let

Bi,a1(h
t ) ≡ λi(h

t )
(
α∗

1(a1) − α1(a1|ht ,ωi)
)
. (3.22)

Let α1(·|ht ) be the average action expected by player 2 at ht . For every λ ∈ �(θ∗, α∗
1) and ε > 0, 

there exists ε > 0 such that for every likelihood ratio vector ̃λ ≡ (̃λi)
m satisfying:
i=1
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m∑
i=1

λ̃i/ψi <
1

2

(
1 +

m∑
i=1

λi/ψi

)
, (3.23)

a∗
2(θ∗, α∗

1) is player 2’s strict best reply to every {α1(·|ht , ωi)}mi=1 satisfying the following two 
conditions

1. |Bi,a1(h
t )| < ε for all i and a1.

2.
∥∥α∗

1 − α1(·|ht )
∥∥ ≤ ε.

This is because when the prior likelihood ratio vector satisfies (3.23), a∗
2(θ∗, α∗

1) is player 2’s 
strict best reply when all types of player 1 play α∗

1 . When ε and ε are both small enough, this 
strictness cannot be overturned.

According to the Pinsker’s Inequality, we know that for every ε > 0, 
∥∥α∗

1 − α1(·|ht )
∥∥ ≤ ε is 

implied by d(α∗
1 ||α1(·|ht )) ≤ ε2/2. Let ψ ≡ max{ψ̃1, ..., ̃ψm}, where ψ̃i is given by (3.21). Pick 

ε > 0 and ξ > 0 to be small enough such that:

ε <
ε

2(1 + ψ)
and ξ <

ε

(m − 1)(1 + ε)
. (3.24)

Suppose without loss of generality that λi(h
t ) ≤ ξ for all i ≥ 2, since 

∥∥α∗
1 − α1(·|ht )

∥∥ ≤ ε, we 
have:

∥∥∥(α∗
1 − α1(a1|ht ,ω1))λ1(h

t ) +
m∑

i=2

(
α∗

1 − α1(a1|ht ,ωi)
)
λi(h

t )

∥∥∥
1 + λ1(ht ) + (m − 1)ξ

≤ ε.

The triangular inequality implies that:

∥∥∥(α∗
1 − α1(a1|ht ,ω1))λ1(h

t )

∥∥∥ ≤
m∑

i=2

∥∥∥(α∗
1 − α1(a1|ht ,ωi))λi(h

t )

∥∥∥
+ ε

(
1 + λ1(h

t ) + (m − 1)ξ
)

≤ (m − 1)ξ + ε
(

1 + ψ + (m − 1)ξ
)

≤ ε, (3.25)

where the last inequality uses (3.24). Inequality (3.25) implies that ||B1,a1(h
t )|| ≤ ε. As a result, 

for every λ of size ξ , a∗
2(θ∗, α∗

1) is player 2’s strict best reply at every history ht satisfying 
d(α∗

1 ||α1(·|ht )) ≤ ε2/2. �
Step 2: When multiple entries of λ(α∗

1) are large I apply the conclusion of Proposition 2 in 
order to establish inequality (2.5) for every λ(α∗

1) ∈ �(θ∗, α∗
1). Recall the definition of Bi,a1(h

t )

in (3.22) and recall that A∗
1 is defined as the support of mixed commitment action α∗

1 . Let 
λ(ht , a1) be the posterior likelihood ratio vector after player 2 observes a1 at ht , and let λi(h

t , a1)

be the ith entry of that vector. According to Bayes rule, if player 1 plays a1 ∈ A∗
1 at ht , then

λi(h
t ) − λi(h

t , a1) = Bi,a1(h
t )

α∗
1(a1)

and
∑

a ∈A∗
α∗

1(a1)
(
λi(h

t ) − λi(h
t , a1)

)
≥ 0.
1 1
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Let D(ht , a1) ≡
(
λi(h

t ) − λi(h
t , a1)

)m

i=1
∈ Rm. Suppose Bi,a1(h

t ) ≥ ε for some i and a1 ∈
A∗

1, we have ||D(ht , a1)|| ≥ ε. Pick ξ > 0 small enough in order to meet the requirement in 
Proposition 2. I define two sequences of subsets of �(θ∗, α∗

1), {�k}∞k=0 and {�̂k}∞k=1, as follows:

• Let �0 be the set of likelihood ratio vectors that are of size ξ ,
• For every k ≥ 1, let �̂k be the set of likelihood ratio vectors that belong to �(θ∗, α∗

1)

such that if λ(ht ) ∈ �̂k , then either λ(ht ) ∈ �k−1 or for every {α1(·|ht , ωi)}mi=1 such that 
||D(ht , a1)|| ≥ ε for some a1 ∈ A∗

1 (i.e., non-trivial learning takes place at ht ), there ex-
ists a′

1 ∈ A∗
1 such that the posterior likelihood ratio vector belongs to �k−1 after player 2 

observes a′
1 at ht .

• Let �k be the set of likelihood ratio vectors in �(θ∗, α∗
1) such that for every λ ∈ �k , there 

exists ψ̃ ≡ (ψ̃1, ..., ψ̃m) ∈ Rm+ such that ψ̃i ∈ (0, ψi) for all i and

λ ∈
{
λ̃ ∈Rm+

∣∣∣ m∑
i=1

λ̃i/ψ̃i < 1
}

⊂
( k−1⋃

j=0

�j
)⋃

�̂k. (3.26)

By construction,

{
λ̃ ∈ Rm+

∣∣∣ m∑
i=1

λ̃i/ψ̃i < 1
}

⊂
k⋃

j=0

�j = �k. (3.27)

Since (0, ..., ψi − υ, ..., 0) ∈ �0 for any i ∈ {1, 2, ..., m} and υ ∈ (0, ψi), we have co(�0) =
�(θ∗, α∗

1). By definition, {�k}k∈N is an increasing sequence of sets (in the set inclusion sense) 
with �k ⊂ �(θ∗, α∗

1) = co(�k) for any k ∈ N . Hence, it is bounded from above by a compact 

set. Therefore �∞ ≡ limk→∞
⋃k

j=0 �j is well-defined and �∞ is a subset of cl
(
�(θ∗, α∗

1)
)

. 

The next lemma shows that cl(�∞) coincides with cl
(
�(θ∗, α∗

1)
)

.

Lemma 3.2. We have cl(�∞) = cl
(
�(θ∗, α∗

1)
)

.

Proof. Since �k ⊂ �(θ∗, α∗
1) for every k ∈ N , we have cl(�∞) ⊂ cl

(
�(θ∗, α∗

1)
)

. The rest 

of the proof shows the other direction. Suppose by way of contradiction that cl(�∞) �

cl
(
�(θ∗, α∗

1)
)

.

1. Let �̂ ⊂ �(θ∗, α∗
1) be such that if λ(ht ) ∈ �̂, then either λ(ht ) ∈ �∞, or for every 

{α1(·|ht , ωi)}mi=1 such that ||D(ht , a1)|| ≥ ε for some a1 ∈ A∗
1, there exists a∗

1 ∈ A∗
1 such that 

λ(ht , a∗
1) ∈ �∞, where λ(ht , a∗

1) denotes the posterior likelihood ratio after a∗
1 is observed 

at ht .
2. Let �̆ be the set of likelihood ratio vectors in �(θ∗, α∗

1) such that for every λ ∈ �̆, there exists 
ψ̃ ≡ (ψ̃1, ..., ̃ψm) ∈ Rm+ such that:

ψ̃i ∈ (0,ψ∗
i ) for all i and λ ∈

{̃
λ ∈ Rm+

∣∣∣ m∑
λ̃i/ψ̃i < 1

}
⊂

(
�∞ ⋃

�̂
)
. (3.28)
i=1
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Since �∞ is defined as the limit of the above operator, so cl(�∞) � cl
(
�(θ∗, α∗

1)
)

implies that 

either �̆ = �∞, or � 
⋂

�̆ = {∅} where

� ≡ cl
(
�(θ∗, α∗

1)
)∖

cl(�∞). (3.29)

Set � is convex and has non-empty interior. For every � > 0, there exist x ∈ �, θ ∈ (0, π/2), and 

a halfspace H(χ) ≡
{̃
λ

∣∣∣∑m
i=1 λ̃i/χi < χ

}
with φ > 0 that satisfy:

1.
∑m

i=1 xi/ψ
∗
i = χ .13

2. ∂B(x, r) 
⋂

H(χ) 
⋂

�(θ∗, α∗
1) ⊂ �∞ for every r ≥ �.

3. For every r ≥ ρ and y ∈ ∂B(x, r) 
⋂

�(θ∗, α∗
1), either y ∈ �∞ or d(y, H(χ)) > r .

The second and third property use the presumption that cl(�∞) is not convex. Suppose λ(ht ) = x

for some ht and there exists a1 ∈ A∗
1 such that ||D(ht , a1)|| ≥ ε,

• Either λ(ht , a1) ∈ �∞, in which case x ∈ �̆ but x ∈ �, leading to a contradiction.

• Or λ(ht , a1) /∈ �∞. Requirement 3 implies that d
(
λ(ht , a1), H(χ)

)
> ε. On the other hand,

∑
a′

1∈A∗
1

α∗
1(a′

1)λi(h
t , a′

1) ≤ λi(h
t ) for every i. (3.30)

Requirement 1 then implies that 
∑

a′
1∈A∗

1
α∗

1(a′
1)λi(h

t , a′
1) ∈ H(χ), which implies that

∑
a′

1∈A∗
1

α∗
1(a′

1)

m∑
i=1

λi(h
t , a′

1)/ψ
∗
i ≤ χ. (3.31)

According to Requirement 2, λ(ht , a1) /∈ H(χ). In another word, 
∑m

i=1 λi(h
t , a1)/ψ

∗
i >

χ +εκ for some κ > 0. Let ρ ≡ εκ
2 mina1∈A∗

1
{α∗

1(a1)}. Inequality (3.30) implies the existence 
of a′

1 ∈ A∗
1\{a1} such that the likelihood ratio vector after observing a′

1 at ht belongs to 
H(χ) 

⋂
B(x, ρ). Requirement 2 then implies that x = λ(ht ) ∈ �̆. Since x ∈ �, this leads to 

a contradiction and validates Lemma 3.2. �
Lemma 3.2 implies that for every prior likelihood ratio vector λ(α∗

1) ∈ �(θ∗, α∗
1), there exists 

K ∈ N such that λ(α∗
1) ∈ �K . Statement 3 of Theorem 1 can then be shown by induction on K , 

which is finite for every λ(α∗
1) ∈ �(θ∗, α∗

1). The case where K = 0 is implied by Proposition 2. 
Suppose the statement applies to every K ≤ K∗ − 1, let us consider the case where λ(α∗

1) ∈
�K∗

. According to the definition of �K∗
, there exists a strategy for type θ∗ such that in every 

period where (1) d(α∗
1‖α1(·|ht )) < ε2/2 and (2) player 2 does not have a strict incentive to play 

a∗
2(θ∗, α∗

1), there exists a′
1 ∈ A∗

1 such that player 2’s posterior likelihood ratio vector belongs to 
�K∗−1 after observing a′

1 in that period. After the posterior likelihood ratio vector belongs to 
�K∗−1, the induction hypothesis implies that type θ∗ can secure vθ∗(α∗

1) when δ is close to 1.

13 Since we index the states via i ∈ {1, 2, ..., m} in this proof, I replace ψ∗ defined in (3.4) by ψ∗ .
θ i
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2022 .105438.
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