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Last Lecture: Shalev (1994)

Repeated games with two long-run players and without discounting.

e P1 privately observes a persistent state 6 € ®

e P2’s belief about the state is 7 € A(©®).

e Players’ stage-game payoffs u;(0,a1,az) and up(ay,a;).

e Player 1 maximizes limy_, ;o % Y u (6,a1,a2;).

Player 2 maximizes lim7_ 1 % ):th1 w(ai,any).

Result: A payoff ((ug)g,v) is an equilibrium payoff if and only if there
exists {a}gce with a® € A(A| x A,) such that:

1. Feasibility: ug = u; (0, %) forevery 8 € ©. v =Y gc0 7(0)uz(a?).

2. IR: Ygcop(8)ug > u(p) Vp € A(®). ua(a®) >vV 0 coO.

3. IC: For every 0,0’ € ©, type 8 weakly prefers a® to a?.

Let %  RI® be the projection of this set on P1’s payoft.
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Today: Games with Discounting

e Timer=1,2,...
e Two patient players: 1 and 2. Actions a; € A| and a; € Aj.
e P1 has private info about a persistent state 6 € ©.
P2’s prior belief T € A(®).
e Stage-game payoffs u;(0,a;,a;) and up(ay,az).
e Both players can perfectly observe all the past actions.

e Players maximize:

oo oo
Y (1-8)8{ui(6,a1,,a2,) and Y (1= 8)83uz(ar 1, a2,),
=0 =0

Cripps and Thomas (2003): Focus on P1’s payoffs.
e What will happen when 8, — 1 and 8, is bounded away from 1?
e What will happen when both 8§; and &, are close to 1?
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P2’s Discount Factor is Bounded Away from 1

% c R isP1’s equilibrium payoff set in a game w/o discounting.

Theorem: Necessary Condition for Equilibrium Payoff
Fix & € (0,1) and full support 7.

Then for every € > 0, there exists 0, € (0,1) such that for all ; € (8,,1),

ifu = (ug)oce is player 1’s equilibrium payoff, then

min ||u* —u|| < €.
wrew




Cripps and Thomas

Proof Sketch

Theorem: Necessary Condition for Equilibrium Payoff

Fix & € (0,1) and full support 7.
Then for every € > 0, there exists 0, € (0,1) such that for all 6; € (8,,1),
ifu = (ug)oco is player 1’s equilibrium payoff, then

min ||u* —ul| <e.
rew

Given any equilibrium ((0g)gco,02) and (aj,a;) € Aj X Ay, let
0 <
o (a1,a2) =B [ Y (1= 8)8{1{ (a1, a2,) = (a1, a2)} .
=0

Let a® € A(A; x A;) be the allocation of type 6.

The necessity of feasibility and IC are straightforward.
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Proof Sketch

Theorem: Necessary Condition for Equilibrium Payoff

Fix & € (0,1) and full support 7.
Then for every € > 0, there exists 0, € (0,1) such that for all ; € (8,,1),
ifu = (ug)oco is player 1’s equilibrium payoff, then

min ||u* —u|| <e.
ew

IR-1: Generalize the Blackwell approachability theorem to discounted
games where 8, — 1.

IR-2: Suppose P1 plays type 8’s equilibrium strategy Op.
o There exists T € Ns.t. 1 =87 ~ 1.

e P2’s payoff conditional on 60 is > v — € if they are convinced that P1’s
strategy is close to Op in the next T periods.

e There can be at most a bounded number of periods s.t. P2 believes that
P1’s strategy in the next T periods is far away from oy.
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Shalev’s conditions are necessary, but not sufficient

Belonging to % is a necessary condition for P1’s equilibrium payoff when
01 goes to 1, but it is in general not sufficient.
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Example: Shalev’s conditions are not sufficient

(0,0)

Suppose ® = {6}, 6,b,c >0, and & < 7" = ;5.
- T N
H|1-6,b|0,0
L I,—c | 0,0
uz
(1 - 071))
%
ui
(1_ vO)

ui
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Example: Shalev’s conditions are not sufficient

& <Y =55
up
(1—-6,b)
U
(0,0) 0.0 1 1
(1,—¢) (1,—c)

Intuition: P2’s impatience introduces additional constraints on P1’s
equilibrium payoffs beyond feasibility, IR, and IC in Shalev (1994).
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Both Players’ Discount Factors are Close to 1

Let 7 be the set of (ug)gce s.t. there exist {a®}gce and v € R satisfying
1. Feasibility: ug = u;(0,a?) forevery 0 € ©. v =Y 9.0 7(0)uz(a?).
2. IR: Ygcop(0)us > u(p) Vp € A(®). ur(a®) > vV 6 € ©.

3. IC: For every 6 # 0/, type 6 weakly prefers a® to at.

Let 7 be the set of (ug)geo s.t. there exist {a®}gce and v € R satisfying
1. Feasibility: ug = u;(0,a?) forevery 0 € ©. v =Y 9.0 7(0)uz(a?).
2. Strict IR: Yo 0p(0)ug > u(p) Vp € A(®). uz(a®) >vVv 0o co.

3. Strict IC: For every 0 # 6/, type 0 strictly prefers a® to a?’.
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Both Players’ Discount Factors are Close to 1

Theorem: Sufficient Condition for Equilibrium Payoff

For everyu € % and € > 0, there exists 8 € (0,1) such that
whenever 1 > 61,6, > 6,

there is an equilibrium s.t. P1’s payoff is within an €-neighborhood of u.

When both players’ discount factors are close to 1, every payoff that is
strictly IR and IC can be approximately attained in the discounted game.

e What are the connections between % and % ?

e [s either the € approximation or the strict IR/IC conditions redundant?
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Follow-up works

Horner and Lovo (2009)
e Characterize belief-free equilibrium payoffs when 6; = 6, — 1.
e Allows for two-sided private information and interdependent values.

Horner, Lovo and Tomala (2011) generalize it to three or more players.

Peski (2014)
e Focus on private value games. Allows for two-sided private info.

e Characterize the equilibrium payoff set when 6; = 6, — 1.

An open question: What if one of the players is not very patient?
e Pei (2021 TE): Monotone-supermodular games.

e Pei (Working Paper): Provide strategic foundations for the sender’s
commitment in Bayesian persuasion models.

Challenge: Figure out what the additional constraints are.
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Example

Time: t=0,1,2,...
A long-lived P1, discount factor 8 € (0, 1) vs a sequence of myopic P2s.

P2

Pl
0,0

(1-6,b) (1, —o)

in which b >0 and ¢ > 0, let y* = ;¢

The terminal node in each period is perfectly observed.

P1 has perfectly persistent private information about 6:
e 0c®={6),..,0,} C[0,1),with0< 0; < 6, <...< 6, < 1.
e P2’s full support prior & € A(®).



Payoffs

Result: P1’s Highest Equilibrium Payoff

For every j € {1,2,...,m}, let

. B 1—-6
———

Type 6;’s Stackelberg payoff
i incomplete information multiplier (< 1)

Theorem 1: Highest Equilibrium Payoff

For every € > 0, there exists 6 € (0,1) s.t. when 8 > 9,
1. 3 sequential equilibrium s.t. P1’s payoff is within € of (v},...,vy,).

2. P BNE s.t. type 0,’s payoff is more than Vi

BBNE andj € {2,...,m}, s.t. type 6;’s payoff is more than vi+e.
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Lessons from Theorem 1

‘ 1-6

‘= 1— 76, T
Vj ( y /) X 17,}/*91
——

Type 6 Stackelberg payoff incomplete information multiplier (< 1)
1. Type 6;’s highest equilibrium payoff only depends on:
(a) His own cost of playing H: 6;.
(b) The lowest cost in the support of P2’s prior belief.

The mult1pl1er y*e converges to 1 as 0; | 0.

2. Type 8;’s payoff is no more than his highest equilibrium payoff in the
repeated complete information game.

3. Types 6, to 6,, can strictly benefit from incomplete information.

* .
v > 1-6 , forallj#1.
——
highest payoff under complete info



Payoffs

Understand the Formula v = (1 —7"6)) - 1

v; is the value of the following constrained optimization problem:

max {(1 —9)  wMH) + L) }
% eA{N,H,L} N~——
prob of terminal node H  prob of terminal node L

subject to:
(1-6)Z(H)+Z(L)<1-6,

and

>

_r
_y*'



Payoffs

Two Type Example

Each & is captured by a point in the yellow set.

V2

V1
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Constraint 1

V2

V1

(1— 6% (H)+ % (L) < 1— 6,



Payoffs

Constraint 2

V2

Vi




Payoffs
Proof of Theorem 1: Overview
For any equilibrium ¢ = ((Gg)geg, 0'2>, and any 6; € {6y,...,0,,}:
e Let %/ ¢ A{N,H,L} be the discounted average frequency of terminal

nodes induced by (0g;,02).

)

Wi(y) = E(%%:°2) {Z(l —8)8"1{y, :y}} forevery y € {N,H,L}.
=0

We know that:
1. Type 6;’s equilibrium payoff equals his expected payoff from I
2. Type 6;’s expected payoff from %7 < type 0;’s equilibrium payoff.

The proof consists of two steps.

e Foreveryj € {1,....,m}, %7 must satisfy the two constraints
= Type 6;’s payoff cannot exceed v;f.

e Construct an equilibrium that approximately attains (v},...,v},).



Payoffs

Proof: Type 6;’s Payoff < v;-‘

Type 01’s payoff in any BNE is no more than 1 — 0.

Since type 6;’s expected payoff from %7/ < type 6;’s equilibrium payoft,
this lemma implies that 27 must satisfy the first constraint.

For every € > 0, there exists 6 € (0,1) such that when 8 > J, for every BNE
and for every j € {1,2,...,m},

v

1-(r—g)

Apply Gossner’s learning argument to type 6;’s equilibrium strategy.

e Conditional on P2 plays T, oy, plays H with prob at least y* in all
except for a bounded number of periods.



Payoffs

Proof of Lemma 1: Type 0,’s Payoff < 1— 6,

Induction on the number of types in the support of P2’s posterior.
e One type: Direct implication of Fudenberg, Kreps and Maskin (90).
e Suppose lowest-cost type 0’s payoff is no more than 1 — 6 when there
are < n — 1 types, what happens when there are n types?
Let 0 be the lowest-cost type. Partition on-path histories into 3 subsets:
1. P2 plays N with prob 1,
2. P2 plays T with positive prob and type 8 plays H with positive prob,
3. P2 plays T with positive prob and type 6 plays H with zero prob.

The following strategy is type 6’s best reply to o;:

e Until reaching a Class 3 history, plays oy at Class 1 histories and plays
H for sure at Class 2 histories.



Payoffs

Proof of Lemma 1: Type 0,’s Payoff < 1— 6,

Three classes of histories:
1. P2 plays N with prob 1,
2. P2 plays T with positive prob and type 0 plays H with positive prob,
3. P2 plays T with positive prob and type 6 plays H with zero prob.

Consider the following best reply of type 6 to 0,:

e Until reaching a Class 3 history, plays oy at Class 1 histories and plays
H for sure at Class 2 histories.

Class 1 histories: Type 0°s stage-game payoff is 0.

Class 2 histories: Type 0’s stage-game payoff is at most 1 — 6.



Proof: Type 0;’s Payoff <1 — 0,

What about type 0’s continuation value at Class 3 history?

3. P2 plays T with positive prob and type 6 plays H with O prob.

Class 3 history /4: 3 another type that plays H with positive prob.

e After observing H at /', at most n — 1 types in the support of P2’s
posterior belief.

e Induction hypothesis = there exists some type 6'(> 6) whose
continuation value at A’ is at most 1 — 6.

e If type 0’ imitate type O’s strategy starting from 4, then type 6’
receives continuation value is at least:

Type 6’s Continuation Value at A+ (0 —0') (< 1-0')

= Type 0’s continuation value at A’ is at most 1 — 6.



Payoffs

Proof: Type 0;’s Payoff <1 — 0,

Suppose type 0 plays the following best reply to o,:

e Until reaching a Class 3 history, plays oy at Class 1 histories and plays
H for sure at Class 2 histories.

Then
e His stage-game payoff < 1 — 0 before play reaches a Class 3 history.

e His continuation value is < 1 — 0 after reaching a Class 3 history.

Type 0’s payoff is no more than 1 — 6 at a history where:
e He is the lowest cost type in the support of P2’s posterior.

e There are at most n types in the support of P2’s posterior.



Payoffs
Construct equilibria that approximately attain v*

How to approximately attain payoff v* = (v§,...,v},)?

V2
|
oo (171)
(]
s
L
SO
[ ]
e i1 v*
7 1
4 /
. ()
’ !
7
’
3 |
// !
I \%

For every n € (0,1) and v(y), there exists 8 € (0,1),
such that for every 6 > 8 and my(6;) > 1,
there exists an equilibrium in which P1’s payoff is v(7).




Payoffs

Overview: Equilibrium Construction

Types 6, ~ 6, adopt the same strategy. Type 6, plays differently.

Keeps track of the following state variables:
e P1’s reputation: Prob of 6 = 6y, denoted by 1 (h").

e P1’s continuation value.

Three-phase equilibrium:
e One learning phase: P2 plays T all the time & slowly learns 6.

e Two absorbing phases: Learning about 0 stops.

Phase transition happens with positive prob at A':
either P2 believes that 8 = 8; occurs with prob 1.

or convex weight of L in P1’s continuation value < 1 — 6.
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Players’ Strategies in the Learning Phase

P2 plays T in every period.
Let n* = y*n(h°) and let

Each type of P1’s mixed action at /' is pinned down by:
A(i',L) = (1= A7")A(K),

and

A(H H) = min{l 0 (1 +A(1 —y*))A(hf)}.

A > 0 measures the speed of learning.
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Why this Belief Updating Formula?

1. Conditional on remaining in the learning phase, P1’s reputation
depends only on the number of times H and L have been played.

2. Respect P2’s incentive constraint at each learning phase history:

o Relative speed of reputation increases is low enough.
H is played with probability at least y*.

3. For every 7 > ¥*, there exists A > 0 small enough s.t.

1-y

<1+/1(1—y*)>7(1—w*) > 1.
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Intuition Behind Belief Updating Formula

For every y > y*, there exists A small enough s.t.

1—

<1+/1(1fy*)>?<1fw*) TS

Recall that we want to attain payoff v(y) for some y > v*.
e P1’s continuation value increases if frequency of H > 7.

e P1’s continuation value decreases if frequency of H < .

Issue: P1’s continuation value explodes.

Solution: If P1 plays H too frequently, then his reputation reaches 1 and
play reaches the absorbing phase.

Red formula:

e We can find ¥ € (v*, ) and A > 0 such that if P1 plays H with
frequency above 7, then P1’s reputation increases.



Payoffs

First Absorbing Phase: P1’s Reputation Reaches 1

Type 6;’s continuation payoff is v; (") 11 :g{ for every j.

e randomize between terminal nodes N and L.

V2

Type 6; # 6, has no incentive to reach this phase because the continuation
payoff is always above the red line (due to 2nd absorbing phase).
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Second Absorbing Phase: P1 (nearly) depletes L

Transits to 2nd absorbing phase with positive probability if
e Weight of Linv(h")is < 1—0.

When this convex weight = 0,
e Transition happens with probability 1.

e Deliver v(h') by randomizing between N and H.

When this convex weight € (0,1 — ),

e Technical complication without public randomization.



The Set of Limiting Equilibrium Payoffs V*

Let V* C R™ be such that for every (vi,vy,...,viy) € V*, there exist
P,...;%y € A{N,H,L}, such that:

Eo[u1(6;,y)] = v; forevery j € {1,2,...,m},
yH v
w) Sy
E@,[ul (6;,y)] > Eg [u1(6;,y)] for every j,k € {1,2,...,m},
,/1[ 1(61,y)] <1-0;.

for everyj € {1,2,...,m},

Theorem 1’: Limiting Equilibrium Payoff Set

For every v € int(V*), there exists 6 € (0,1) such that when 8 > &, there
exists a sequential equilibrium s.t. P1’s payoff is v.
For every v € ext(V*), there exists 8 € (0,1) such that when 6 > 9, there

exists no BNE s.t. P1’s payoff'is v.




Behavior

Next Step: Connect this model to reputation models

Fudenberg and Levine’s approach to study repeated incomplete info games:
e Assume the behavior of one type,

e Study the common properties of P1’s equilibrium payoff.

Let’s approach the problem from a different perspective:
e All types’ behaviors are endogenous.
e Characterize patient P1’s highest equilibrium payoff.

e Focus on P1 optimal equilibria and study the common properties of
P1’s behavior in those equilibria.

Advantages/disadvantages of the rational type approach:

e Proof is constructive, better understanding of behavior, which
commitment behaviors are more reasonable.

e Only have results for a class of games, cannot refine equilibria when
P1’s actions are identified.
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Equilibrium Behavior

How does P1 behave in equilibria that approximately attain v*?

Type 6 player 1’s strategy g : S — A(Ay).

Player 2’s strategy 0, : 5 — A(A3).

Under strategy profile ((0'9 )oco, 02) ,

e 0y is stationary if 6g(h) = og (') for every h, ' that

occur with positive probability under (cy,03),
and o,(h), o,(1') attach positive prob to 7.

o 0y is completely mixed if 6g(h) is nontrivially mixed for every h that

occurs with positive probability under (cy, 0),
and o, (h) attaches positive prob to 7.
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Equilibrium Behavior

How does P1 behave in equilibria that approximately attain v*?

Recall that ® = {6, 6,,...,0,,}.

Theorem 2 (Nonstationary Equilibrium Behavior)

When m > 2, for every small enough € > 0, there exists S, s.t. if 6 > s,

in any BNE that attains payoff within € of (v},...,V},).

1. no type of PI uses stationary strategies or completely mixed strategies

2. no type of P1 has a completely mixed equilibrium best reply.

This is also true when 6; = 0.
e No matter how low P1’s cost is,

his equilibrium behavior must depend nontrivially on past play.



Behavior

Proof of Theorem 2

Suppose toward a contradiction that there exists a BNE s.t.
1. P1’s payoff is within € of v*.

2. Some type 6; plays a non-trivially mixed action at every history.

= Playing L at every history is type 6;’s best reply.
Playing H at every history is type 6;’s best reply.

= V k> j,type 6 plays L w.p. 1 at every on-path history.
Vi< j, type 0; plays H w.p. 1 at every on-path history.

However, none of these stationary pure strategies are consistent with P1’s
equilibrium payoff is approximately v*.
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Proof of Theorem 2, Continued...

Suppose some type 6y plays L at every on-path history,
e P2 will learn type 6;’s strategy in bounded number of periods,
after which they will play N.
e Type 6;’s payoff is close to 0 as § — 1.

e This leads to a contradiction.

Suppose types 6, to 6;_ play H at every on-path history, with j > 2.
e Type 6;’s long-term payoff cannot exceed (1 —6)+ (1 —6;).
Separated from all lower types after playing L for one period.
* However, (1 —6)+8(1— 6)) is strictly less than v; when § is large.

e This leads to a contradiction.
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Behavioral Prediction in Binary Action Games

How does P1 behave in equilibria that approximately attain v*?

Theorem 3 (Equilibrium Action Frequencies)

When m > 2, for every small enough € > 0, there exists S, s.t. if 6 > S,

in every BNE ((0'9)96@, 02) that attains payoff within € of (vi, ..., vy,)-

1. For every 0 # 8,,, and for every best reply Oy of type 0 against o,

oo

(G,02) _ t —
E [;0(1 8)6'1{y, H}]> e

E(G6.02) [i(l —§)5"1{y, :L}} T l-(r-g’

=0
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Behavioral Prediction in Binary Action Games

How does P1 behave in equilibria that approximately attain v*?

Theorem 3 (Equilibrium Action Frequencies)

When m > 2, for every small enough € > 0, there exists S, s.t. if 6 > S,

in every BNE ((0'9)96@, 02) that attains payoff within € of (vi, ..., vy,)-

2. For every 0 # 01, and for every best reply Gg of type 0 against 03,

)

E(06.02) 1—8)81{y, =
[ L1-8)51 H}]< e

o

E(G6.02) [;)(1 —8)81{y, = L}] T l-(r+e)
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Behavioral Prediction in Binary Action Games

How does P1 behave in equilibria that approximately attain v*?

The two statements of Theorem 3:

1. For every best reply of type 6 # 8,,, frequency ratio between H and L
is more than %

2. For every best reply of type 6 # 0y, frequency ratio between H and L is

v+e

less than (7o)

Implications:
1. Pin down the action frequencies of all types except for 0; and 6,,.

2. Applies to all pure strategy best replies.



Repeated Communication Games

Repeated communication games with private lying cost.
e Sender has persistent private info about her lying cost.

e Sender private observes i.i.d. state @, € Q.

Sender sends message m; € Q to the receiver.

e Receiver takes an action a, € A.

Period ¢ receiver observes {ay, my, @ i;:) and my.

Sender’s stage-game payoff is us(@y,a;) — C - 1{m; # @}, where
C €{Cy,...,Cy,} is the sender’s persistent private info.

Receiver’s stage-game payoff u,(wy,a,).

Applications



Applications

Another Application: Repeated Communication

Pei (2021): Stage-game payoffs follows from the leading example in KG.
e Characterize every type of patient sender’s highest equilibrium payoff.
Conditions s.t. highest payoff ~ Bayesian persuasion payoff.

A microfoundation for the commitment assumption in Bayesian
persuasion games in models without any commitment.

e No rational type uses the optimal disclosure policy in every period, no
matter how large the lying cost is.

Stands in contrast to Mathevet et al. (2019)

e The possibility of having a high lying cost can hurt some type of sender
who has a low lying cost.

A novel outside option effect.



Applications

Next Lecture: Social Learning

e Banerjee (1992)
e Bikhchandani, Hirshleifer and Welch (1992)
e Smith and Sgrensen (2000)
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