Model	Counterexample	Games with Conflicting Interest	Proof	Remarks	Solutions

Lecture 6: Long-Run Medium-Run Models

Harry PEI Department of Economics, Northwestern University

Spring Quarter, 2021

Solutions

Relax Two Assumptions: Myopia & Private Values

Lecture 5: Pei (2020, 2021).

• Relax the private value assumption.

Lectures 6-7: Schmidt (1993), Cripps and Thomas (1997), etc.

- The uninformed player is forward-looking.
- Assume private values and perfect monitoring.

Today: Uninformed player is impatient compared to informed player. Thursday: Both players are equally patient.

This week: Reputation with two patient players

- Time: t = 0, 1, 2,
- Informed player 1 (P1), discount factor δ₁ ∈ (0, 1), vs uninformed player 2 (P2), discount factor δ₂ ∈ (0, 1).
- Actions: $a_1 \in A_1$ and $a_2 \in A_2$.
- Stage-game payoffs: $u_1(a_1, a_2), u_2(a_1, a_2)$.
- Public history: $h^t \equiv \{a_{1,s}, a_{2,s}\}_{s=0}^{t-1}$, with $h^t \in \mathcal{H}^t$ and $\mathcal{H} \equiv \bigcup_{t=0}^{\infty} \mathcal{H}^t$.

* Restricting attention to perfect monitoring.

• Player *i*'s strategy: $\sigma_i : \mathcal{H} \to \Delta(A_i)$.

P1's type space $\Omega \equiv \{\omega^r\} \bigcup \Omega^m$.

- 1. ω^r is the *rational type*.
- 2. Each $\sigma_1^* \in \Omega^m$ represents a *commitment type*, with $\sigma_1^* : \mathcal{H} \to A_1$. commitment types playing pure strategies, potentially *nonstationary*.

P2's prior belief: $\pi \in \Delta(\Omega)$.

P1's history = his type + public history.

P2's history = public history.

Assumptions:

- 1. A_1, A_2 and Ω^m are finite sets.
- 2. π has full support.

1. Today: Long-run medium-run model.

$$\frac{1-\delta_1}{1-\delta_2} \to 0.$$

Uninformed player is arbitrarily less patient than the informed player.

2. This Thursday: Long-run long-run model.

 $\delta = \delta_1 = \delta_2$ with $\delta \to 1$.

Uninformed player is as patient as the informed player.

3. Lesson: When the uninformed player becomes more patient, it generates more equilibrium possibilities, making it harder for the informed player to build a reputation.

Remarks

Solutions

An Example of Reputation Failure (Schmidt 1993)

-	L	С	R
Т	10, 10	0,0	-7,9
B	0,0	1,1	1,0

Player 1 has three types:

- 1. Rational type (80 %).
- 2. Stackelberg commitment type (10 %): Plays *T* no matter what.
- 3. Another type called the punishment type (10 %):

Plays *T* until one of the following happens:

- P2 did not play *L* in an even period.
- P2 did not play *R* in an odd period.

and then plays B in every subsequent period.

Rational P1 can guarantee payoff 10 when P2 is short-lived.

A low-payoff equilibrium when P2 is forward-looking

-	L	C	R
Т	10, 10	0,0	-7,9
B	0,0	1,1	1,0

Equilibrium strategies:

- Rational P1: Plays *T* in every period on the equilibrium path. *off-path*: Plays *T* unless *B* has occurred before.
- P2: plays *L* in even periods and plays *R* in odd periods on path. *off-path*: Plays *L* if *B* has not occurred. Plays *C* after *B* has occurred.

Verify incentive constraints:

- Rational P1: on-path payoff \approx 1.5, off-path payoff at most 1.
- P2: on-path payoff \approx 9.5. off-path payoff: at most 1 when facing punishment type, and therefore, at most 9.1 in expectation.

Reconcile this with Fudenberg and Levine (1989, 1992)

Decompose FL's argument: \forall equilibrium (σ_1, σ_2) and $\forall \gamma \in (0, 1)$,

1. Under (a_1^*, σ_2) , the expected number of periods s.t. P2 believes that a_1^* will be played with prob $< \gamma$ is bounded from above by $T(\gamma) \in \mathbb{N}$.

In fact, $T(\gamma) = 0$ in the above equilibrium.

2. Under (a_1^*, σ_2) , the expected number of periods s.t. P2 does not play a_2^* is at most $T(\gamma)$.

In Schmidt's model: \forall equilibrium (σ_1, σ_2) and $\forall \gamma \in (0, 1)$,

- 1. Under (a_1^*, σ_2) , the expected number of periods s.t. P2 believes that a_1^* will be played with prob $< \gamma$ is bounded from above by $T(\gamma) \in \mathbb{N}$.
- 2. Under (a_1^*, σ_2) , the expected number of periods s.t. P2 does not play a_2^* can be unbounded.

Why? a_2^* is a myopic best reply \Rightarrow P2 has an incentive to play a_2^* .

When will this problem disappear?

Schmidt's idea: If a commitment action a_1^* minmaxes P2, then P2 has nothing to lose and will play his myopic best reply.

Action $a_1^* \in A_1$ minmaxes P2 if

$$\underline{v}_2 \equiv \max_{a_2 \in A_2} u_2(a_1^*, a_2) = \min_{\alpha_1 \in \Delta(A_1)} \max_{a_2 \in A_2} u_2(\alpha_1, a_2).$$

Commitment Payoff Theorem in Schmidt

Suppose $\pi(a_1^*) > 0$ for some a_1^* that minmaxes P2, then for every δ_2 , there

exists $K(\delta_2) \in \mathbb{N}$ such that rational P1's payoff in any NE is at least:

$$(1-\delta_1^{K(\delta_2)})\min_{a_2\in A_2}u_1(a_1^*,a_2)+\delta_1^{K(\delta_2)}\min_{a_2\in BR_2(a_1^*)}u_1(a_1^*,a_2).$$

As $\delta_1 \rightarrow 1$, the RHS converges to P1's commitment payoff from a_1^* .

Model	Counterexample	Games with Conflicting Interest	Proof	Remarks	Solutions
Exampl	les				

1. Entry deterrence game with commitment action *F*:

-	Out	In
F	1, 0	-1, -1
Α	2,0	0,1

Action F minmaxes player 2.

- If $F \in \Omega^m$, then P1 can guarantee payoff 1 in all equilibria.
- 2. Product choice game with commitment action H:

-	В	N
H	1,1	-1,0
L	2, -1	0,0

Action L minmaxes player 2.

• Schmidt's theorem only implies that P1 can guarantee payoff 0.

Necessity of Conflicting Interests

Is this "conflicting interest" condition necessary?

• Yes, as long as P1's commitment payoff > his minmax payoff.

Necessity of Conflicting Interest

For every stage game \mathcal{G} and $a_1^* \in A_1$. If a_1^* does not minmax player 2, and

$$\min_{a_2 \in BR_2(a_1^*)} u_1(a_1^*, a_2) > \min_{\alpha_2 \in \Delta(A_2)} \max_{\alpha_1 \in \Delta(A_1)} u_1(\alpha_1, \alpha_2),$$

then for every $\varepsilon > 0$, there exist $\eta > 0$, a type space s.t. $a_1^* \in \Omega^m$ and $\pi(\omega^r) \geq 1 - \varepsilon$, and a sequence of sequential equilibria such that in the limit where $\lim_{\delta_2 \to 1} \lim_{\delta_1 \to 1}$,

P1's equilibrium payoff is below $\min_{a_2 \in BR_2(a_1^*)} u_1(a_1^*, a_2) - \eta$.

Proof

Remarks

Solutions

Proof of Schmidt's Commitment Payoff Theorem

Commitment Payoff Theorem in Schmidt

Suppose $\pi(a_1^*) > 0$ for some a_1^* that minmaxes P2, then for every δ_2 , there exists $K(\delta_2) \in \mathbb{N}$ such that rational P1's payoff in any NE is at least:

$$(1 - \delta_1^{K(\delta_2)}) \min_{a_2 \in A_2} u_1(a_1^*, a_2) + \delta_1^{K(\delta_2)} \min_{a_2 \in BR_2(a_1^*)} u_1(a_1^*, a_2).$$

Proof of Schmidt's Commitment Payoff Theorem

Let $\widehat{\Omega}$ be the event that P1 plays a_1^* at every history.

Lemma

If

Fix $\delta_2 < 1$ and $\eta > 0$,

there exist T > 0 and $\varepsilon > 0$, s.t.

for every BNE (σ_1, σ_2) , a pure strategy $\hat{\sigma}_2$ in the support of σ_2 , and h^t that occurs with positive prob under $\hat{\Omega}$ and $\hat{\sigma}_2$.

 $\mathbb{E}[U_2(\sigma_1,\widehat{\sigma}_2)|\widehat{\Omega},h^t] < \underline{v}_2 - \eta,$

then there exists $\tau \in \{t, ..., t + T - 1\}$ s.t.

P2's period t belief assigns prob less than $1 - \varepsilon$ to P1 plays a_1^* in period τ .

Proof

Remarks

Solutions

Intuition Behind the Lemma

Lemma

Fix $\delta_2 < 1$ and $\eta > 0$, there exist T > 0 and $\varepsilon > 0$, s.t. for every BNE (σ_1, σ_2) , a pure strategy $\hat{\sigma}_2$ in the support of σ_2 , and h^t that occurs with positive prob under $\hat{\Omega}$, if

 $\mathbb{E}[U_2(\sigma_1,\widehat{\sigma}_2)|\widehat{\Omega},h^t] < \underline{v}_2 - \eta,$

then there exists $\tau \in \{t, ..., t + T - 1\}$ s.t. P2's period t belief assigns prob less than $1 - \varepsilon$ to P1 plays a_1^* in period τ .

Intuition:

- P2's continuation value at h^t must satisfy $\mathbb{E}[U_2(\sigma_1, \widehat{\sigma}_2) | h^t] \geq \underline{v}_2$.
- If P2's payoff is bounded below his minmax conditional on Ω, then the prob P2's belief assigns to event Ω must be bounded away from 1.
- For any $\delta_2 \in (0, 1)$, this must be reflected in the next *T* periods.

Proof

Proof: Construct *T* and ε from η and δ_2

Pick $T \in \mathbb{N}$ to be large enough such that:

$$(1 - \delta_2^T)(\underline{v}_2 - \eta/2) + \delta_2^T \min_{a \in A} u_2(a) > \underline{v}_2 - \eta$$

$$(1-\delta_2^T)(\underline{\nu}_2-\eta/2)+\delta_2^T\max_{a\in A}u_2(a)<\underline{\nu}_2-\eta/4$$

and then pick $\varepsilon > 0$ s.t. $(1 - \varepsilon)^T$ is close to 1:

$$(1-\varepsilon)^T(\underline{\nu}_2-\eta/4) + (1-(1-\varepsilon)^T)\max_{a\in A}u_2(a) < \underline{\nu}_2.$$

Suppose toward a contradiction that (σ_1, σ_2) is a BNE, $\hat{\sigma}_2$ is a pure-strategy best reply to σ_1 , with

$$\mathbb{E}[U_2(\sigma_1,\widehat{\sigma}_2)|\widehat{\Omega},h^t] < \underline{v}_2 - \eta,$$

P2 believes that a_1^* is played with prob $\geq 1 - \varepsilon$ in each of the next *T* periods.

Proof of Lemma

When P2 plays $\hat{\sigma}_2$, let $v_2^{t,t+T}$ be her average payoff from period t to t + T conditional on a_1^* being played from t to t + T, then:

$$(1-\delta_2^T)v_2^{t,t+T}+\delta_2^T\min_{a\in A}u_2(a)\leq \mathbb{E}[U_2(\sigma_1,\widehat{\sigma}_2)|\widehat{\Omega},h^t]<\underline{v}_2-\eta.$$

Given the requirement that

$$(1-\delta_2^T)(\underline{\nu}_2-\eta/2)+\delta_2^T\min_{a\in A}u_2(a)>\underline{\nu}_2-\eta$$

we have:

$$v_2^{t,t+T} \le \underline{v}_2 - \eta/2.$$

Given the requirement that

$$(1 - \delta_2^T)(\underline{v}_2 - \eta/2) + \delta_2^T \max_{a \in A} u_2(a) < \underline{v}_2 - \eta/4$$

P2's continuation value at h^t conditional on a_1^* being played from t to t + T is at most $\underline{v}_2 - \eta/4$.

From previous slide: P2's continuation value at h^t conditional on a_1^* being played from t to t + T is at most $\underline{v}_2 - \eta/4$.

If P2 believes that a_1^* is played with prob $\geq 1 - \varepsilon$ in each of the next *T* periods, then:

• The prob of the event a_1^* is played from t to t + T is at least $(1 - \varepsilon)^T$.

P2's (unconditional) continuation value at h^t by playing $\hat{\sigma}_2$ is at most:

$$(1-\varepsilon)^T(\underline{v}_2 - \eta/4) + (1-(1-\varepsilon)^T) \max_{a \in A} u_2(a)$$

which is strictly less than his minmax payoff \underline{v}_2 .

This leads to a contradiction.

Using this lemma to prove Schmidt's theorem

- Suppose when P2 follows $\hat{\sigma}_2$, he does not play a_2^* at h^t .
- There exists η > 0 such that: E[U₂(φ₂)|Ω̂, h'] < v₂ − η.
 (why this step requires φ₂ to be pure?)
- Find $T \in \mathbb{N}$ and $\varepsilon > 0$ according to the previous lemma.
- If P1 plays a_1^* in every period, then significant learning occurs at most *K* times.

$$K \equiv \Big\lceil \frac{\log \pi(a_1^*)}{\log(1-\varepsilon)} \Big\rceil.$$

- If P1 plays a₁^{*} in every period and P2 plays σ
 ₂, then there exist at most *TK* periods such that P2 does not play a₂^{*}.
- As $\delta_1 \rightarrow 1$, *TK* periods have negligible payoff consequences for P1.

Why Each Component is Indispensable?

Where did we use the *conflicting interest assumption*?

- Suppose when P2 follows σ̂₂, he does not play a^{*}₂ at h^t, there exists η > 0 such that: E[U₂(σ₁, σ̂₂)|Ω̂, h^t] < v₂ − η.
- Not true when P1's commitment action does not minmax P2.
 You'll face an order of limit problem if σ
 ² is mixed.

Where did we use the order of limits?

- Fix $\delta_2 \in (0, 1)$,
- T is chosen s.t. $1 \delta_2^T$ is close to 1,
- ε is chosen such that $(1 \varepsilon)^T$ is close to 1,
- δ_1 is chosen such that $1 \delta_1^{TK}$ is close to 0.

Cripps, Schmidt and Thomas (1996) develops a weaker payoff lower bound when a_1^* does not minmax P2.

• For every $a_1^* \in A_1$, let

 $D(a_1^*) \equiv \{\alpha_2 \in \Delta(A_2) | u_2(a_1^*, \alpha_2) \ge \underline{v}_2\}.$

• They show that a patient P1's payoff is bounded from below by:

 $\min_{\alpha_2\in D(a_1^*)}u_1(a_1^*,\alpha_2).$

• The proof is a straightforward extension of Schmidt (1993).

Proof

Solutions

When will this problem disappear?

Back to Schmidt's low-payoff equilibrium:

- Even if P1 can convince P2 that a_1^* will be played with high prob in the near future when P2 plays their equilibrium strategy, P2 may not want to best reply to a_1^* since P2 is afraid of being punished in the future.
- This hinges on perfect monitoring of P2's actions.
- P2 plays a myopic best response to a_1^* triggers an off-path event.
- P2 can't learn what happens off-path ⇒ justifies adverse beliefs off the equilibrium path (P1 not playing commitment action in many periods).

Celentani, Fudenberg, Levine and Pesendorfer (1995)

Commitment payoff theorem when P2's actions are imperfectly monitored.

• Players can't be sure whether their opponents have deviated or not.

Their assumptions on the monitoring structure:

- 1. Support of $\rho(\cdot|\alpha_1, a_2)$ is independent of a_2 for every $\alpha_1 \in \Delta(A_1)$.
- 2. P1's actions are statistically identified.
- 3. P1 observes a_1 and y. P2 observes a_2 and y.

They establish the commitment payoff theorem under a mild assumption on the payoff structure:

• Exists $(a_1, a_2) \in A_1 \times A_2$ such that $u_2(a_1, a_2) > \underline{v}_2$.

 \forall equilibrium (σ_1, σ_2) and $\forall \gamma \in (0, 1)$,

• Under (a_1^*, σ_2) , the expected number of periods s.t.

P2 believes that a_1^* is played in the next *T* periods with prob less than $1 - \varepsilon$ is uniformly bounded from above.

• What about under (a_1^*, σ_2') for any σ_2' ?

When P2's actions are perfectly monitored, (a_1^*, σ_2') may not be absolutely continuous with respect to (a_1^*, σ_2) .

When P2's actions does not affect the support of signals, (a_1^*, σ_2') is absolutely continuous with respect to (a_1^*, σ_2) .

• Imperfect monitoring blurs the distinction between on and off-path.

Model	Counterexample	Games with Conflicting Interest	Proof	Remarks	Solutions
Caveat	S				

In terms of the theory,

- with two patient players, the informed player can get more than his complete info commitment payoff (think about prisoner's dilemma).
- payoff lower bound is not tight.

Applications: P2's actions are imperfectly monitored,

- Reasonable in competition between firms.
- Unreasonable in buyer-seller applications.

Another Response: Rich Set of Commitment Types

Evans and Thomas (1997):

- Schmidt's converse result require particular type spaces.
- What if there is a rich set of commitment types?

Perfect monitoring and all commitment types play pure strategies.

Let a_1^* be a commitment action, and let a_1' be P1's pure minmax action.

• Assumption: $\max_{a_2 \in A_2} u_2(a_1^*, a_2) > \max_{a_2 \in A_2} u_2(a_1', a_2).$

Assume that a_2^* is P2's unique best reply to a_1^* .

Constructing a Dynamic Commitment Type

Let σ_1^* be the following automaton strategy:

• Phase 0: Play a_1^* forever.

...

- Phase k: Play a'_1 for k periods, and then play a^*_1 forever.
- Play starts from phase 0. Play goes from phase k to phase k + 1 if P2 fails to play a_2^* after the kth period in phase k.

Commitment Payoff Theorem: Rich Set of Commitment Types

Suppose P2's prior attaches positive prob to commitment type σ_1^* .

For every $\varepsilon > 0$, there exists $\underline{\delta}_2 < 1$ such that for all $\delta_2 > \underline{\delta}_2$,

there exists $\underline{\delta}_1 < 1$ such that for all $\delta_1 > \underline{\delta}_1$,

rational P1's payoff in any BNE is at least $u_1(a_1^*, a_2^*) - \varepsilon$.

Requires P2 to be patient and the existence of a particular commitment type.

Model	Counterexample	Games with Conflicting Interest	Proof	Remarks	Solutions
Proof Sketch					

Observation:

For every K ∈ N and η > 0, there exists T(K, η) ∈ N s.t. regardless of P2's strategy, if P1 deviates and plays σ₁^{*}, then there exists at most T(K, η) periods s.t. P2 attaches prob less than 1 − η to the event that P1 will follow σ₁^{*} in the next K periods.

This follows from Fudenberg and Levine (1989). In fact, $T(K, \eta)$ can equal

$$K\frac{\log \pi(\sigma_1^*)}{\log(1-\eta)}$$

In what follows, we show that if rational P1 deviates and plays σ_1^* , then P2 triggers punishment for at most a bounded number of periods.

Fix δ_2 large enough such that:

$$(1-\delta_2)\max u_2 + \delta_2 \underline{v}_2 < \underbrace{\pi(\sigma_1^*)u_2(a_1^*, a_2^*) + (1-\pi(\sigma_1^*))[(1-\delta_2)\min u_2 + \delta_2 \underline{v}_2]}_{(1-\delta_2)}.$$

P2's minimal payoff by playing a_2^*

This implies the existence of $K \in \mathbb{N}$ and $\eta > 0$ such that:

$$\underbrace{\eta \max u_2 + (1 - \eta)[(1 - \delta_2) \max u_2 + (\delta_2 - \delta_2^K)\underline{v}_2 + \delta_2^K \max u_2]}_{\text{P2's maximal payoff by triggering punishment in phase }K} < \underbrace{\pi(\sigma_1^*)u_2(a_1^*, a_2^*) + (1 - \pi(\sigma_1^*))[(1 - \delta_2) \min u_2 + \delta_2 \underline{v}_2]}_{\text{P2's minimal payoff by playing }a_1^*}$$

If P2 believes that P1 follows σ_1^* in the next *K* periods with prob > $1 - \eta$, and the current play in phase $k \ge K$, then P2 has a strict incentive to play a_2^* .

• P2 can trigger at most $T(K, \eta) + K$ punishments if P1 plays σ_1^* .

Model	Counterexample	Games with Conflicting Interest	Proof	Remarks	Solutions
Discus	sion				

Under mild conditions on payoffs, the issues raised by Schmidt (1993):

- Disappears when P2's actions are imperfectly monitored.
- Disappears when P1 has a rich set of commitment types and P2 is patient.

Thursday:

- Negative results: Cripps and Thomas (1997) and Chan (2000).
- Positive result: Cripps, Dekel and Pesendorfer (2005), Atakan and Ekmekci (2012).