Lecture 5: Reputation under Interdependent Values # Harry PEI Department of Economics, Northwestern University Spring Quarter, 2021 ### Review #### Lectures 1-4: Reputation models with two assumptions. Example: Reputation Failure - 1. Private values, i.e., uninformed player's payoff (more precisely, best reply) does not depend on the informed player's private info. - 2. Uninformed players are myopic. # Relax These Assumptions (assume perfect monitoring) Lecture 5: Pei (2020, 2021). - Relax the private value assumption. - Uninformed players are myopic. Lectures 6-7: Schmidt (1993), Cripps and Thomas (1997), Chan (2000), Cripps, Dekel and Pesendorfer (2005), etc. - The uninformed player is forward-looking. - Private values. #### Takeaways: - Commitment payoff theorem applies only to special classes of games. - Unclear what the commitment payoff is, results are not clean. - Lots of open questions, lots of room for future research. Monotone-Supermodular Games ### Motivation ### In many long-term relationships, economic agents - build reputations for playing certain actions, - persistent private info that affects their opponents' payoffs. | Reputation Builder | Opponents | Reputation | Private Info | |--------------------|-----------|----------------|-------------------| | incumbent firm | entrants | fight entrants | demand curve | | seller | buyers | good service | durability/safety | ### Interaction between building reputations and signalling payoff relevant state - 1. affect the value of reputations, - 2. affect incentives to build reputations. ### Model Infinitely repeated game: t = 0, 1, 2, ... - Long-lived player 1 (P1), discount factor $\delta \in (0, 1)$, vs an infinite sequence of short-lived player 2s (P2). - Players' actions: $a_1 \in A_1$ and $a_2 \in A_2$. P1 has *perfectly persistent* private info about two aspects: - 1. State $\theta \in \Theta$. Stage game payoffs: $u_1(\theta, a_1, a_2), u_2(\theta, a_1, a_2)$. - 2. *Either* rational: maximizes $\sum_{t=0}^{+\infty} (1 \delta) \delta^t u_1(\theta, a_{1,t}, a_{2,t})$. *Or* committed: follows some commitment plan $\gamma : \Theta \to A_1$. Or committed: follows some commitment plan $\gamma:\Theta\to A_1$ Plays the same action in every period. The set of possible commitment plans: Γ . ### Model P2's prior $$\mu \in \Delta\Big(\Theta \times (\Gamma \cup \{\gamma^*\})\Big)$$. P2's history in period t: $\{a_{1,s}, a_{2,s}\}_{s < t}$. • Today: P2 only observes P1's past actions. μ has full support. Θ , A_1 , and A_2 are finite. ### Example: Reputation Failure under Common Interests | $\theta = \theta_1$ | h | l | |---------------------|-----|----------------------| | H | 1,1 | 0,0 | | L | 0,0 | ϵ, ϵ | | $\theta = \theta_2$ | h | l | |---------------------|------|----------------------| | Н | 0,0 | ϵ, ϵ | | L | 1, 1 | 0,0 | One commitment plan: H in state θ_1 and L in state θ_2 . - $\epsilon \in (0,1)$, - distribution of two dimensions of private info are independent. When the prob that P1 is committed is small enough, there exist equilibria in which P1's payoff is ϵ in both states regardless of δ . - Player 2 plays *l* at every history. - Rational P1 plays L in state θ_1 , and plays H in state θ_2 . # Example: Reputation Failure under Common Interests | $\theta = \theta_1$ | h | l | |---------------------|-----|----------------------| | Н | 1,1 | 0,0 | | L | 0,0 | ϵ, ϵ | | $\theta = \theta_2$ | h | l | |---------------------|-----|---------------------| | H | 0,0 | ϵ,ϵ | | L | 1,1 | 0,0 | | | · · | | #### Low payoff equilibria exist despite: - 1. Players have common interests. - 2. Conditional on {P1 is committed and plays H}, θ_1 occurs with prob 1. - 3. Applies to all full support distributions of θ . #### What goes wrong: - P2s believe that rational P1 is more likely to play H when $\theta = \theta_2$. - P1 faces a tradeoff between playing H and signalling $\theta = \theta_1$. P1 faces a tradeoff between playing L and signalling $\theta = \theta_2$. # General Negative Result If no restrictions are made on u_1 and the prob of commitment is small, • then for every u_2 , we can find u_1 under which there exists equilibrium s.t. P1's payoff is less than his complete info commitment payoff. Pei (2021): When commitment action is mixed, guaranteeing commitment payoff in all equilibria becomes harder. # Monotone Supermodular Games with $|A_2| = 2$ ### Assumption: Monotone-Supermodularity (MSM) There exist a ranking on Θ , a ranking on A_1 , and a ranking on A_2 , - 1. $u_1(\theta, a_1, a_2)$ is strictly decreasing in a_1 , and is strictly increasing in a_2 . - 2. $u_1(\theta, a_1, a_2)$ has strictly increasing differences in θ and (a_1, a_2) . - 3. $u_2(\theta, a_1, a_2)$ has strictly increasing differences in a_2 and (θ, a_1) . Let $\overline{a}_i \equiv \max A_i$ and $\underline{a}_i \equiv \min A_i$. By definition, $A_2 = \{\overline{a}_2, \underline{a}_2\}$. Let - $\Theta^* \equiv \left\{ \theta \in \Theta \middle| u_1(\theta, \overline{a}_1, \overline{a}_2) > u_1(\theta, \underline{a}_1, \underline{a}_2) \right\}$ - $\mu(\overline{a}_1)$: prob of the event that P1 is committed and plays \overline{a}_1 . - $\phi_{\overline{a}_1} \in \Delta(\Theta)$: state distribution conditional on the above event. - $\mu(\theta)$: prob of the event that P1 is rational and the state is θ . # Result in Pei (2020) Let $D(\theta) \equiv u_2(\theta, \overline{a}_1, \overline{a}_2) - u_2(\theta, \overline{a}_1, a_2)$. Example: Reputation Failure #### Theorem Suppose payoffs are MSM, $|A_2| = 2$, and $\sum_{\theta \in \Theta} \mu(\overline{a}_1) \phi_{\overline{a}_1}(\theta) D(\theta) > 0$. - 1. If $\sum_{\theta \in \Theta} \mu(\overline{a}_1) \phi_{\overline{a}_1}(\theta) D(\theta) + \sum_{\theta \in \Theta^*} \mu(\theta) D(\theta) > 0$, then as $\delta \to 1$, P1's payoff in state θ is at least $\max\{u_1(\theta, \overline{a}_1, \overline{a}_2), u_1(\theta, a_1, a_2)\}$. - 2. If $\sum_{\theta \in \Theta} \mu(\overline{a}_1) \phi_{\overline{a}_1}(\theta) D(\theta) + \sum_{\theta \in \Theta^*} \mu(\theta) D(\theta) \leq 0$, then there exists $\theta^* \in \Theta^*$ such that in every equilibrium when δ is large enough, - P1's payoff in state $\theta \leq \theta^*$ is $u_1(\theta, \underline{a}_1, \underline{a}_2)$. - P1's payoff in state $\theta > \theta^*$ is $ru_1(\theta, \overline{a}_1, \overline{a}_2) + (1 r)u_1(\theta, \overline{a}_1, a_2)$ where $r \in [0, 1]$ is pinned down by: $$ru_1(\theta^*, \overline{a}_1, \overline{a}_2) + (1-r)u_1(\theta^*, \overline{a}_1, a_2) = u_1(\theta^*, a_1, a_2).$$ • Rational P1 plays \overline{a}_1 in every period when $\theta > \theta^*$, plays a_1 in every period when $\theta < \theta^*$, and mixes between playing \overline{a}_1 in every period and playing \underline{a}_1 in every period when $\theta = \theta^*$. ### Interpretation If $$\sum_{\theta \in \Theta} \mu(\overline{a}_1) \phi_{\overline{a}_1}(\theta) D(\theta) + \sum_{\theta \in \Theta^*} \mu(\theta) D(\theta) > 0$$, then Example: Reputation Failure • lower bound on P1's payoff, no robust prediction on P1's behavior. If $$\sum_{\theta \in \Theta} \mu(\overline{a}_1) \phi_{\overline{a}_1}(\theta) D(\theta) + \sum_{\theta \in \Theta^*} \mu(\theta) D(\theta) \leq 0$$, then - unique equilibrium payoff and unique on-path behavior. - stands in contrast to the private value benchmark. #### Important things to understand: - 1. Where are these payoffs coming from? - 2. Where are the conditions on the state distribution coming from? - 3. Why are the restrictions on stage-game payoff not redundant? # Example: Product Choice Game | $\theta = \theta_h$ | T | N | |---------------------|-------|------| | Н | 1,1 | -1,0 | | L | 2, -1 | 0,0 | | $\theta = \theta_l$ | T | N | |---------------------|----------------|----------------| | H | $1 - \eta, -1$ | $-1 - \phi, 0$ | | L | 2, -2 | 0,0 | One commitment plan $\Gamma = \{\gamma\}$, with $$\gamma(\theta) \equiv \begin{cases} H & \text{if } \theta = \theta_h \\ L & \text{if } \theta = \theta_l. \end{cases}$$ Whether P1 is committed or rational is independent of θ . Stage-game payoffs satisfy MSM if $\eta \in (0, 1)$ and $\phi > 0$. - 1. If the prob of θ_h is greater than 1/2, then P1's payoff in state θ_h is at least 1 and his payoff in state θ_l is at least 1η . - 2. If the prob of θ_h is less than 1/2 and the prob of commitment is small, then when δ is large enough, P1's payoff in state θ_h is $\frac{\phi+\eta}{2+\phi-\eta}$ and his payoff in state θ_l is 0. ### Reputation as Equilibrium Selection Patient P1's equilibrium payoff set (in green) in the benchmark repeated incomplete information game s.t. P1 is rational for sure. ### Proof: Partition the set of equilibria Example: Reputation Failure | $\theta = \theta_h$ | T | N | |---------------------|-------|------| | Н | 1, 1 | -1,0 | | L | 2, -1 | 0,0 | | $\theta = \theta_l$ | T | N | |---------------------|----------------|----------------| | H | $1 - \eta, -1$ | $-1 - \phi, 0$ | | L | 2, -2 | 0,0 | ### Partition the set of equilibria into two subsets: - Regular equilibria: Playing H in every period is type θ_l 's best reply to P2's equilibrium strategy. - Irregular equilibria: Playing H in every period is not type θ_l 's best reply to P2's equilibrium strategy. ### Irregular Equilibria Let h_H^t be the period t history s.t. P1 has played H from 0 to t-1. • $q_t \equiv \Pr \left(\text{player 1 is rational}, \theta = \theta_l, \text{ and } h^t = h_H^t \right)$. Example: Reputation Failure • $p_t \equiv \Pr \left(\text{player 1 is rational}, \theta = \theta_h, \text{ and } h^t = h_H^t \right)$. #### Lemma For any $t \ge 1$, if $p_t \ge q_t$ but T is not P2's strict best reply at h_H^t , then: $$(p_t+q_t)-(p_{t+1}+q_{t+1}) \ge \frac{1}{2} \underbrace{\Pr(P1 \text{ is committed and plays } H \text{ in every period})}_{\equiv Q}$$ **Proof:** Suppose $t \ge 1$ and T is not a strict best reply at h_H^t , then $$Q + p_{t+1} - (p_t - p_{t+1}) - q_{t+1} - 2(q_t - q_{t+1}) \le 0,$$ $$Q \le Q + p_{t+1} - q_{t+1} + (p_t - p_{t+1}) \le 2(q_t - q_{t+1}) + 2(p_t - p_{t+1})$$ ### Irregular Equilibria #### Lemma In every irregular equilibrium, $p_t \geq q_t$ for every $t \in \mathbb{N}$. Example: Reputation Failure **Proof:** Suppose $p_t < q_t$ for some $t \in \mathbb{N}$. - Recall the definition of irregular equilibria: Playing H in every period is *not* type θ_l 's best reply to P2's equilibrium strategy. - There exists $N \in \mathbb{N}$ s.t. type θ_l has a strict incentive to play L at h_H^N . - By definition, $q_N = 0$ so \exists the largest $t^* \in \mathbb{N}$ such that $p_{t^*} < q_{t^*}$. - Type θ_l 's incentive at $h_H^{t^*}$. In equilibrium, he plays L with positive prob, after which his continuation value is 0 (Why?). If he plays H, then $p_t > q_t$ for every $t > t^*$. When $p_t \ge q_t$, $p_t + q_t - p_{t+1} - q_{t+1} \ge \frac{Q}{2}$ in every period s.t. P2 doesn't play $T \Rightarrow$ at most $\frac{2}{Q}$ periods s.t. P2 doesn't play T. Monotone-Supermodular Games # Irregular Equilibria #### Lemma For any $t \ge 1$, if $p_t \ge q_t$ but T is not P2's strict best reply at h_H^t , then: $$p_t + q_t - p_{t+1} - q_{t+1} \ge \frac{Q}{2}.$$ #### Lemma *In every irregular equilibrium,* $p_t \ge q_t$ *for every* $t \in \mathbb{N}$ *.* #### Recall that - $q_t \equiv \Pr \left(\text{player 1 is rational}, \theta = \theta_l, \text{ and } h^t = h_H^t \right)$. - $p_t \equiv \Pr \left(\text{player 1 is rational}, \theta = \theta_h, \text{ and } h^t = h_H^t \right)$. Irregular equilibria can only exist when $p(\theta_h) \ge 1/2$. • When δ is close to 1, type θ_h 's payoff is at least 1 and type θ_l 's payoff is at least $1 - \eta$. ### Regular Equilibrium | $\theta = \theta_h$ | T | N | |---------------------|-------|------| | H | 1, 1 | -1,0 | | L | 2, -1 | 0,0 | | $\theta = \theta_l$ | T | N | |---------------------|----------------|----------------| | Н | $1 - \eta, -1$ | $-1 - \phi, 0$ | | L | 2, -2 | 0,0 | Each $\{a_{1,t}\}_{t\in\mathbb{N}}$ induces a sequence of P2's actions $\{\alpha_{2,t}\}_{t\in\mathbb{N}}$. Example: Reputation Failure - This is similar to a 1-shot signalling game. - When $\eta, \phi > 0$, it is less costly to choose H when $\theta = \theta_h$. #### Lemma If playing H in every period is type θ_l 's best reply to P2's equilibrium strategy, then type θ_h plays H with probability 1 at every on-path history. Does it follow from the Spence-Mirrlees theorem? • No! Payoffs are not necessarily separable in the sender's type. # One-Shot Signalling Game Why is the Spence-Mirrlees theorem not applicable? | high type | h | 1 | |-----------|-----|-----| | Н | 4,4 | 2,2 | | L | 3,3 | 1,1 | | low type | h | 1 | |----------|-----|-----| | Н | 1,1 | 3,3 | | L | 2,2 | 4,4 | What saves the day? • A monotonicity condition: u_1 increases in a_2 and decreases in a_1 . | $\theta = \theta_h$ | T | N | |---------------------|-------|------| | Н | 1,1 | -1,0 | | L | 2, -1 | 0,0 | | $\theta = \theta_l$ | T | N | |---------------------|-------------|----------------| | Н | $1-\eta,-1$ | $-1 - \phi, 0$ | | L | 2, -2 | 0,0 | - Liu and Pei (2020): If payoffs are MSM, and $|A_2| = 2$, then the sender's equilibrium strategy must be non-decreasing in his type. - The previous lemma is a direct corollary of the above theorem. ### Regular Equilibria #### Lemma If playing H in every period is type θ_l 's best reply to P2's equilibrium strategy, then type θ_h plays H with probability 1 at every on-path history. #### Definition of regular equilibrium: • Playing H in every period is type θ_l 's best reply to P2's equilibrium strategy. Therefore, type θ_h plays H with prob 1 at every on-path history. • Type θ_l 's continuation value after playing L is 0. Example: Reputation Failure ### Regular Equilibria #### Lemma If playing H in every period is type θ_l 's best reply to P2's equilibrium strategy, then type θ_h plays H with probability 1 at every on-path history. | $\theta = \theta_h$ | T | N | |---------------------|-------|------| | H | 1,1 | -1,0 | | L | 2, -1 | 0,0 | | $\theta = \theta_l$ | T | N | |---------------------|----------------|----------------| | H | $1 - \eta, -1$ | $-1 - \phi, 0$ | | L | 2, -2 | 0,0 | Type θ_h plays H with prob 1 at every on-path history. Type θ_l 's continuation value after playing L is 0. - If θ_h occurs with prob more than 1/2, then p_t ≥ q_t for every t ∈ N, type θ_t's payoff is at least 1 − η by playing H in every period, so he has no incentive to play L. - Type θ_h 's equilibrium payoff is 1, type θ_l 's equilibrium payoff is 1η . # Regular Equilibria #### Lemma If playing H in every period is type θ_l 's best reply to P2's equilibrium strategy, then type θ_h plays H with probability 1 at every on-path history. | $\theta = \theta_h$ | T | N | |---------------------|-------|------| | Н | 1,1 | -1,0 | | L | 2, -1 | 0,0 | | $\theta = \theta_l$ | T | N | |---------------------|----------------|----------------| | Н | $1 - \eta, -1$ | $-1 - \phi, 0$ | | L | 2, -2 | 0,0 | Type θ_h plays H with prob 1 at every on-path history. Type θ_l 's continuation value after playing L is 0. - If θ_h occurs with prob less than 1/2 and the prob of commitment is small, then P2 has no incentive to play T until type θ_l plays L with positive prob. - Type θ_l either plays L in period 0 or never plays L (**Why?**). - Prob that type θ_l plays L in period 0 is such that after observing H in period 0, P2 is indifferent in period 1. ### Why Equilibrium Behavior is Unique? Private values, commitment type, and perfect monitoring: Example: Reputation Failure • Li and Pei (2021): Lots of plausible behaviors. Interdependent values, pessimistic belief, and commitment type: - Unique behavioral prediction. - Presence of commitment type: P1's payoff is high by playing H in every period. (also present under private values) - Presence of interdependent values: P1's payoff is low after playing L. (missing under private values) ### What is hard about interdependent values? - 1. What should be the right benchmark for high payoff? - What happens in a repeated game without commitment type? - I know the answer when payoffs are MSM. - 2. How to exploit properties of players' stage-game payoffs to study repeated signaling games? - a repeated supermodular game is not supermodular. - 3. What happens to MSM games when commitment action is mixed? - e.g., committed P1 plays H with prob 1ε in every period. - 4. Sustainability of reputation under interdependent values. - Important assumption of CMS: P2 has a unique best reply to α_1^* . - This is generically satisfied under private values. - What about interdependent values?