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Lectures 1-9: Models with Commitment Types

All the models we have seen so far:

• There exists at least one type whose strategy is exogenously assumed.

Fudenberg and Levine (89,92), Schmidt (93), Evans and Thomas (95),
Cripps, Dekel and Pesendorfer (05), Atakan and Ekmekci (12), Pei (20).

• Compute the rational type’s payoff from imitating a commitment type.

• This leads to a lower bound on the rational type’s equilibrium payoff.



Model Results Proof Blackwell Approachability

This week: Models without Commitment Types

All types’ behaviors are endogenous.

• It is hard to compute type a’s payoff from imitating type b since type
b’s behavior is also unknown.

• Deliver sharp predictions on players’ payoffs seems unrealistic except
for specific classes of games (e.g., zero-sum games).

Results in this literature: Characterize the set of equilibrium payoffs.

Two classes of models:

• Models without discounting.

• Models with discounting.

Start from models w/o discounting (Shalev 1994) and then explain the
connections to models with discounting (Cripps and Thomas 2003).
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Repeated Incomplete Info Game without Discounting

• Time t = 1,2, ...

• Two patient players: 1 and 2. Actions a1 ∈ A1 and a2 ∈ A2.

• P1 has private info about a persistent state θ ∈Θ.

P2’s prior belief π ∈ ∆(Θ).

• Stage-game payoffs u1(θ ,a1,a2) and u2(θ ,a1,a2).

• Both players can perfectly observe all the past actions.

Public history ht ≡ {a1,s,a2,s}s≤t−1 ∈H t, with H ≡ ∪t∈NH t.

• Player 1’s strategy: σ1 : H ×Θ→ ∆(A1).

Player 2’s strategy: σ2 : H → ∆(A2).

• Assumption: A1, A2, and Θ are finite, |A1| ≥ 2, |A2| ≥ 2, and π has
full support.
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Repeated Game Payoffs & Nash Equilibrium

Player i maximizes the limit of 1
T ∑

T
t=1 ui(θ ,a1,t,a2,t) as T→+∞.

Notion of Nash equilibrium in undiscounted games.

Definition: Nash Equilibrium

(σ1,σ2) is a Nash equilibrium if for every σ ′2,

liminf
T→+∞

Eπ

(σ1,σ2)

[ 1
T

T

∑
t=1

u2(θ ,a1,t,a2,t)
]
≥ limsup

T→+∞

Eπ

(σ1,σ
′
2)

[ 1
T

T

∑
t=1

u2(θ ,a1,t,a2,t)
]

and for every σ ′1 and θ ∈Θ,

liminf
T→+∞

Eθ

(σ1,σ2)

[ 1
T

T

∑
t=1

u1(θ ,a1,t,a2,t)
]
≥ limsup

T→+∞

Eθ

(σ ′1,σ2)

[ 1
T

T

∑
t=1

u1(θ ,a1,t,a2,t)
]

Uniform Nash equilibrium in Hart (1985): Equivalent in terms of payoffs in
games with one-sided private info.
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Repeated Game Payoffs & Nash Equilibrium

Definition: Nash Equilibrium

(σ1,σ2) is a Nash equilibrium if for every σ ′2,

liminf
T→+∞

Eπ

(σ1,σ2)

[ 1
T

T

∑
t=1

u2(θ ,a1,t,a2,t)
]
≥ limsup

T→+∞

Eπ

(σ1,σ
′
2)

[ 1
T

T

∑
t=1

u2(θ ,a1,t,a2,t)
]

and for every σ ′1 and θ ∈Θ,

liminf
T→+∞

Eθ

(σ1,σ2)

[ 1
T

T

∑
t=1

u1(θ ,a1,t,a2,t)
]
≥ limsup

T→+∞

Eθ

(σ ′1,σ2)

[ 1
T

T

∑
t=1

u1(θ ,a1,t,a2,t)
]

If (σ1,σ2) is a Nash equilibrium, then

lim
T→+∞

Eθ

(σ1,σ2)

[ 1
T

T

∑
t=1

u1(θ ,a1,t,a2,t)
]

and lim
T→+∞

Eπ

(σ1,σ2)

[ 1
T

T

∑
t=1

u2(θ ,a1,t,a2,t)
]

exist and are well-defined.
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Equilibrium Payoff & Equilibrium Payoff Set

An equilibrium payoff is a |Θ|+1 dimensional real vector
(
(uθ )θ∈Θ,v

)
.

Objective: Given the primitives (u1,u2,π), characterize the equilibrium
payoff set U ⊂ R|Θ|+1, s.t.

1. For every
(
(uθ )θ∈Θ,v

)
∈U , there exists a sequence of equilibria

{(σn
1 ,σ

n
2 )}n∈N, s.t. type θ ’s payoff converges to uθ and P2’s payoff

converges to v as n→+∞.

2. For every
(
(uθ )θ∈Θ,v

)
/∈U , players’ payoff in every equilibrium is

bounded away from
(
(uθ )θ∈Θ,v

)
.
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Overview of the Literature

Aumann and Maschler (1966): Characterize U for zero-sum games.

Hart (1985): Characterize U for every game with one-sided private info.

• Upside: Very general, can handle games with interdependent values.

• Downside: Based on bi-martingales. Hard to compute.

Shalev (1994): Characterize U for every game with one-sided private info
and private values.

• Assumption: The value of u2(θ ,a1,a2) does not depend on θ .

• Upside: The characterization is based on linear programming, which is
easy to understand and to compute.

Cripps and Thomas (2003): Establish connections between U and the
equilibrium payoff set in games with equal discounting as δ → 1.
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Today: Private Value Games

We make a private value assumption on players’ payoffs:

u2(θ ,a1,a2) = u2(a1,a2).

The French and the Israelis call this case known own payoffs since P2 knows
his cardinal preferences over (a1,a2) despite not knowing θ .
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Minmax Payoff

First step: What are players’ minmax payoffs?

• Suppose P1 deviates, to what extent can P2 punish P1?

• Challenge: P1 has private info about his payoff.

Can P2 come up with a strategy that can punish all types of P1?

Formally, suppose P1’s equilibrium payoff is u≡ (uθ )θ∈Θ.

• What are the conditions on u s.t. there exists a strategy for P2 σ∗2 under
which P1’s payoff is no more than u regardless of P1’s strategy σ1?
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Blackwell’s Approachability Theorem

For every p ∈ ∆(Θ), consider a one-shot complete info zero-sum game with
P1’s payoff being ũ1,p(a1,a2)≡ ∑θ∈Θ p(θ)u1(θ ,a1,a2). Let

u(p)≡ min
α2∈∆(A2)

max
α1∈∆(A1)

ũ1,p(a1,a2).

Theorem: Blackwell Approachability (Blackwell 1956)

There exists a strategy for P2 σ∗2 under which

lim sup
T→+∞

Eθ

(σ1,σ
∗
2 )

[ 1
T

T

∑
t=1

u1(θ ,a1,t,a2,t)
]
≤ uθ for every θ ∈Θ and σ1 ∈ Σ1

if and only if u≡ (uθ )θ∈Θ is such that

∑
θ∈Θ

p(θ)uθ ≥ u(p) for every p ∈ ∆(Θ). (1)

If P1’s payoff u satisfies (1), then there exists a strategy for P2 under which
no type of P1 has an incentive to make any observable deviation.
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Player 2’s Minmax Payoff

Consider a one-shot complete info zero-sum game with P2’s payoff being
u2(a1,a2). Let

v≡ min
α1∈∆(A1)

max
α2∈∆(A2)

u2(a1,a2).

By definition, there exists a strategy for P1 under which P2’s payoff is no
more than v regardless of P2’s strategy.

If P2’s payoff is at least v, then there exists a strategy for P1 under which P2
has no incentive to make any observable deviation.
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Shalev: Games with Private Values

Theorem (Proposition 4 in Shalev 1994)(
(uθ )θ∈Θ,v

)
is an equilibrium payoff if and only if there exists {αθ}θ∈Θ

with αθ ∈ ∆(A1×A2) such that:

1. Feasibility: uθ = u1(θ ,α
θ ) for every θ ∈Θ. v = ∑θ∈Θ π(θ)u2(α

θ ).

2. IR-1: ∑θ∈Θ p(θ)uθ≥ u(p) for every p ∈ ∆(Θ).

IR-2: u2(α
θ )≥ v for every θ ∈Θ.

3. IC: For every θ ,θ ′ ∈Θ, type θ weakly prefers αθ to αθ ′ .

Intuition: Think about a mechanism design problem s.t. P1 reports his type
before the game starts and receives an allocation αθ if he reports θ .
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Proof Sketch (Necessity of feasibility constraints)

• Given equilibrium (σ1,σ2), P1’s and P2’s payoffs conditional on θ are:

uθ = lim
T→+∞

Eθ

(σ1,σ2)

[ 1
T

T

∑
t=1

u1(θ ,a1,t,a2,t)
]

vθ = lim
T→+∞

Eθ

(σ1,σ2)

[ 1
T

T

∑
t=1

u2(θ ,a1,t,a2,t)
]
.

• Hence, there exists αθ ∈ ∆(A1×A2) such that

uθ = ∑
(a1,a2)∈A1×A2

α
θ (a1,a2)u1(θ ,a1,a2)

vθ = ∑
(a1,a2)∈A1×A2

α
θ (a1,a2)u2(a1,a2).

• Since prior is π ∈ ∆(Θ), P2’s equilibrium payoff is v = ∑θ∈Θ π(θ)vθ .
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Proof Sketch (Necessity of IR constraints)

(IR-1): ∑θ∈Θ p(θ)uθ ≥ u(p) for every p ∈ ∆(Θ) .

Suppose (uθ )θ∈Θ is P1’s equilibrium payoff but violates (IR-1), then

Theorem: Blackwell Approachability (Blackwell 1956)

There exists a strategy for P2 under which P1’s time-average payoff is no
more than u≡ (uθ )θ∈Θ regardless of P1’s strategy if and only if

∑
θ∈Θ

p(θ)uθ ≥ u(p) for every p ∈ ∆(Θ).

no matter what P2’s strategy is, there exists θ ∈Θ s.t. type θ ’s payoff is
strictly more than uθ .

• P1 has a profitable deviation, which leads to a contradiction.
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Proof Sketch (Necessity of IR constraints)

(IR-2): ∑(a1,a2)∈A1×A2
αθ (a1,a2)u2(a1,a2)≥ v for every θ ∈Θ.

Recall that by our construction of αθ , P2’s time-average payoff conditional
on θ equals his stage-game payoff from αθ .

Suppose P2’s payoff conditional on θ , vθ , is less than v.

• Since {πt}t∈N is a bounded martingale, it converges a.s.

• There exists a limiting belief π∞ s.t. θ ∈ supp(π∞) and at π∞, P2’s
payoff conditional on θ is less than v.

• Since P2’s payoff is no less than v, there exists θ ′ ∈ supp(π∞) s.t. at
π∞, P2’s payoff conditional on θ ′ is more than v.

• Since P2’s payoff does not depend on θ , the continuation play at π∞ is
different under θ and θ ′, i.e., types θ and θ ′ behave differently.

• This contradicts the presumption that π∞ is a limiting belief.
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Proof Sketch (Necessity of IC constraint)

(IC): For every θ ,θ ′ ∈Θ, type θ weakly prefers αθ to αθ ′ .

If (IC) is violated, then some type of player 1 strictly prefers the equilibrium
strategy of another type rather than his own equilibrium strategy.
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Proof Sketch (Sufficiency)

• Let n be the smallest integer s.t. 2n ≥ |Θ|, and {a′1,a′′1} ⊂ A1.

• From period 1 to n, each type of P1 plays a different sequence in
{a′1,a′′1}n. P2’s actions are arbitrary.

In equilibrium, P2 learns P1’s type in period n+1.

• If P1’s type is θ , then players’ action frequencies in the continuation
game is given by αθ .

• If P1 makes any off-path deviation, then P2 punishes him using the
strategy that drives his payoff below u.

• If P2 makes any off-path deviation, then P1 punishes him using the
strategy that drives his payoff below v.
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Blackwell Approachability Theorem

Theorem: Blackwell Approachability (Blackwell 1956)

There exists a strategy for P2 σ∗2 under which

lim sup
T→+∞

Eθ

(σ1,σ
∗
2 )

[ 1
T

T

∑
t=1

u1(θ ,a1,t,a2,t)
]
≤ uθ for every θ ∈Θ and σ1 ∈ Σ1

if and only if u is such that

∑
θ∈Θ

p(θ)uθ ≥ u(p) for every p ∈ ∆(Θ).

You can view this as a generalization of the minmax theorem to
multi-dimensional objectives.

• P2 tries to make the average outcome belonging to {w ∈ R|Θ||w≤ u}

• P1 tries to make the average outcome escaping this set.

When can P2 successfully do that? (conditions on u)
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Proof Sketch: Blackwell Approachability

If u is such that

∑
θ∈Θ

p(θ)uθ ≥ u(p) for every p ∈ ∆(Θ),

let’s construct a strategy for P2 s.t. P1’s average payoff belongs to
S≡ {w ∈ R|Θ||w≤ u}.

Let ut ∈ R|Θ| be P1’s stage-game payoff in period t. Let

ut ≡
1
t

t

∑
s=1

us.

• In period 0 or when ut ∈ S, P2’s action is arbitrary.

• If ut /∈ S, then there exists xt ∈ S that minimizes the distance to ut
among all elements in S.

Let p ∈ ∆(Θ) be such that p · (ut−xt) = 0. P2 plays his minmax
strategy in the zero-sum game ∑θ∈Θ p(θ)u1(θ ,a1,a2).
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Blackwell Approachability Theorem

P2’s Blackwell strategy:

• In period 0 or when ut ∈ S, P2’s action is arbitrary.

• If ut /∈ S, then there exists xt ∈ S that minimizes the distance to ut
among all elements in S.

Let p ∈ ∆(Θ) be such that p · (ut−xt) = 0. P2 plays his minmax action
in the zero-sum game ∑θ∈Θ p(θ)u1(θ ,a1,a2).

Lemma
If P2 uses this strategy and

∑
θ∈Θ

p(θ)uθ ≥ u(p) for every p ∈ ∆(Θ),

then for every ε > 0, there exists T ∈ N s.t. regardless of P1’s strategy,

Pr
(

d(ut,S)≥ ε for some t ≥ T
)
≤ ε.
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Blackwell Approachability Theorem
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Next Lecture

Cripps and Thomas (2003):

• Discounted games with two patient players.

• Shalev’s characterization approximately applies.

Pei (2021 TE), Pei (2021 Working Paper).

• Discounted repeated games with short-lived uninformed players.
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