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Relax Two Assumptions: Myopia & Private Values

Lecture 5: Pei (2020, 2021).

• Relax the private value assumption.

Lectures 6-7: Schmidt (1993), Cripps and Thomas (1997), etc.

• The uninformed player is forward-looking.

• Assume private values and perfect monitoring.

Today: Uninformed player is impatient compared to informed player.

Thursday: Both players are equally patient.
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This week: Reputation with two patient players

• Time: t = 0, 1, 2, ....

• Informed player 1 (P1), discount factor δ1 ∈ (0, 1),
vs uninformed player 2 (P2), discount factor δ2 ∈ (0, 1).

• Actions: a1 ∈ A1 and a2 ∈ A2.

• Stage-game payoffs: u1(a1, a2), u2(a1, a2).

• Public history: ht ≡ {a1,s, a2,s}t−1
s=0, with ht ∈ Ht andH ≡ ∪∞t=0Ht.

* Restricting attention to perfect monitoring.

• Player i’s strategy: σi : H → ∆(Ai).



Model Counterexample Games with Conflicting Interest Proof Remarks Solutions

Types and Information

P1’s type space Ω ≡ {ωr}
⋃

Ωm.

1. ωr is the rational type.

2. Each σ∗1 ∈ Ωm represents a commitment type, with σ∗1 : H → A1.

commitment types playing pure strategies, potentially nonstationary.

P2’s prior belief: π ∈ ∆(Ω).

P1’s history = his type + public history.

P2’s history = public history.

Assumptions:

1. A1,A2 and Ωm are finite sets.

2. π has full support.
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Two classes of models

1. Today: Long-run medium-run model.

1− δ1

1− δ2
→ 0.

Uninformed player is arbitrarily less patient than the informed player.

2. This Thursday: Long-run long-run model.

δ = δ1 = δ2 with δ → 1.

Uninformed player is as patient as the informed player.

3. Lesson: When the uninformed player becomes more patient, it
generates more equilibrium possibilities, making it harder for the
informed player to build a reputation.
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An Example of Reputation Failure (Schmidt 1993)

- L C R
T 10, 10 0, 0 −7, 9
B 0, 0 1, 1 1, 0

Player 1 has three types:

1. Rational type (80 %).

2. Stackelberg commitment type (10 %): Plays T no matter what.

3. Another type called the punishment type (10 %):

Plays T until one of the following happens:

• P2 did not play L in an even period.
• P2 did not play R in an odd period.

and then plays B in every subsequent period.

Rational P1 can guarantee payoff 10 when P2 is short-lived.



Model Counterexample Games with Conflicting Interest Proof Remarks Solutions

A low-payoff equilibrium when P2 is forward-looking

- L C R
T 10, 10 0, 0 −7, 9
B 0, 0 1, 1 1, 0

Equilibrium strategies:

• Rational P1: Plays T in every period on the equilibrium path.

off-path: Plays T unless B has occurred before.

• P2: plays L in even periods and plays R in odd periods on path.

off-path: Plays L if B has not occurred. Plays C after B has occurred.

Verify incentive constraints:

• Rational P1: on-path payoff ≈ 1.5, off-path payoff at most 1.

• P2: on-path payoff ≈ 9.5. off-path payoff: at most 1 when facing
punishment type, and therefore, at most 9.1 in expectation.
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Reconcile this with Fudenberg and Levine (1989, 1992)

Decompose FL’s argument: ∀ equilibrium (σ1, σ2) and ∀ γ ∈ (0, 1),

1. Under (a∗1 , σ2), the expected number of periods s.t. P2 believes that a∗1
will be played with prob < γ is bounded from above by T(γ) ∈ N.

In fact, T(γ) = 0 in the above equilibrium.

2. Under (a∗1 , σ2), the expected number of periods s.t. P2 does not play a∗2
is at most T(γ).

In Schmidt’s model: ∀ equilibrium (σ1, σ2) and ∀ γ ∈ (0, 1),

1. Under (a∗1 , σ2), the expected number of periods s.t. P2 believes that a∗1
will be played with prob < γ is bounded from above by T(γ) ∈ N.

2. Under (a∗1 , σ2), the expected number of periods s.t. P2 does not play a∗2
can be unbounded.

Why? a∗2 is a myopic best reply ; P2 has an incentive to play a∗2 .
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When will this problem disappear?

Schmidt’s idea: If a commitment action a∗1 minmaxes P2, then P2 has
nothing to lose and will play his myopic best reply.

Action a∗1 ∈ A1 minmaxes P2 if

v2 ≡ max
a2∈A2

u2(a∗1 , a2) = min
α1∈∆(A1)

max
a2∈A2

u2(α1, a2).

Commitment Payoff Theorem in Schmidt

Suppose π(a∗1) > 0 for some a∗1 that minmaxes P2, then for every δ2, there

exists K(δ2) ∈ N such that rational P1’s payoff in any NE is at least:

(1− δK(δ2)
1 ) min

a2∈A2
u1(a∗1 , a2) + δ

K(δ2)
1 min

a2∈BR2(a∗1 )
u1(a∗1 , a2).

As δ1 → 1, the RHS converges to P1’s commitment payoff from a∗1 .
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Examples

1. Entry deterrence game with commitment action F:

- Out In
F 1, 0 −1,−1
A 2, 0 0, 1

Action F minmaxes player 2.

• If F ∈ Ωm, then P1 can guarantee payoff 1 in all equilibria.

2. Product choice game with commitment action H:

- B N
H 1, 1 −1, 0
L 2,−1 0, 0

Action L minmaxes player 2.

• Schmidt’s theorem only implies that P1 can guarantee payoff 0.
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Necessity of Conflicting Interests

Is this “conflicting interest” condition necessary?

• Yes, as long as P1’s commitment payoff > his minmax payoff.

Necessity of Conflicting Interest

For every stage game G and a∗1 ∈ A1. If a∗1 does not minmax player 2, and

min
a2∈BR2(a∗1 )

u1(a∗1 , a2) > min
α2∈∆(A2)

max
α1∈∆(A1)

u1(α1, α2),

then for every ε > 0, there exist η > 0, a type space s.t. a∗1 ∈ Ωm and

π(ωr) ≥ 1− ε, and a sequence of sequential equilibria

such that in the limit where limδ2→1 limδ1→1,

P1’s equilibrium payoff is below mina2∈BR2(a∗1 ) u1(a∗1 , a2)− η.
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Proof of Schmidt’s Commitment Payoff Theorem

Commitment Payoff Theorem in Schmidt

Suppose π(a∗1) > 0 for some a∗1 that minmaxes P2, then for every δ2, there

exists K(δ2) ∈ N such that rational P1’s payoff in any NE is at least:

(1− δK(δ2)
1 ) min

a2∈A2
u1(a∗1 , a2) + δ

K(δ2)
1 min

a2∈BR2(a∗1 )
u1(a∗1 , a2).
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Proof of Schmidt’s Commitment Payoff Theorem

Let Ω̂ be the event that P1 plays a∗1 at every history.

Lemma
Fix δ2 < 1 and η > 0,

there exist T > 0 and ε > 0, s.t.

for every BNE (σ1, σ2), a pure strategy σ̂2 in the support of σ2, and ht that

occurs with positive prob under Ω̂ and σ̂2.

If

E[U2(σ1, σ̂2)|Ω̂, ht] < v2 − η,

then there exists τ ∈ {t, ..., t + T − 1} s.t.

P2’s period t belief assigns prob less than 1− ε to P1 plays a∗1 in period τ .
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Intuition Behind the Lemma

Lemma
Fix δ2 < 1 and η > 0, there exist T > 0 and ε > 0, s.t. for every BNE
(σ1, σ2), a pure strategy σ̂2 in the support of σ2, and ht that occurs with
positive prob under Ω̂, if

E[U2(σ1, σ̂2)|Ω̂, ht] < v2 − η,

then there exists τ ∈ {t, ..., t + T − 1} s.t. P2’s period t belief assigns prob
less than 1− ε to P1 plays a∗1 in period τ .

Intuition:

• P2’s continuation value at ht must satisfy E[U2(σ1, σ̂2)|ht] ≥ v2.

• If P2’s payoff is bounded below his minmax conditional on Ω̂, then the
prob P2’s belief assigns to event Ω̂ must be bounded away from 1.

• For any δ2 ∈ (0, 1), this must be reflected in the next T periods.
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Proof: Construct T and ε from η and δ2

Pick T ∈ N to be large enough such that:

(1− δT
2 )(v2 − η/2) + δT

2 min
a∈A

u2(a) > v2 − η

(1− δT
2 )(v2 − η/2) + δT

2 max
a∈A

u2(a) < v2 − η/4

and then pick ε > 0 s.t. (1− ε)T is close to 1:

(1− ε)T(v2 − η/4) + (1− (1− ε)T) max
a∈A

u2(a) < v2.

Suppose toward a contradiction that (σ1, σ2) is a BNE, σ̂2 is a pure-strategy
best reply to σ1, with

E[U2(σ1, σ̂2)|Ω̂, ht] < v2 − η,

P2 believes that a∗1 is played with prob≥ 1− ε in each of the next T periods.



Model Counterexample Games with Conflicting Interest Proof Remarks Solutions

Proof of Lemma

When P2 plays σ̂2, let vt,t+T
2 be her average payoff from period t to t + T

conditional on a∗1 being played from t to t + T , then:

(1− δT
2 )vt,t+T

2 + δT
2 min

a∈A
u2(a) ≤ E[U2(σ1, σ̂2)|Ω̂, ht] < v2 − η.

Given the requirement that

(1− δT
2 )(v2 − η/2) + δT

2 min
a∈A

u2(a) > v2 − η

we have:
vt,t+T

2 ≤ v2 − η/2.

Given the requirement that

(1− δT
2 )(v2 − η/2) + δT

2 max
a∈A

u2(a) < v2 − η/4

P2’s continuation value at ht conditional on a∗1 being played from t to t + T
is at most v2 − η/4.
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Proof of Lemma

From previous slide: P2’s continuation value at ht conditional on a∗1 being
played from t to t + T is at most v2 − η/4.

If P2 believes that a∗1 is played with prob ≥ 1− ε in each of the next T
periods, then:

• The prob of the event a∗1 is played from t to t + T is at least (1− ε)T .

P2’s (unconditional) continuation value at ht by playing σ̂2 is at most:

(1− ε)T(v2 − η/4) + (1− (1− ε)T) max
a∈A

u2(a)

which is strictly less than his minmax payoff v2.

This leads to a contradiction.
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Using this lemma to prove Schmidt’s theorem

• Suppose when P2 follows σ̂2, he does not play a∗2 at ht.

• There exists η > 0 such that: E[U2(σ̂2)|Ω̂, ht] < v2 − η.

(why this step requires σ̂2 to be pure?)

• Find T ∈ N and ε > 0 according to the previous lemma.

• If P1 plays a∗1 in every period, then significant learning occurs at most
K times.

K ≡
⌈ logπ(a∗1)

log(1− ε)

⌉
.

• If P1 plays a∗1 in every period and P2 plays σ̂2, then there exist at most
TK periods such that P2 does not play a∗2 .

• As δ1 → 1, TK periods have negligible payoff consequences for P1.
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Why Each Component is Indispensable?

Where did we use the conflicting interest assumption?

• Suppose when P2 follows σ̂2, he does not play a∗2 at ht,

there exists η > 0 such that: E[U2(σ1, σ̂2)|Ω̂, ht] < v2 − η.

• Not true when P1’s commitment action does not minmax P2.

You’ll face an order of limit problem if σ̂2 is mixed.

Where did we use the order of limits?

• Fix δ2 ∈ (0, 1),

• T is chosen s.t. 1− δT
2 is close to 1,

• ε is chosen such that (1− ε)T is close to 1,

• δ1 is chosen such that 1− δTK
1 is close to 0.
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Weaker Payoff Lower Bounds

Cripps, Schmidt and Thomas (1996) develops a weaker payoff lower bound
when a∗1 does not minmax P2.

• For every a∗1 ∈ A1, let

D(a∗1) ≡ {α2 ∈ ∆(A2)|u2(a∗1 , α2) ≥ v2}.

• They show that a patient P1’s payoff is bounded from below by:

min
α2∈D(a∗1 )

u1(a∗1 , α2).

• The proof is a straightforward extension of Schmidt (1993).
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When will this problem disappear?

Back to Schmidt’s low-payoff equilibrium:

• Even if P1 can convince P2 that a∗1 will be played with high prob in the
near future when P2 plays their equilibrium strategy, P2 may not want
to best reply to a∗1 since P2 is afraid of being punished in the future.

• This hinges on perfect monitoring of P2’s actions.

• P2 plays a myopic best response to a∗1 triggers an off-path event.

• P2 can’t learn what happens off-path⇒ justifies adverse beliefs off the
equilibrium path (P1 not playing commitment action in many periods).
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Celentani, Fudenberg, Levine and Pesendorfer (1995)

Commitment payoff theorem when P2’s actions are imperfectly monitored.

• Players can’t be sure whether their opponents have deviated or not.

Their assumptions on the monitoring structure:

1. Support of ρ(·|α1, a2) is independent of a2 for every α1 ∈ ∆(A1).

2. P1’s actions are statistically identified.

3. P1 observes a1 and y. P2 observes a2 and y.

They establish the commitment payoff theorem under a mild assumption on
the payoff structure:

• Exists (a1, a2) ∈ A1 × A2 such that u2(a1, a2) > v2.
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My Favorite Intuition

∀ equilibrium (σ1, σ2) and ∀ γ ∈ (0, 1),

• Under (a∗1 , σ2), the expected number of periods s.t.

P2 believes that a∗1 is played in the next T periods with prob less than
1− ε is uniformly bounded from above.

• What about under (a∗1 , σ
′
2) for any σ′2?

When P2’s actions are perfectly monitored, (a∗1 , σ
′
2) may not be

absolutely continuous with respect to (a∗1 , σ2).

When P2’s actions does not affect the support of signals, (a∗1 , σ
′
2) is

absolutely continuous with respect to (a∗1 , σ2).

• Imperfect monitoring blurs the distinction between on and off-path.
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Caveats

In terms of the theory,

• with two patient players, the informed player can get more than his
complete info commitment payoff (think about prisoner’s dilemma).

• payoff lower bound is not tight.

Applications: P2’s actions are imperfectly monitored,

• Reasonable in competition between firms.

• Unreasonable in buyer-seller applications.



Model Counterexample Games with Conflicting Interest Proof Remarks Solutions

Another Response: Rich Set of Commitment Types

Evans and Thomas (1997):

• Schmidt’s converse result require particular type spaces.

• What if there is a rich set of commitment types?

Perfect monitoring and all commitment types play pure strategies.

Let a∗1 be a commitment action, and let a′1 be P1’s pure minmax action.

• Assumption: maxa2∈A2 u2(a∗1 , a2) > maxa2∈A2 u2(a′1, a2).

Assume that a∗2 is P2’s unique best reply to a∗1 .
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Constructing a Dynamic Commitment Type

Let σ∗1 be the following automaton strategy:

• Phase 0: Play a∗1 forever.

• Phase k: Play a′1 for k periods, and then play a∗1 forever.

...

• Play starts from phase 0. Play goes from phase k to phase k + 1 if P2
fails to play a∗2 after the kth period in phase k.

Commitment Payoff Theorem: Rich Set of Commitment Types

Suppose P2’s prior attaches positive prob to commitment type σ∗1 .

For every ε > 0, there exists δ2 < 1 such that for all δ2 > δ2,

there exists δ1 < 1 such that for all δ1 > δ1,

rational P1’s payoff in any BNE is at least u1(a∗1 , a
∗
2)− ε.

Requires P2 to be patient and the existence of a particular commitment type.
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Proof Sketch

Observation:

• For every K ∈ N and η > 0, there exists T(K, η) ∈ N s.t.

regardless of P2’s strategy, if P1 deviates and plays σ∗1 , then

there exists at most T(K, η) periods s.t. P2 attaches prob less than
1− η to the event that P1 will follow σ∗1 in the next K periods.

This follows from Fudenberg and Levine (1989). In fact, T(K, η) can equal

K
logπ(σ∗1 )

log(1− η)

In what follows, we show that if rational P1 deviates and plays σ∗1 , then P2
triggers punishment for at most a bounded number of periods.
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Proof Sketch

Fix δ2 large enough such that:

(1−δ2) max u2+δ2v2 < π(σ∗1 )u2(a∗1 , a
∗
2) + (1− π(σ∗1 ))[(1− δ2) min u2 + δ2v2]︸ ︷︷ ︸

P2’s minimal payoff by playing a∗2

.

This implies the existence of K ∈ N and η > 0 such that:

ηmax u2 + (1− η)[(1− δ2) max u2 + (δ2 − δK
2 )v2 + δK

2 max u2]︸ ︷︷ ︸
P2’s maximal payoff by triggering punishment in phase K

< π(σ∗1 )u2(a∗1 , a
∗
2) + (1− π(σ∗1 ))[(1− δ2) min u2 + δ2v2]︸ ︷︷ ︸

P2’s minimal payoff by playing a∗2

.

If P2 believes that P1 follows σ∗1 in the next K periods with prob > 1− η,
and the current play in phase k ≥ K, then P2 has a strict incentive to play a∗2 .

• P2 can trigger at most T(K, η) + K punishments if P1 plays σ∗1 .
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Discussion

Under mild conditions on payoffs, the issues raised by Schmidt (1993):

• Disappears when P2’s actions are imperfectly monitored.

• Disappears when P1 has a rich set of commitment types and P2 is
patient.

Thursday:

• Negative results: Cripps and Thomas (1997) and Chan (2000).

• Positive result: Cripps, Dekel and Pesendorfer (2005), Atakan and
Ekmekci (2012).
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