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Last Lecture: Shalev (1994)

Repeated games with two long-run players and without discounting.

• P1 privately observes a persistent state θ ∈Θ

• P2’s belief about the state is π ∈ ∆(Θ).

• Players’ stage-game payoffs u1(θ ,a1,a2) and u2(a1,a2).

• Player 1 maximizes limT→+∞
1
T ∑

T
t=1 u1(θ ,a1,t,a2,t).

Player 2 maximizes limT→+∞
1
T ∑

T
t=1 u2(a1,t,a2,t).

Result: A payoff ((uθ )θ ,v) is an equilibrium payoff if and only if there
exists {αθ}θ∈Θ with αθ ∈ ∆(A1×A2) such that:

1. Feasibility: uθ = u1(θ ,α
θ ) for every θ ∈Θ. v = ∑θ∈Θ π(θ)u2(α

θ ).

2. IR: ∑θ∈Θ p(θ)uθ ≥ u(p) ∀ p ∈ ∆(Θ). u2(α
θ )≥ v ∀ θ ∈Θ.

3. IC: For every θ ,θ ′ ∈Θ, type θ weakly prefers αθ to αθ ′ .

Let U ⊂ R|Θ| be the projection of this set on P1’s payoff.
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Today: Games with Discounting

• Time t = 1,2, ...

• Two patient players: 1 and 2. Actions a1 ∈ A1 and a2 ∈ A2.

• P1 has private info about a persistent state θ ∈Θ.

P2’s prior belief π ∈ ∆(Θ).

• Stage-game payoffs u1(θ ,a1,a2) and u2(a1,a2).

• Both players can perfectly observe all the past actions.

• Players maximize:

+∞

∑
t=0

(1−δ1)δ
t
1u1(θ ,a1,t,a2,t) and

+∞

∑
t=0

(1−δ2)δ
t
2u2(a1,t,a2,t),

Cripps and Thomas (2003): Focus on P1’s payoffs.

• What will happen when δ1→ 1 and δ2 is bounded away from 1?

• What will happen when both δ1 and δ2 are close to 1?
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P2’s Discount Factor is Bounded Away from 1

U ⊂ R|Θ| is P1’s equilibrium payoff set in a game w/o discounting.

Theorem: Necessary Condition for Equilibrium Payoff

Fix δ2 ∈ (0,1) and full support π .

Then for every ε > 0, there exists δ 1 ∈ (0,1) such that for all δ1 ∈ (δ 1,1),

if u≡ (uθ )θ∈Θ is player 1’s equilibrium payoff, then

min
u∗∈U

||u∗−u||< ε.
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Proof Sketch

Theorem: Necessary Condition for Equilibrium Payoff

Fix δ2 ∈ (0,1) and full support π .
Then for every ε > 0, there exists δ 1 ∈ (0,1) such that for all δ1 ∈ (δ 1,1),
if u≡ (uθ )θ∈Θ is player 1’s equilibrium payoff, then

min
u∗∈U

||u∗−u||< ε.

Given any equilibrium ((σθ )θ∈Θ,σ2) and (a1,a2) ∈ A1×A2, let

α
θ (a1,a2)≡ E(σθ ,σ2)

[+∞

∑
t=0

(1−δ1)δ
t
11{(a1,t,a2,t) = (a1,a2)}

]
.

Let αθ ∈ ∆(A1×A2) be the allocation of type θ .

The necessity of feasibility and IC are straightforward.
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Proof Sketch

Theorem: Necessary Condition for Equilibrium Payoff

Fix δ2 ∈ (0,1) and full support π .
Then for every ε > 0, there exists δ 1 ∈ (0,1) such that for all δ1 ∈ (δ 1,1),
if u≡ (uθ )θ∈Θ is player 1’s equilibrium payoff, then

min
u∗∈U

||u∗−u||< ε.

IR-1: Generalize the Blackwell approachability theorem to discounted
games where δ1→ 1.

IR-2: Suppose P1 plays type θ ’s equilibrium strategy σθ .

• There exists T ∈ N s.t. 1−δ T
2 ≈ 1.

• P2’s payoff conditional on θ is ≥ v− ε if they are convinced that P1’s
strategy is close to σθ in the next T periods.

• There can be at most a bounded number of periods s.t. P2 believes that
P1’s strategy in the next T periods is far away from σθ .
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Shalev’s conditions are necessary, but not sufficient

Belonging to U is a necessary condition for P1’s equilibrium payoff when
δ1 goes to 1, but it is in general not sufficient.
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Example: Shalev’s conditions are not sufficient

Suppose Θ = {θ}, θ ,b,c > 0, and δ2 < γ∗ ≡ c
b+c .

- T N
H 1−θ ,b 0,0
L 1,−c 0,0

u1

u2

(0,0)

(1−θ ,b)

(1,−c)

(1− γ∗θ ,0)

U u1

u2

(1−θ ,b)

(1,−c)

(1−θ ,0)
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Example: Shalev’s conditions are not sufficient

δ2 < γ∗ ≡ c
b+c

u1

u2

(0,0)

(1−θ ,b)

(1,−c)

(1− γ∗θ ,0)

U u1

u2

(1−θ ,b)

(1,−c)

(1−θ ,0)

Intuition: P2’s impatience introduces additional constraints on P1’s
equilibrium payoffs beyond feasibility, IR, and IC in Shalev (1994).
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Both Players’ Discount Factors are Close to 1

Let U be the set of (uθ )θ∈Θ s.t. there exist {αθ}θ∈Θ and v ∈ R satisfying

1. Feasibility: uθ = u1(θ ,α
θ ) for every θ ∈Θ. v = ∑θ∈Θ π(θ)u2(α

θ ).

2. IR: ∑θ∈Θ p(θ)uθ ≥ u(p) ∀ p ∈ ∆(Θ). u2(α
θ )≥ v ∀ θ ∈Θ.

3. IC: For every θ 6= θ ′, type θ weakly prefers αθ to αθ ′ .

Let Û be the set of (uθ )θ∈Θ s.t. there exist {αθ}θ∈Θ and v ∈ R satisfying

1. Feasibility: uθ = u1(θ ,α
θ ) for every θ ∈Θ. v = ∑θ∈Θ π(θ)u2(α

θ ).

2. Strict IR: ∑θ∈Θ p(θ)uθ > u(p) ∀ p ∈ ∆(Θ). u2(α
θ )> v ∀ θ ∈Θ.

3. Strict IC: For every θ 6= θ ′, type θ strictly prefers αθ to αθ ′ .
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Both Players’ Discount Factors are Close to 1

Theorem: Sufficient Condition for Equilibrium Payoff

For every u ∈ Û and ε > 0, there exists δ ∈ (0,1) such that

whenever 1 > δ1,δ2 > δ ,

there is an equilibrium s.t. P1’s payoff is within an ε-neighborhood of u.

When both players’ discount factors are close to 1, every payoff that is
strictly IR and IC can be approximately attained in the discounted game.

• What are the connections between U and Û ?

• Is either the ε approximation or the strict IR/IC conditions redundant?
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Follow-up works

Hörner and Lovo (2009)

• Characterize belief-free equilibrium payoffs when δ1 = δ2→ 1.

• Allows for two-sided private information and interdependent values.

Hörner, Lovo and Tomala (2011) generalize it to three or more players.

Peski (2014)

• Focus on private value games. Allows for two-sided private info.

• Characterize the equilibrium payoff set when δ1 = δ2→ 1.

An open question: What if one of the players is not very patient?

• Pei (2021 TE): Monotone-supermodular games.

• Pei (Working Paper): Provide strategic foundations for the sender’s
commitment in Bayesian persuasion models.

Challenge: Figure out what the additional constraints are.
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Example

Time: t = 0,1,2, ...
A long-lived P1, discount factor δ ∈ (0,1) vs a sequence of myopic P2s.

T N

H L

P2

P1
(0, 0)

(1−θ , b) (1, −c)
in which b > 0 and c > 0, let γ∗ ≡ c

b+c

The terminal node in each period is perfectly observed.

P1 has perfectly persistent private information about θ :

• θ ∈Θ≡ {θ1, ...,θm} ⊂ [0,1), with 0 < θ1 < θ2 < ... < θm < 1.

• P2’s full support prior π ∈ ∆(Θ).
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Result: P1’s Highest Equilibrium Payoff

For every j ∈ {1,2, ...,m}, let

v∗j ≡ (1− γ
∗
θj)︸ ︷︷ ︸

Type θj’s Stackelberg payoff

× 1−θ1

1− γ∗θ1︸ ︷︷ ︸
incomplete information multiplier (< 1)

.

Theorem 1: Highest Equilibrium Payoff

For every ε > 0, there exists δ ∈ (0,1) s.t. when δ > δ ,

1. ∃ sequential equilibrium s.t. P1’s payoff is within ε of (v∗1, ...,v
∗
m).

2. @ BNE s.t. type θ1’s payoff is more than v∗1.

@ BNE and j ∈ {2, ...,m}, s.t. type θj’s payoff is more than v∗j + ε .
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Lessons from Theorem 1

v∗j ≡ (1− γ
∗
θj)︸ ︷︷ ︸

Type θj’s Stackelberg payoff

× 1−θ1

1− γ∗θ1︸ ︷︷ ︸
incomplete information multiplier (< 1)

.

1. Type θj’s highest equilibrium payoff only depends on:
(a) His own cost of playing H: θj.
(b) The lowest cost in the support of P2’s prior belief.

The multiplier 1−θ1
1−γ∗θ1

converges to 1 as θ1 ↓ 0.

2. Type θ1’s payoff is no more than his highest equilibrium payoff in the
repeated complete information game.

3. Types θ2 to θm can strictly benefit from incomplete information.

v∗j > 1−θj︸ ︷︷ ︸
highest payoff under complete info

, for all j 6= 1.
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Understand the Formula v∗j = (1− γ∗θj) · 1−θ1
1−γ∗θ1

v∗j is the value of the following constrained optimization problem:

max
Y ∈∆{N,H,L}

{
(1−θj) Y (H)︸ ︷︷ ︸

prob of terminal node H

+ Y (L)︸ ︷︷ ︸
prob of terminal node L

}
,

subject to:
(1−θ1)Y (H)+Y (L)≤ 1−θ1,

and
Y (H)

Y (L)
≥ γ∗

1− γ∗
.
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Two Type Example

Each Y is captured by a point in the yellow set.

v1

v2

L

H
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Constraint 1

v1

v2

L

H

(1−θ1)Y (H)+Y (L)≤ 1−θ1



Cripps and Thomas Myopic Uninformed Players Payoffs Behavior Applications

Constraint 2

v1

v2

L

H

Y (H)

Y (L)
≥ γ∗

1− γ∗
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Proof of Theorem 1: Overview

For any equilibrium σ ≡
(
(σθ )θ∈Θ,σ2

)
, and any θj ∈ {θ1, ...,θm}:

• Let Y j ∈ ∆{N,H,L} be the discounted average frequency of terminal
nodes induced by (σθj ,σ2).

Y j(y)≡ E(σθj ,σ2)
[ ∞

∑
t=0

(1−δ )δ t1{yt = y}
]

for every y ∈ {N,H,L}.

We know that:

1. Type θj’s equilibrium payoff equals his expected payoff from Y j.

2. Type θ1’s expected payoff from Y j ≤ type θ1’s equilibrium payoff.

The proof consists of two steps.

• For every j ∈ {1, ...,m}, Y j must satisfy the two constraints
⇒ Type θj’s payoff cannot exceed v∗j .

• Construct an equilibrium that approximately attains (v∗1, ...,v
∗
m).
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Proof: Type θj’s Payoff ≤ v∗j

Lemma 1
Type θ1’s payoff in any BNE is no more than 1−θ1.

Since type θ1’s expected payoff from Y j ≤ type θ1’s equilibrium payoff,
this lemma implies that Y j must satisfy the first constraint.

Lemma 2

For every ε > 0, there exists δ ∈ (0,1) such that when δ > δ , for every BNE
and for every j ∈ {1,2, ...,m},

Y j(H)

Y j(L)
≥ γ∗− ε

1− (γ∗− ε)
.

Apply Gossner’s learning argument to type θj’s equilibrium strategy.

• Conditional on P2 plays T , σθj plays H with prob at least γ∗ in all
except for a bounded number of periods.
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Proof of Lemma 1: Type θ1’s Payoff ≤ 1−θ1

Induction on the number of types in the support of P2’s posterior.

• One type: Direct implication of Fudenberg, Kreps and Maskin (90).

• Suppose lowest-cost type θ ’s payoff is no more than 1−θ when there
are ≤ n−1 types, what happens when there are n types?

Let θ be the lowest-cost type. Partition on-path histories into 3 subsets:

1. P2 plays N with prob 1,

2. P2 plays T with positive prob and type θ plays H with positive prob,

3. P2 plays T with positive prob and type θ plays H with zero prob.

The following strategy is type θ ’s best reply to σ2:

• Until reaching a Class 3 history, plays σθ at Class 1 histories and plays
H for sure at Class 2 histories.
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Proof of Lemma 1: Type θ1’s Payoff ≤ 1−θ1

Three classes of histories:

1. P2 plays N with prob 1,

2. P2 plays T with positive prob and type θ plays H with positive prob,

3. P2 plays T with positive prob and type θ plays H with zero prob.

Consider the following best reply of type θ to σ2:

• Until reaching a Class 3 history, plays σθ at Class 1 histories and plays
H for sure at Class 2 histories.

Class 1 histories: Type θ ’s stage-game payoff is 0.

Class 2 histories: Type θ ’s stage-game payoff is at most 1−θ .
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Proof: Type θ1’s Payoff ≤ 1−θ1

What about type θ ’s continuation value at Class 3 history?

3. P2 plays T with positive prob and type θ plays H with 0 prob.

Class 3 history ht: ∃ another type that plays H with positive prob.

• After observing H at ht, at most n−1 types in the support of P2’s
posterior belief.

• Induction hypothesis⇒ there exists some type θ ′(> θ) whose
continuation value at ht is at most 1−θ ′.

• If type θ ′ imitate type θ ’s strategy starting from ht, then type θ ′

receives continuation value is at least:

Type θ ’s Continuation Value at ht +(θ −θ
′) (≤ 1−θ

′)

⇒ Type θ ’s continuation value at ht is at most 1−θ .
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Proof: Type θ1’s Payoff ≤ 1−θ1

Suppose type θ plays the following best reply to σ2:

• Until reaching a Class 3 history, plays σθ at Class 1 histories and plays
H for sure at Class 2 histories.

Then

• His stage-game payoff ≤ 1−θ before play reaches a Class 3 history.

• His continuation value is ≤ 1−θ after reaching a Class 3 history.

Type θ ’s payoff is no more than 1−θ at a history where:

• He is the lowest cost type in the support of P2’s posterior.

• There are at most n types in the support of P2’s posterior.
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Construct equilibria that approximately attain v∗

How to approximately attain payoff v∗ ≡ (v∗1, ...,v
∗
m)?

v1

v2

(1,1)

v∗

v(γ)

Lemma 1

For every η ∈ (0,1) and v(γ), there exists δ ∈ (0,1),
such that for every δ > δ and π0(θ1)≥ η ,
there exists an equilibrium in which P1’s payoff is v(γ).
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Overview: Equilibrium Construction

Types θ2 ∼ θm adopt the same strategy. Type θ1 plays differently.

Keeps track of the following state variables:

• P1’s reputation: Prob of θ = θ1, denoted by η(ht).

• P1’s continuation value.

Three-phase equilibrium:

• One learning phase: P2 plays T all the time & slowly learns θ .

• Two absorbing phases: Learning about θ stops.

Phase transition happens with positive prob at ht:

either P2 believes that θ = θ1 occurs with prob 1.

or convex weight of L in P1’s continuation value < 1−δ .
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Players’ Strategies in the Learning Phase

• P2 plays T in every period.

• Let η∗ ≡ γ∗η(h0) and let

∆(·)≡ η(·)−η
∗.

• Each type of P1’s mixed action at ht is pinned down by:

∆(ht,L) = (1−λγ
∗)∆(ht),

and
∆(ht,H) = min

{
1−η

∗,
(

1+λ (1− γ
∗)
)

∆(ht)
}
.

• λ > 0 measures the speed of learning.
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Why this Belief Updating Formula?

1. Conditional on remaining in the learning phase, P1’s reputation
depends only on the number of times H and L have been played.

2. Respect P2’s incentive constraint at each learning phase history:

• Relative speed of reputation increases is low enough.
H is played with probability at least γ∗.

3. For every γ̃ > γ∗, there exists λ > 0 small enough s.t.(
1+λ (1− γ

∗)
)γ̃(

1−λγ
∗
)1−γ̃

> 1.
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Intuition Behind Belief Updating Formula

For every γ̃ > γ∗, there exists λ small enough s.t.(
1+λ (1− γ

∗)
)γ̃(

1−λγ
∗
)1−γ̃

> 1.

Recall that we want to attain payoff v(γ) for some γ > γ∗.

• P1’s continuation value increases if frequency of H > γ .

• P1’s continuation value decreases if frequency of H < γ .

Issue: P1’s continuation value explodes.

Solution: If P1 plays H too frequently, then his reputation reaches 1 and
play reaches the absorbing phase.

Red formula:

• We can find γ̃ ∈ (γ∗,γ) and λ > 0 such that if P1 plays H with
frequency above γ̃ , then P1’s reputation increases.
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First Absorbing Phase: P1’s Reputation Reaches 1

Type θj’s continuation payoff is v1(ht)
1−θj
1−θ1

for every j.

• randomize between terminal nodes N and L.

v(ht)

v1

v2

(1,1)

(1− γ∗θ1,1− γ∗θ2)

Type θj 6= θ1 has no incentive to reach this phase because the continuation
payoff is always above the red line (due to 2nd absorbing phase).
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Second Absorbing Phase: P1 (nearly) depletes L

Transits to 2nd absorbing phase with positive probability if

• Weight of L in v(ht) is < 1−δ .

When this convex weight = 0,

• Transition happens with probability 1.

• Deliver v(ht) by randomizing between N and H.

When this convex weight ∈ (0,1−δ ),

• Technical complication without public randomization.
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The Set of Limiting Equilibrium Payoffs V∗

Let V∗ ⊂ Rm be such that for every (v1,v2, ...,vm) ∈ V∗, there exist
Y1, ...,Ym ∈ ∆{N,H,L}, such that:

EYj [u1(θj,y)] = vj for every j ∈ {1,2, ...,m},

Yj(H)

Yj(L)
≥ γ∗

1− γ∗
for every j ∈ {1,2, ...,m},

EYj [u1(θj,y)]≥ EYk [u1(θj,y)] for every j,k ∈ {1,2, ...,m},
EY1 [u1(θ1,y)]≤ 1−θ1.

Theorem 1’: Limiting Equilibrium Payoff Set

For every v ∈ int(V∗), there exists δ ∈ (0,1) such that when δ > δ , there

exists a sequential equilibrium s.t. P1’s payoff is v.

For every v ∈ ext(V∗), there exists δ ∈ (0,1) such that when δ > δ , there

exists no BNE s.t. P1’s payoff is v.
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Next Step: Connect this model to reputation models

Fudenberg and Levine’s approach to study repeated incomplete info games:

• Assume the behavior of one type,

• Study the common properties of P1’s equilibrium payoff.

Let’s approach the problem from a different perspective:

• All types’ behaviors are endogenous.

• Characterize patient P1’s highest equilibrium payoff.

• Focus on P1 optimal equilibria and study the common properties of
P1’s behavior in those equilibria.

Advantages/disadvantages of the rational type approach:

• Proof is constructive, better understanding of behavior, which
commitment behaviors are more reasonable.

• Only have results for a class of games, cannot refine equilibria when
P1’s actions are identified.
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Equilibrium Behavior
How does P1 behave in equilibria that approximately attain v∗?

Type θ player 1’s strategy σθ : H → ∆(A1).

Player 2’s strategy σ2 : H → ∆(A2).

Under strategy profile
(
(σθ )θ∈Θ,σ2

)
,

• σθ is stationary if σθ (h) = σθ (h′) for every h,h′ that

occur with positive probability under (σθ ,σ2),
and σ2(h), σ2(h′) attach positive prob to T .

• σθ is completely mixed if σθ (h) is nontrivially mixed for every h that

occurs with positive probability under (σθ ,σ2),
and σ2(h) attaches positive prob to T .
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Equilibrium Behavior
How does P1 behave in equilibria that approximately attain v∗?

Recall that Θ≡ {θ1,θ2, ...,θm}.

Theorem 2 (Nonstationary Equilibrium Behavior)

When m≥ 2, for every small enough ε > 0, there exists δ , s.t. if δ > δ ,

in any BNE that attains payoff within ε of (v∗1, ...,v
∗
m).

1. no type of P1 uses stationary strategies or completely mixed strategies

2. no type of P1 has a completely mixed equilibrium best reply.

This is also true when θ1 = 0.

• No matter how low P1’s cost is,

his equilibrium behavior must depend nontrivially on past play.
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Proof of Theorem 2

Suppose toward a contradiction that there exists a BNE s.t.

1. P1’s payoff is within ε of v∗.

2. Some type θj plays a non-trivially mixed action at every history.

⇒ Playing L at every history is type θj’s best reply.

Playing H at every history is type θj’s best reply.

⇒ ∀ k > j, type θk plays L w.p. 1 at every on-path history.

∀ i < j, type θi plays H w.p. 1 at every on-path history.

However, none of these stationary pure strategies are consistent with P1’s
equilibrium payoff is approximately v∗.
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Proof of Theorem 2, Continued...

Suppose some type θk plays L at every on-path history,

• P2 will learn type θk’s strategy in bounded number of periods,

after which they will play N.

• Type θk’s payoff is close to 0 as δ → 1.

• This leads to a contradiction.

Suppose types θ1 to θj−1 play H at every on-path history, with j≥ 2.

• Type θj’s long-term payoff cannot exceed (1−δ )+δ (1−θj).

Separated from all lower types after playing L for one period.

• However, (1−δ )+δ (1−θj) is strictly less than v∗j when δ is large.

• This leads to a contradiction.
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Behavioral Prediction in Binary Action Games
How does P1 behave in equilibria that approximately attain v∗?

Theorem 3 (Equilibrium Action Frequencies)

When m≥ 2, for every small enough ε > 0, there exists δ , s.t. if δ > δ ,

in every BNE
(
(σθ )θ∈Θ,σ2

)
that attains payoff within ε of (v∗1, ...,v

∗
m).

1. For every θ 6= θm, and for every best reply σ̂θ of type θ against σ2,

E(σ̂θ ,σ2)
[ ∞

∑
t=0

(1−δ )δ t1{yt = H}
]

E(σ̂θ ,σ2)
[ ∞

∑
t=0

(1−δ )δ t1{yt = L}
] ≥ γ∗− ε

1− (γ∗− ε)
.
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Behavioral Prediction in Binary Action Games
How does P1 behave in equilibria that approximately attain v∗?

Theorem 3 (Equilibrium Action Frequencies)

When m≥ 2, for every small enough ε > 0, there exists δ , s.t. if δ > δ ,

in every BNE
(
(σθ )θ∈Θ,σ2

)
that attains payoff within ε of (v∗1, ...,v

∗
m).

2. For every θ 6= θ1, and for every best reply σ̂θ of type θ against σ2,

E(σ̂θ ,σ2)
[ ∞

∑
t=0

(1−δ )δ t1{yt = H}
]

E(σ̂θ ,σ2)
[ ∞

∑
t=0

(1−δ )δ t1{yt = L}
] ≤ γ∗+ ε

1− (γ∗+ ε)
.
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Behavioral Prediction in Binary Action Games
How does P1 behave in equilibria that approximately attain v∗?

The two statements of Theorem 3:

1. For every best reply of type θ 6= θm, frequency ratio between H and L
is more than γ∗−ε

1−(γ∗−ε) .

2. For every best reply of type θ 6= θ1, frequency ratio between H and L is
less than γ∗+ε

1−(γ∗+ε) .

Implications:

1. Pin down the action frequencies of all types except for θ1 and θm.

2. Applies to all pure strategy best replies.
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Repeated Communication Games

Repeated communication games with private lying cost.

• Sender has persistent private info about her lying cost.

• Sender private observes i.i.d. state ωt ∈Ω.

• Sender sends message mt ∈Ω to the receiver.

• Receiver takes an action at ∈ A.

• Period t receiver observes {as,ms,ωs}t−1
s=0 and mt.

Sender’s stage-game payoff is us(ωt,at)−C ·1{mt 6= ωt}, where
C ∈ {C1, ...,Cn} is the sender’s persistent private info.

Receiver’s stage-game payoff ur(ωt,at).
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Another Application: Repeated Communication

Pei (2021): Stage-game payoffs follows from the leading example in KG.

• Characterize every type of patient sender’s highest equilibrium payoff.

Conditions s.t. highest payoff ≈ Bayesian persuasion payoff.

A microfoundation for the commitment assumption in Bayesian
persuasion games in models without any commitment.

• No rational type uses the optimal disclosure policy in every period, no
matter how large the lying cost is.

Stands in contrast to Mathevet et al. (2019)

• The possibility of having a high lying cost can hurt some type of sender
who has a low lying cost.

A novel outside option effect.



Cripps and Thomas Myopic Uninformed Players Payoffs Behavior Applications

Next Lecture: Social Learning

• Banerjee (1992)

• Bikhchandani, Hirshleifer and Welch (1992)

• Smith and Sørensen (2000)
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