Cripps and Thomas	Myopic Uninformed Players	Payoffs	Behavior	Applications

Lecture 11: Repeated Incomplete Information Games with Discounting

Harry PEI Department of Economics, Northwestern University

Spring Quarter, 2021

Last Lecture: Shalev (1994)

Repeated games with two long-run players and without discounting.

- P1 privately observes a persistent state $\theta \in \Theta$
- P2's belief about the state is $\pi \in \Delta(\Theta)$.
- Players' stage-game payoffs $u_1(\theta, a_1, a_2)$ and $u_2(a_1, a_2)$.
- Player 1 maximizes $\lim_{T \to +\infty} \frac{1}{T} \sum_{t=1}^{T} u_1(\theta, a_{1,t}, a_{2,t})$.

Player 2 maximizes $\lim_{T \to +\infty} \frac{1}{T} \sum_{t=1}^{T} u_2(a_{1,t}, a_{2,t})$.

Result: A payoff $((u_{\theta})_{\theta}, v)$ is an equilibrium payoff if and only if there exists $\{\alpha^{\theta}\}_{\theta \in \Theta}$ with $\alpha^{\theta} \in \Delta(A_1 \times A_2)$ such that:

- 1. **Feasibility:** $u_{\theta} = u_1(\theta, \alpha^{\theta})$ for every $\theta \in \Theta$. $v = \sum_{\theta \in \Theta} \pi(\theta) u_2(\alpha^{\theta})$.
- 2. **IR:** $\sum_{\theta \in \Theta} p(\theta) u_{\theta} \geq \underline{u}(p) \ \forall \ p \in \Delta(\Theta). \ u_2(\alpha^{\theta}) \geq \underline{v} \ \forall \ \theta \in \Theta.$
- 3. **IC:** For every $\theta, \theta' \in \Theta$, type θ weakly prefers α^{θ} to $\alpha^{\theta'}$.

Let $\mathscr{U} \subset \mathbb{R}^{|\Theta|}$ be the projection of this set on P1's payoff.

Today: Games with Discounting

- Time t = 1, 2, ...
- Two patient players: 1 and 2. Actions $a_1 \in A_1$ and $a_2 \in A_2$.
- P1 has private info about a persistent state θ ∈ Θ.
 P2's prior belief π ∈ Δ(Θ).
- Stage-game payoffs $u_1(\theta, a_1, a_2)$ and $u_2(a_1, a_2)$.
- Both players can perfectly observe all the past actions.
- Players maximize:

$$\sum_{t=0}^{+\infty} (1-\delta_1) \delta_1^t u_1(\theta, a_{1,t}, a_{2,t}) \text{ and } \sum_{t=0}^{+\infty} (1-\delta_2) \delta_2^t u_2(a_{1,t}, a_{2,t}),$$

Cripps and Thomas (2003): Focus on P1's payoffs.

- What will happen when $\delta_1 \rightarrow 1$ and δ_2 is bounded away from 1?
- What will happen when both δ_1 and δ_2 are close to 1?

P2's Discount Factor is Bounded Away from 1

 $\mathscr{U} \subset \mathbb{R}^{|\Theta|}$ is P1's equilibrium payoff set in a game w/o discounting.

Theorem: Necessary Condition for Equilibrium Payoff

Fix $\delta_2 \in (0,1)$ *and full support* π *.*

Then for every $\varepsilon > 0$, there exists $\underline{\delta}_1 \in (0,1)$ such that for all $\delta_1 \in (\underline{\delta}_1, 1)$,

if $\mathbf{u} \equiv (u_{\theta})_{\theta \in \Theta}$ is player 1's equilibrium payoff, then

$$\min_{u^*\in\mathscr{U}}||u^*-u||<\varepsilon.$$

Cripps and Thomas	Myopic Uninformed Players	Payoffs	Behavior	Applications
Proof Sketch				

Theorem: Necessary Condition for Equilibrium Payoff

Fix $\delta_2 \in (0,1)$ and full support π . Then for every $\varepsilon > 0$, there exists $\underline{\delta}_1 \in (0,1)$ such that for all $\delta_1 \in (\underline{\delta}_1,1)$, if $\mathbf{u} \equiv (u_{\theta})_{\theta \in \Theta}$ is player 1's equilibrium payoff, then

$$\min_{u^*\in\mathscr{U}}||u^*-u||<\varepsilon.$$

Given any equilibrium $((\sigma_{\theta})_{\theta \in \Theta}, \sigma_2)$ and $(a_1, a_2) \in A_1 \times A_2$, let

$$\alpha^{\theta}(a_1, a_2) \equiv \mathbb{E}^{(\sigma_{\theta}, \sigma_2)} \Big[\sum_{t=0}^{+\infty} (1 - \delta_1) \delta_1^t \mathbf{1}\{(a_{1,t}, a_{2,t}) = (a_1, a_2)\} \Big].$$

Let $\alpha^{\theta} \in \Delta(A_1 \times A_2)$ be the allocation of type θ .

The necessity of feasibility and IC are straightforward.

Cripps	and	Thomas
--------	-----	--------

Myopic Uninformed Players

Payoffs

Behavior

Applications

Proof Sketch

Theorem: Necessary Condition for Equilibrium Payoff

Fix $\delta_2 \in (0,1)$ and full support π . Then for every $\varepsilon > 0$, there exists $\underline{\delta}_1 \in (0,1)$ such that for all $\delta_1 \in (\underline{\delta}_1, 1)$, if $\mathbf{u} \equiv (u_{\theta})_{\theta \in \Theta}$ is player 1's equilibrium payoff, then

 $\min_{\boldsymbol{u}^*\in\mathscr{U}}||\boldsymbol{u}^*-\boldsymbol{u}||<\varepsilon.$

IR-1: Generalize the Blackwell approachability theorem to discounted games where $\delta_1 \rightarrow 1$.

IR-2: Suppose P1 plays type θ 's equilibrium strategy σ_{θ} .

- There exists $T \in \mathbb{N}$ s.t. $1 \delta_2^T \approx 1$.
- P2's payoff conditional on θ is $\geq v \varepsilon$ if they are convinced that P1's strategy is close to σ_{θ} in the next *T* periods.
- There can be at most a bounded number of periods s.t. P2 believes that P1's strategy in the next *T* periods is far away from σ_{θ} .

Cripps and Thomas	Myopic Uninformed Players	Payoffs	Behavior	Applications

Shalev's conditions are necessary, but not sufficient

Belonging to \mathscr{U} is a necessary condition for P1's equilibrium payoff when δ_1 goes to 1, but it is in general not sufficient.

Applications

Example: Shalev's conditions are not sufficient

Suppose $\Theta = \{\theta\}, \theta, b, c > 0$, and $\delta_2 < \gamma^* \equiv \frac{c}{b+c}$.

-	Т	N
Η	$1-\theta,b$	0,0
L	1, -c	0,0

Cripps and Thomas	Myopic Uninformed Players	Payoffs	Behavior	Applications

Example: Shalev's conditions are not sufficient

$$\delta_2 < \gamma^* \equiv rac{c}{b+c}$$

Intuition: P2's impatience introduces additional constraints on P1's equilibrium payoffs beyond feasibility, IR, and IC in Shalev (1994).

Cripps and Thomas	Myopic Uninformed Players	Payoffs	Behavior	Applications

Both Players' Discount Factors are Close to 1

Let \mathscr{U} be the set of $(u_{\theta})_{\theta \in \Theta}$ s.t. there exist $\{\alpha^{\theta}\}_{\theta \in \Theta}$ and $v \in \mathbb{R}$ satisfying

- 1. **Feasibility:** $u_{\theta} = u_1(\theta, \alpha^{\theta})$ for every $\theta \in \Theta$. $v = \sum_{\theta \in \Theta} \pi(\theta) u_2(\alpha^{\theta})$.
- 2. **IR:** $\sum_{\theta \in \Theta} p(\theta) u_{\theta} \geq \underline{u}(p) \ \forall \ p \in \Delta(\Theta). \ u_2(\alpha^{\theta}) \geq \underline{v} \ \forall \ \theta \in \Theta.$
- 3. **IC:** For every $\theta \neq \theta'$, type θ weakly prefers α^{θ} to $\alpha^{\theta'}$.

Let $\widehat{\mathscr{U}}$ be the set of $(u_{\theta})_{\theta \in \Theta}$ s.t. there exist $\{\alpha^{\theta}\}_{\theta \in \Theta}$ and $v \in \mathbb{R}$ satisfying

- 1. **Feasibility:** $u_{\theta} = u_1(\theta, \alpha^{\theta})$ for every $\theta \in \Theta$. $v = \sum_{\theta \in \Theta} \pi(\theta) u_2(\alpha^{\theta})$.
- 2. Strict IR: $\sum_{\theta \in \Theta} p(\theta) u_{\theta} > \underline{u}(p) \forall p \in \Delta(\Theta). u_2(\alpha^{\theta}) > \underline{v} \forall \theta \in \Theta.$
- 3. Strict IC: For every $\theta \neq \theta'$, type θ strictly prefers α^{θ} to $\alpha^{\theta'}$.

Both Players' Discount Factors are Close to 1

Theorem: Sufficient Condition for Equilibrium Payoff

For every $\mathbf{u} \in \widehat{\mathcal{U}}$ and $\varepsilon > 0$, there exists $\underline{\delta} \in (0,1)$ such that

whenever $1 > \delta_1, \delta_2 > \underline{\delta}$,

there is an equilibrium s.t. P1's payoff is within an ε -neighborhood of u.

When both players' discount factors are close to 1, every payoff that is *strictly* IR and IC can be approximately attained in the discounted game.

- What are the connections between \mathscr{U} and $\widehat{\mathscr{U}}$?
- Is either the ε approximation or the strict IR/IC conditions redundant?

Hörner and Lovo (2009)

• Characterize *belief-free equilibrium payoffs* when $\delta_1 = \delta_2 \rightarrow 1$.

• Allows for two-sided private information and interdependent values. Hörner, Lovo and Tomala (2011) generalize it to three or more players.

Peski (2014)

- Focus on private value games. Allows for two-sided private info.
- Characterize the equilibrium payoff set when $\delta_1 = \delta_2 \rightarrow 1$.

An open question: What if one of the players is not very patient?

- Pei (2021 TE): Monotone-supermodular games.
- Pei (Working Paper): Provide strategic foundations for the sender's commitment in Bayesian persuasion models.

Challenge: Figure out what the additional constraints are.

Time: t = 0, 1, 2, ...A long-lived P1, discount factor $\delta \in (0, 1)$ vs a sequence of myopic P2s.

The terminal node in each period is perfectly observed.

P1 has perfectly persistent private information about θ :

- $\theta \in \Theta \equiv \{\theta_1, ..., \theta_m\} \subset [0, 1)$, with $0 < \theta_1 < \theta_2 < ... < \theta_m < 1$.
- P2's full support prior $\pi \in \Delta(\Theta)$.

Result: P1's Highest Equilibrium Payoff

For every $j \in \{1, 2, ..., m\}$, let

$$v_j^* \equiv \underbrace{(1 - \gamma^* \theta_j)}_{\text{Type } \theta_j \text{'s Stackelberg payoff}} \times \underbrace{\frac{1 - \theta_1}{1 - \gamma^* \theta_1}}_{\text{incomplete information multiplier (< 1)}}$$

0

Theorem 1: Highest Equilibrium Payoff

For every $\varepsilon > 0$, there exists $\underline{\delta} \in (0,1)$ s.t. when $\delta > \underline{\delta}$,

- 1. \exists sequential equilibrium s.t. P1's payoff is within ε of $(v_1^*, ..., v_m^*)$.
- 2. \nexists BNE s.t. type θ_1 's payoff is more than v_1^* .

 \nexists BNE and $j \in \{2, ..., m\}$, s.t. type θ_j 's payoff is more than $v_i^* + \varepsilon$.

Payoffs

Lessons from Theorem 1

1. Type θ_j 's highest equilibrium payoff only depends on:

- (a) His own cost of playing $H: \theta_j$.
- (b) The *lowest* cost in the support of P2's prior belief.

The multiplier $\frac{1-\theta_1}{1-\gamma^*\theta_1}$ converges to 1 as $\theta_1 \downarrow 0$.

- 2. Type θ_1 's payoff is no more than his highest equilibrium payoff in the repeated complete information game.
- 3. Types θ_2 to θ_m can strictly benefit from incomplete information.

$$v_j^* > \underbrace{1 - \theta_j}_{\text{highest payoff under complete info}}, \quad \text{for all } j \neq 1.$$

 v_i^* is the value of the following constrained optimization problem:

and

$$\frac{\mathscr{Y}(H)}{\mathscr{Y}(L)} \geq \frac{\gamma^*}{1-\gamma^*}.$$

Each \mathscr{Y} is captured by a point in the yellow set.

Cripps and Thomas	Myopic Uninformed Players	Payoffs	Behavior	Applications
Constraint 1				

 $(1-\theta_1)\mathscr{Y}(H) + \mathscr{Y}(L) \leq 1-\theta_1$

Cripps and Thomas	Myopic Uninformed Players	Payoffs	Behavior	Applications
Constraint 2				

Proof of Theorem 1: Overview

For any equilibrium $\sigma \equiv ((\sigma_{\theta})_{\theta \in \Theta}, \sigma_2)$, and any $\theta_j \in \{\theta_1, ..., \theta_m\}$:

Let 𝒴^j ∈ Δ{N,H,L} be the discounted average frequency of terminal nodes induced by (σ_{θj}, σ₂).

$$\mathscr{Y}^{j}(y) \equiv \mathbb{E}^{(\sigma_{\theta_{j}},\sigma_{2})} \Big[\sum_{t=0}^{\infty} (1-\delta) \delta^{t} \mathbf{1}\{y_{t}=y\} \Big] \text{ for every } y \in \{N,H,L\}.$$

We know that:

- 1. Type θ_j 's equilibrium payoff equals his expected payoff from \mathscr{Y}^j .
- 2. Type θ_1 's expected payoff from $\mathscr{Y}^j \leq \text{type } \theta_1$'s equilibrium payoff.

The proof consists of two steps.

- For every *j* ∈ {1,...,*m*}, 𝒴^j must satisfy the two constraints
 ⇒ Type θ_j's payoff cannot exceed v_j^{*}.
- Construct an equilibrium that approximately attains $(v_1^*, ..., v_m^*)$.

Proof: Type θ_j 's Payoff $\leq v_j^*$

Lemma 1

Type θ_1 *'s payoff in any BNE is no more than* $1 - \theta_1$ *.*

Since type θ_1 's expected payoff from $\mathscr{Y}^j \leq$ type θ_1 's equilibrium payoff, this lemma implies that \mathscr{Y}^j must satisfy the first constraint.

Lemma 2

For every $\varepsilon > 0$, there exists $\underline{\delta} \in (0, 1)$ such that when $\delta > \underline{\delta}$, for every BNE and for every $j \in \{1, 2, ..., m\}$,

$$\frac{\mathscr{Y}^{j}(H)}{\mathscr{Y}^{j}(L)} \geq \frac{\gamma^{*} - \varepsilon}{1 - (\gamma^{*} - \varepsilon)}$$

Apply Gossner's learning argument to type θ_j 's equilibrium strategy.

• Conditional on P2 plays T, σ_{θ_j} plays H with prob at least γ^* in all except for a bounded number of periods.

Proof of Lemma 1: Type θ_1 's Payoff $\leq 1 - \theta_1$

Induction on the number of types in the support of P2's posterior.

- One type: Direct implication of Fudenberg, Kreps and Maskin (90).
- Suppose lowest-cost type θ 's payoff is no more than 1θ when there are $\leq n 1$ types, what happens when there are *n* types?

Let θ be the lowest-cost type. Partition on-path histories into 3 subsets:

- 1. P2 plays N with prob 1,
- 2. P2 plays T with positive prob and type θ plays H with positive prob,
- 3. P2 plays T with positive prob and type θ plays H with zero prob.

The following strategy is type θ 's best reply to σ_2 :

• Until reaching a Class 3 history, plays σ_{θ} at Class 1 histories and plays *H* for sure at Class 2 histories.

Proof of Lemma 1: Type θ_1 's Payoff $\leq 1 - \theta_1$

Three classes of histories:

- 1. P2 plays N with prob 1,
- 2. P2 plays T with positive prob and type θ plays H with positive prob,
- 3. P2 plays T with positive prob and type θ plays H with zero prob.

Consider the following best reply of type θ to σ_2 :

• Until reaching a Class 3 history, plays σ_{θ} at Class 1 histories and plays *H* for sure at Class 2 histories.

Class 1 histories: Type θ 's stage-game payoff is 0.

Class 2 histories: Type θ 's stage-game payoff is at most $1 - \theta$.

Proof: Type θ_1 's Payoff $\leq 1 - \theta_1$

What about type θ 's continuation value at Class 3 history?

3. P2 plays T with positive prob and type θ plays H with 0 prob.

Class 3 history h^t : \exists another type that plays *H* with positive prob.

- After observing *H* at h^t , at most n 1 types in the support of P2's posterior belief.
- Induction hypothesis ⇒ there exists some type θ'(> θ) whose continuation value at h^t is at most 1 − θ'.
- If type θ' imitate type θ's strategy starting from h^t, then type θ' receives continuation value is at least:

Type θ 's Continuation Value at $h^t + (\theta - \theta') \quad (\leq 1 - \theta')$

$$\Rightarrow$$
 Type θ 's continuation value at h^t is at most $1 - \theta$.

Proof: Type θ_1 's Payoff $\leq 1 - \theta_1$

Suppose type θ plays the following best reply to σ_2 :

• Until reaching a Class 3 history, plays σ_{θ} at Class 1 histories and plays *H* for sure at Class 2 histories.

Then

- His stage-game payoff $\leq 1 \theta$ before play reaches a Class 3 history.
- His continuation value is $\leq 1 \theta$ after reaching a Class 3 history.

Type θ 's payoff is no more than $1 - \theta$ at a history where:

- He is the lowest cost type in the support of P2's posterior.
- There are at most *n* types in the support of P2's posterior.

Cripps and Thomas	Myopic Uninformed Players	Payoffs	Behavior	Applications

Construct equilibria that approximately attain v^*

How to approximately attain payoff $v^* \equiv (v_1^*, ..., v_m^*)$?

Lemma 1

For every $\eta \in (0,1)$ and $v(\gamma)$, there exists $\underline{\delta} \in (0,1)$, such that for every $\delta > \underline{\delta}$ and $\pi_0(\theta_1) \ge \eta$, there exists an equilibrium in which P1's payoff is $v(\gamma)$.

Overview: Equilibrium Construction

Types $\theta_2 \sim \theta_m$ adopt the same strategy. Type θ_1 plays differently.

Keeps track of the following state variables:

- P1's reputation: Prob of $\theta = \theta_1$, denoted by $\eta(h^t)$.
- P1's continuation value.

Three-phase equilibrium:

- One learning phase: P2 plays T all the time & slowly learns θ .
- Two absorbing phases: Learning about θ stops.

Phase transition happens with positive prob at h^t :

either P2 believes that $\theta = \theta_1$ occurs with prob 1.

or convex weight of *L* in P1's continuation value $< 1 - \delta$.

Cripps and Thomas	Myopic Uninformed Players	Payoffs	Behavior	Applications

Players' Strategies in the Learning Phase

- P2 plays *T* in every period.
- Let $\eta^* \equiv \gamma^* \eta(h^0)$ and let

$$\Delta(\cdot) \equiv \eta(\cdot) - \eta^*.$$

• Each type of P1's mixed action at h^t is pinned down by:

$$\Delta(h^t,L) = (1 - \lambda \gamma^*) \Delta(h^t),$$

and

$$\Delta(h^{t},H) = \min\left\{1-\eta^{*}, \left(1+\lambda(1-\gamma^{*})\right)\Delta(h^{t})\right\}.$$

• $\lambda > 0$ measures the speed of learning.

Why this Belief Updating Formula?

- 1. Conditional on remaining in the learning phase, P1's reputation depends only on the number of times *H* and *L* have been played.
- 2. Respect P2's incentive constraint at each learning phase history:
 - Relative speed of reputation increases is low enough.
 H is played with probability at least γ^{*}.

3. For every $\widetilde{\gamma} > \gamma^*$, there exists $\lambda > 0$ small enough s.t.

$$\left(1+\lambda(1-\gamma^*)\right)^{\widetilde{\gamma}}\left(1-\lambda\gamma^*\right)^{1-\widetilde{\gamma}}>1.$$

Intuition Behind Belief Updating Formula

For every $\widetilde{\gamma} > \gamma^*$, there exists λ small enough s.t.

$$(1+\lambda(1-\gamma^*))^{\widetilde{\gamma}}(1-\lambda\gamma^*)^{1-\widetilde{\gamma}}>1.$$

Recall that we want to attain payoff $v(\gamma)$ for some $\gamma > \gamma^*$.

- P1's continuation value increases if frequency of $H > \gamma$.
- P1's continuation value decreases if frequency of $H < \gamma$.

Issue: P1's continuation value explodes.

Solution: If P1 plays *H* too frequently, then his reputation reaches 1 and play reaches the absorbing phase.

Red formula:

We can find γ̃∈ (γ*, γ) and λ > 0 such that if P1 plays H with frequency above γ̃, then P1's reputation increases.

First Absorbing Phase: P1's Reputation Reaches 1

Type θ_j 's continuation payoff is $v_1(h^t) \frac{1-\theta_j}{1-\theta_1}$ for every *j*.

• randomize between terminal nodes N and L.

Type $\theta_j \neq \theta_1$ has no incentive to reach this phase because the continuation payoff is always above the red line (due to 2nd absorbing phase).

Second Absorbing Phase: P1 (nearly) depletes L

Transits to 2nd absorbing phase with positive probability if

• Weight of *L* in $v(h^t)$ is $< 1 - \delta$.

When this convex weight = 0,

- Transition happens with probability 1.
- Deliver $v(h^t)$ by randomizing between N and H.

When this convex weight $\in (0, 1 - \delta)$,

• Technical complication without public randomization.

The Set of Limiting Equilibrium Payoffs V^*

Let $V^* \subset \mathbb{R}^m$ be such that for every $(v_1, v_2, ..., v_m) \in V^*$, there exist $\mathscr{Y}_1, ..., \mathscr{Y}_m \in \Delta\{N, H, L\}$, such that:

$$\mathbb{E}_{\mathscr{Y}_j}[u_1(\theta_j, y)] = v_j \text{ for every } j \in \{1, 2, ..., m\},$$
$$\frac{\mathscr{Y}_j(H)}{\mathscr{Y}_j(L)} \ge \frac{\gamma^*}{1 - \gamma^*} \text{ for every } j \in \{1, 2, ..., m\},$$
$$\mathbb{E}_{\mathscr{Y}_j}[u_1(\theta_j, y)] \ge \mathbb{E}_{\mathscr{Y}_k}[u_1(\theta_j, y)] \text{ for every } j, k \in \{1, 2, ..., m\},$$
$$\mathbb{E}_{\mathscr{Y}_j}[u_1(\theta_j, y)] \le 1 - \theta_1.$$

Theorem 1': Limiting Equilibrium Payoff Set

For every $v \in int(V^*)$, there exists $\underline{\delta} \in (0,1)$ such that when $\delta > \underline{\delta}$, there

exists a sequential equilibrium s.t. P1's payoff is v.

For every $v \in ext(V^*)$, there exists $\underline{\delta} \in (0,1)$ such that when $\delta > \underline{\delta}$, there

exists no BNE s.t. P1's payoff is v.

Next Step: Connect this model to reputation models

Fudenberg and Levine's approach to study repeated incomplete info games:

- Assume the behavior of one type,
- Study the common properties of P1's equilibrium payoff.

Let's approach the problem from a different perspective:

- All types' behaviors are endogenous.
- Characterize patient P1's highest equilibrium payoff.
- Focus on P1 optimal equilibria and study the common properties of P1's behavior in those equilibria.

Advantages/disadvantages of the rational type approach:

- Proof is constructive, better understanding of behavior, which commitment behaviors are more reasonable.
- Only have results for a class of games, cannot refine equilibria when P1's actions are identified.

Payoffs

Equilibrium Behavior

How does P1 behave in equilibria that approximately attain v^* ?

Type θ player 1's strategy $\sigma_{\theta} : \mathscr{H} \to \Delta(A_1)$.

Player 2's strategy $\sigma_2 : \mathscr{H} \to \Delta(A_2)$.

Under strategy profile $((\sigma_{\theta})_{\theta \in \Theta}, \sigma_2)$,

• σ_{θ} is *stationary* if $\sigma_{\theta}(h) = \sigma_{\theta}(h')$ for every h, h' that

occur with positive probability under $(\sigma_{\theta}, \sigma_2)$, and $\sigma_2(h)$, $\sigma_2(h')$ attach positive prob to *T*.

σ_θ is *completely mixed* if σ_θ(h) is nontrivially mixed for every h that occurs with positive probability under (σ_θ, σ₂), *and* σ₂(h) attaches positive prob to T.

Payoffs

Equilibrium Behavior

How does P1 behave in equilibria that approximately attain v^* ?

Recall that $\Theta \equiv \{\theta_1, \theta_2, ..., \theta_m\}.$

Theorem 2 (Nonstationary Equilibrium Behavior)

When $m \ge 2$, for every small enough $\varepsilon > 0$, there exists $\overline{\delta}$, s.t. if $\delta > \overline{\delta}$,

in any BNE that attains payoff within ε of $(v_1^*, ..., v_m^*)$.

1. no type of P1 uses stationary strategies or completely mixed strategies

2. no type of P1 has a completely mixed equilibrium best reply.

This is also true when $\theta_1 = 0$.

• No matter how low P1's cost is,

his equilibrium behavior must depend nontrivially on past play.

Suppose toward a contradiction that there exists a BNE s.t.

- 1. P1's payoff is within ε of v^* .
- 2. Some type θ_j plays a non-trivially mixed action at every history.
- $\Rightarrow \text{ Playing } L \text{ at every history is type } \theta_j \text{'s best reply.}$ Playing H at every history is type θ_j 's best reply.
- $\Rightarrow \forall k > j, \text{ type } \theta_k \text{ plays } L \text{ w.p. 1 at every } on-path \text{ history.}$ $\forall i < j, \text{ type } \theta_i \text{ plays } H \text{ w.p. 1 at every } on-path \text{ history.}$

However, none of these stationary pure strategies are consistent with P1's equilibrium payoff is approximately v^* .

Proof of Theorem 2, Continued...

Suppose some type θ_k plays *L* at every on-path history,

- P2 will learn type θ_k 's strategy in bounded number of periods, after which they will play *N*.
- Type θ_k 's payoff is close to 0 as $\delta \to 1$.
- This leads to a contradiction.

Suppose types θ_1 to θ_{j-1} play *H* at every on-path history, with $j \ge 2$.

- Type θ_j 's long-term payoff cannot exceed $(1 \delta) + \delta(1 \theta_j)$. Separated from all lower types after playing *L* for one period.
- However, $(1 \delta) + \delta(1 \theta_j)$ is strictly less than v_j^* when δ is large.
- This leads to a contradiction.

Applications

Behavioral Prediction in Binary Action Games

How does P1 behave in equilibria that approximately attain v^* ?

Theorem 3 (Equilibrium Action Frequencies)

When $m \ge 2$, for every small enough $\varepsilon > 0$, there exists $\overline{\delta}$, s.t. if $\delta > \overline{\delta}$, in every BNE $((\sigma_{\theta})_{\theta \in \Theta}, \sigma_2)$ that attains payoff within ε of $(v_1^*, ..., v_m^*)$.

1. For every $\theta \neq \theta_m$, and for every best reply $\widehat{\sigma}_{\theta}$ of type θ against σ_2 ,

$$\frac{\mathbb{E}^{(\widehat{\sigma}_{\theta},\sigma_{2})}\left[\sum_{t=0}^{\infty}(1-\delta)\delta^{t}\mathbf{1}\{y_{t}=H\}\right]}{\mathbb{E}^{(\widehat{\sigma}_{\theta},\sigma_{2})}\left[\sum_{t=0}^{\infty}(1-\delta)\delta^{t}\mathbf{1}\{y_{t}=L\}\right]} \geq \frac{\gamma^{*}-\varepsilon}{1-(\gamma^{*}-\varepsilon)}.$$

Applications

Behavioral Prediction in Binary Action Games

How does P1 behave in equilibria that approximately attain v^* ?

Theorem 3 (Equilibrium Action Frequencies)

When $m \ge 2$, for every small enough $\varepsilon > 0$, there exists $\overline{\delta}$, s.t. if $\delta > \overline{\delta}$, in every BNE $((\sigma_{\theta})_{\theta \in \Theta}, \sigma_2)$ that attains payoff within ε of $(v_1^*, ..., v_m^*)$.

2. For every $\theta \neq \theta_1$, and for every best reply $\widehat{\sigma}_{\theta}$ of type θ against σ_2 ,

$$\frac{\mathbb{E}^{(\hat{\sigma}_{\theta},\sigma_2)}\Big[\sum_{t=0}^{\infty}(1-\delta)\delta^t\mathbf{1}\{y_t=H\}\Big]}{\mathbb{E}^{(\hat{\sigma}_{\theta},\sigma_2)}\Big[\sum_{t=0}^{\infty}(1-\delta)\delta^t\mathbf{1}\{y_t=L\}\Big]} \leq \frac{\gamma^*+\varepsilon}{1-(\gamma^*+\varepsilon)}.$$

How does P1 behave in equilibria that approximately attain v^* ?

The two statements of Theorem 3:

- 1. For every best reply of type $\theta \neq \theta_m$, frequency ratio between *H* and *L* is more than $\frac{\gamma^* \varepsilon}{1 (\gamma^* \varepsilon)}$.
- 2. For every best reply of type $\theta \neq \theta_1$, frequency ratio between *H* and *L* is less than $\frac{\gamma^* + \varepsilon}{1 (\gamma^* + \varepsilon)}$.

Implications:

- 1. Pin down the action frequencies of all types except for θ_1 and θ_m .
- 2. Applies to all pure strategy best replies.

Repeated Communication Games

Repeated communication games with private lying cost.

- Sender has persistent private info about her lying cost.
- Sender private observes i.i.d. state $\omega_t \in \Omega$.
- Sender sends message $m_t \in \Omega$ to the receiver.
- Receiver takes an action $a_t \in A$.
- Period *t* receiver observes $\{a_s, m_s, \omega_s\}_{s=0}^{t-1}$ and m_t .

Sender's stage-game payoff is $u_s(\omega_t, a_t) - \mathbf{C} \cdot \mathbf{1}\{m_t \neq \omega_t\}$, where $C \in \{C_1, ..., C_n\}$ is the sender's persistent private info.

Receiver's stage-game payoff $u_r(\omega_t, a_t)$.

Another Application: Repeated Communication

Pei (2021): Stage-game payoffs follows from the leading example in KG.

Characterize every type of patient sender's highest equilibrium payoff.
 Conditions s.t. highest payoff ≈ Bayesian persuasion payoff.

A microfoundation for the commitment assumption in Bayesian persuasion games in models without any commitment.

• No rational type uses the optimal disclosure policy in every period, no matter how large the lying cost is.

Stands in contrast to Mathevet et al. (2019)

• The possibility of having a high lying cost can hurt some type of sender who has a low lying cost.

A novel outside option effect.

Payoffs

Behavior

Applications

Next Lecture: Social Learning

- Banerjee (1992)
- Bikhchandani, Hirshleifer and Welch (1992)
- Smith and Sørensen (2000)