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Introduction

Last lecture: A sequence of myopic agents observe all their predecessors’
actions and a private signal, in order to learn about a persistent state.

• With one rational type and a finite action space, asymptotic efficiency if
and only if agents’ private signals are unbounded.

Bounded signals: agents may rationally ignore their private signals.

• With one rational type and bounded signals, agents will take the correct
action asymptotically if and only if their action set is rich enough.

• Multiple rational types can lead to confounded learning.

Agents’ actions depend on their private signals, but the public history is
uninformative about the state.

Common feature: Every agent observes all predecessors’ actions.

• What if every agent only observes a finite sample?
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Finite Sample Learning

Today: Finite sample learning in two scenarios.

• Banerjee and Fudenberg (2004): Learning from actions/payoffs.

• Wolitzky (2018): Learning from outcomes, but cannot observe actions.

Applications: Word-of-mouth communication.

• Conley and Udry (2001,2010): Pineapple farmers in Ghana only know
about what a few other farmers are doing.

• Chen, Cai and Fang (2009): Restaurant choices.

Examine models with a continuum of players.

• The system is deterministic at the aggregate level.

• Complement the papers on social learning in networks where the
number of agents is countable.
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Model (Banerjee and Fudenberg 2004)

• Two payoff-relevant states θ ∈ {θa,θb}.

• Two actions {a,b}.

• Payoffs u(θa,a) = u(θb,b) = 1 and u(θa,b) = u(θb,a) = 0.

• Prior belief Pr(θ = θa) = π > 1/2.

• Time t = 0,1,2, ...

• Period 0: A continuum of individuals are born.

• In state θa, a fraction x(θa) take action a, others take action b.

In state θb, a fraction x(θb) take action a, others take action b.

• In period t, a fraction γ ∈ (0,1) of old players are replaced.

• Every new player observes N ∈ N old players’ actions, and a signal s
whose distribution depends on θ and the sample, and takes an action.
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Model (Banerjee and Fudenberg 2004)

• Every new player observes N ∈ N old players’ actions, and a signal s
whose distribution depends on θ and the sample, and takes an action.

• Assumption: Every new player samples uniformly.

Suppose a fraction x ∈ [0,1] of existing players play a, then

Pr(there are n players choosing a in the sample) =
(

N
n

)
xn(1− x)N−n.

• Let ζ ∈ {0,1, ...,N} denote the number of action a in a sample.

Signal distribution: s∼ f (·|θ ,ζ ) ∈ ∆(S), with S finite.

• Assumption: Players sample independently and their signals are
conditionally independent.

By the LLN (Judd 1985), the fraction of population choosing a
conditional on each state evolves deterministically.
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Law of Motion

Recall that the initial conditions in period 0 are:

• a fraction x(θa) of players take action a if θ = θa,

• a fraction x(θb) of players take action a if θ = θb.

Let x̂t(ζ ,s) be the prob with which a player chooses a in period t after
observing sample ζ and signal s.

Let xt ≡ (xt(θa),xt(θb)), where xt(θ) is the fraction of agents choosing a in
period t conditional on the state being θ . By definition,

xt(θ) = (1− γ)xt−1(θ)+ γ

(
∑
ζ ,s

Pr(ζ ,s|θ ,xt−1(θ)) · x̂t(ζ ,s)
)
.

We say that xt is a steady state if xt+1 = xt in some equilibrium.
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The Improvement Principle

The average payoff of surviving players in period t:

U(xt)≡ πxt(θa)+(1−π)(1− xt(θb)).

• Conditional on θ = θa, a fraction xt(θa) of them chose a.

• Conditional on θ = θb, a fraction xt(θb) of them chose a.

Lemma: The Improvement Principle

Fixing π , the initial conditions, and any equilibrium,

• U(xt) is nondecreasing in t.

• For every t ∈ N, U(xt+1) = U(xt) if and only if no decision rule strictly
improves on the rule “copy the action of the first person in the sample”.
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The Improvement Principle: Intuition

Lemma: The Improvement Principle

Fixing π , the initial conditions, and any equilibrium,

1. U(xt) is nondecreasing in t.

2. For every t ∈ N, U(xt+1) = U(xt) if and only if no decision rule strictly
improves on the rule “copy the action of the first person in the sample”.

Suppose a new player in period t+1 uses the following decision rule:

• copy the action of the first person in their sample.

He cannot do worse than the average player who survives in period t.

• This relies on uniform unbiased sampling.

His optimal decision rule (i.e., mapping from observed sample and signals to
distribution over his actions) must yield a weakly higher expected payoff.
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Convergence Theorem with Informative Signals

Convergence Theorem with Informative Signals

Assume that N ≥ 2 and f (s|θa,ζ ) 6= f (s|θb,ζ ) for every ζ .

1. If at least one entry of xt is neither 0 nor 1, then U(xt+1)> U(xt).

2. If x is a steady state, then every entry of x must be either 0 or 1.

3. The system must converge to a steady state.

Proof of Statement 1: If U(xt+1) = U(xt), then

• Any new agent in t+1 cannot do better than imitating the first person
in their sample.

• Therefore, for any sample ζ ∈ {1, ...,N−1} and any s ∈ S, the new
agent is indifferent between a and b.

• This contradicts the presumption that s is informative about θ .
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Convergence Theorem with Informative Signals

Convergence Theorem with Informative Signals

Assume that N ≥ 2 and f (s|θa,ζ ) 6= f (s|θb,ζ ) for every ζ .

1. If at least one entry of xt is neither 0 nor 1, then U(xt+1)> U(xt).

2. If x is a steady state, then every entry of x must be either 0 or 1.

3. The system must converge to a steady state.

Proof of Statement 2:

• In any steady state xt, we have U(xt+1) = U(xt).

• The conclusion of Statement 2 follows from Statement 1.



Finite Sample Learning Results Outcome-Based Learning

Convergence Theorem with Informative Signals

Convergence Theorem with Informative Signals

Assume that N ≥ 2 and f (s|θa,ζ ) 6= f (s|θb,ζ ) for every ζ .

1. If at least one entry of xt is neither 0 nor 1, then U(xt+1)> U(xt).

2. If x is a steady state, then every entry of x must be either 0 or 1.

3. The system must converge to a steady state.

Proof of Statement 3: The key step is to show that

• If xt is bounded away from the steady state, then U(xt+1)−U(xt) is
bounded away from 0.
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Convergence Theorem without Informative Signals

Convergence Theorem without Informative Signals

Assume that N ≥ 3.

1. If at least one entry of xt is neither 0 nor 1, then U(xt+1)> U(xt).

2. If x is a steady state, then every entry of x must be either 0 or 1.

3. The system must converge to a steady state.

If U(xt+1) = U(xt), then any new agent in t+1 cannot do better than
imitating the first person in their sample.

• The new agent is indifferent between a and b when there is one a in
their sample, and when there are two as in their sample.

• This implies that xt(θa) = xt(θb) ∈ (0,1), so

U(xt)≤ max
x∈[0,1]

{
πx+(1−π)(1− x)

}
≤max{π,1−π}= π.

• U(xt)< π when xt(θa) = xt(θb) ∈ (0,1).

• However, an agent’s expected payoff is π under his prior.
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Efficiency Theorem

Efficiency Theorem

Suppose N ≥ 2 and for every sample ζ ∈ {0, ...,N}, there is positive
probability of a signal realization s such that

f (s|θa,ζ )

f (s|θb,ζ )
· π

1−π
< 1.

then the system converges to the efficient point x = (1,0).

Proof: We know that the system must converge to x consists only of 0 and 1.

• It cannot converge to (0,0) or (0,1) since the expected payoff is less
than π (the achievable payoff under the prior).

• It cannot converge to (1,1) since there exists s ∈ S such that

f (s|θa,ζ )

f (s|θb,ζ )
· π

1−π
< 1,

after which the new player should choose b after observing s.
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Efficiency Theorem

Efficiency Theorem

Suppose N ≥ 2 and for every sample ζ ∈ {0, ...,N}, there is positive
probability of a signal realization s such that

f (s|θa,ζ )

f (s|θb,ζ )
· π

1−π
< 1.

then the system converges to the efficient point x = (1,0).

This theorem requires s to be sufficiently informative.

• When the informativeness of s is low, there can be multiple steady
states, some of them are inefficient.

• However, inefficient steady states are never stable,

i.e., there exists small perturbations s.t. the distribution over actions
drifts away from the inefficient steady state.
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Inefficient steady states must be unstable

Let U∗ be the payoff in an inefficient steady state x′.

• Consider the hyperplane defined by the isoprofit curve

πx′(θa)+(1−π)(1− x′(θb))−U∗ = 0.

By definition, this curve crosses x′.

• The efficient point is x∗ ≡ (1,0).

• Suppose in period 0, the action distribution x is at the side of the red
hyperplane containing x∗.

The agent’s expected payoff from x is strictly greater than U∗.

Improvement principle implies that {xt}t∈N can never converge to x′.
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What happens when N = 1?

When N = 1, the steady state x may contain sth other than 0 and 1.

• Suppose the initial value of x is (1− ε1,ε2).

• For every bounded signal s, ∃ ε > 0 s.t. when ε1,ε2 < ε ,

every player finds it optimal to play the action he observes.

• Therefore, (1− ε1,ε2) is a steady state for small enough ε1,ε2.

Generic Ineffiency when N = 1

When N = 1 and x 6= (1,0) in period 0, the system converges to an inefficient
steady state.

Intuition: The system gets stuck once it reaches (1− ε1,ε2).
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Model

• Time is continuous t ∈ [0,+∞). State θ ∈ {0,1}, with Pr(θ = 1) = p.

• Action at ∈ {0,1}, outcome yt ∈ {0,1}.
Pr(yt = 1|at = 0) = χ , Pr(yt = 1|at = 1,θ = i) = πi for i ∈ {0,1}.

• At time 0, a continuum of players whose choices are exogenous.

• Old players die at rate γ and new players arrive at rate γ .

• When a new player arrives, he randomly samples K outcomes of
surviving old players, and makes an irreversible choice at ∈ {0,1}.

• Player t’s payoff is yt− cat where c ∈ R is the relative cost of 1.

• Assumptions: π1− c > χ > π0− c, (optimal action is state dependent)

p > p∗, where p∗(π1− c)+(1−p∗)(π0− c) = χ , (1 is optimal ex ante)

1−p
p
·
(1−π0

1−π1

)K
>

1−p∗

p∗
(everyone chooses 1 is not an equilibrium)
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Aligned Points and Misaligned Points

The population at time t can be described by xt ≡ (xt(0),xt(1)), where xt(θ)
is the fraction of agents choosing action 1 in state θ .

• Prob of good outcome in state θ is σθ (xt)≡ xt(θ)πθ +(1− xt(θ))χ .

• Observing more y = 1 is good news iff σ1(xt)≥ σ0(xt),

or equivalently, xt(1)(π1−χ)≥ xt(0)(π0−χ).

xt ≡ (xt(0),xt(1)) ∈ [0,1]2 is aligned if xt(1)(π1−χ)≥ xt(0)(π0−χ), and is
misaligned otherwise.
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Results

Theorem: Aligned Points are Absorbing

If the initial point x0 is aligned, then xt is aligned for every t ∈ R+.

Suppose x0(1)(π1−χ)≥ x0(0)(π0−χ) but xt(1)(π1−χ)< xt(0)(π0−χ).

• ∃ s ∈ [0, t] s.t. xs(1)(π1−χ)− xs(0)(π0−χ) = 0 and the derivative of
the LHS w.r.t. time is negative.

• Since xs(1)(π1−χ)− xs(0)(π0−χ) = 0, observing outcomes is
uninformative, so all new agents at s choose ex ante optimal action 1.

• Therefore, ẋs(θ) = γ(1− xs(θ)). This yields

ẋs(0)(π0−χ) = γ(1− xs(0))(π0−χ) = γ

{
π0−χ− xs(1)(π1−χ)

}
< γ

{
π1−χ− xs(1)(π1−χ)

}
= ẋs(1)(π1−χ),

which leads to a contradiction.
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Cost Saving Innovation & Outcome Improving Innovation

Theorem: Aligned Points are Absorbing

If the initial point x0 is aligned, then xt is aligned for every t ∈ R+.

Intuition: Consider two cases.

1. Outcome improving: π1 > χ .

If xs(1)(π1−χ) = xs(0)(π0−χ), then adoption rate is higher in state 0.

Increase in adoption rate is higher in state 1, making x more aligned.

2. Cost saving: π1 < χ .

If xs(1)(π1−χ) = xs(0)(π0−χ), then adoption rate is higher in state 1.

Increase in adoption rate is higher in state 0, making x more aligned.

Another interesting observation:

• Efficient point (0,1) is aligned in the outcome improving case.

• Efficient point (0,1) is misaligned in the cost saving case.
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Result: Long Term Inefficiency

Theorem: Long Term Inefficiency

If π1 < χ and x0 is aligned, then the steady state is bounded away from
efficiency no matter how large K is.

Why? If x0 is aligned, then xt is aligned.

• The efficient point (0,1) is not aligned in the cost saving case.
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Result: Long Term Efficiency

Theorem: Long Term Efficiency

If π1 > χ ,

then for every x0 and ε > 0,

there exist K ∈ N and T ∈ R+ such that when K > K and t > T,

every equilibrium path is within an ε neighborhood of (0,1).
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