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Review

Lectures 1-4: Reputation models with two assumptions.

1. Private values, i.e., uninformed player’s payoff (more precisely, best
reply) does not depend on the informed player’s private info.

2. Uninformed players are myopic.
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Relax These Assumptions (assume perfect monitoring)

Lecture 5: Pei (2020, 2021).

• Relax the private value assumption.

• Uninformed players are myopic.

Lectures 6-7: Schmidt (1993), Cripps and Thomas (1997), Chan (2000),
Cripps, Dekel and Pesendorfer (2005), etc.

• The uninformed player is forward-looking.

• Private values.

Takeaways:

• Commitment payoff theorem applies only to special classes of games.

• Unclear what the commitment payoff is, results are not clean.

• Lots of open questions, lots of room for future research.
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Motivation

In many long-term relationships, economic agents

• build reputations for playing certain actions,

• persistent private info that affects their opponents’ payoffs.

Reputation Builder Opponents Reputation Private Info

incumbent firm entrants fight entrants demand curve

seller buyers good service durability/safety

Interaction between building reputations and signalling payoff relevant state

1. affect the value of reputations,

2. affect incentives to build reputations.
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Model

Infinitely repeated game: t = 0, 1, 2, ...

• Long-lived player 1 (P1), discount factor δ ∈ (0, 1),
vs an infinite sequence of short-lived player 2s (P2).

• Players’ actions: a1 ∈ A1 and a2 ∈ A2.

P1 has perfectly persistent private info about two aspects:

1. State θ ∈ Θ. Stage game payoffs: u1(θ, a1, a2), u2(θ, a1, a2).

2. Either rational: maximizes
∑+∞

t=0 (1− δ)δtu1(θ, a1,t, a2,t).

Or committed: follows some commitment plan γ : Θ→ A1.

Plays the same action in every period.

The set of possible commitment plans: Γ.
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Model

P2’s prior µ ∈ ∆
(

Θ× (Γ ∪ {γ∗})
)

.

P2’s history in period t: {a1,s, a2,s}s<t.

• Today: P2 only observes P1’s past actions.

µ has full support. Θ, A1, and A2 are finite.
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Example: Reputation Failure under Common Interests

θ = θ1 h l
H 1, 1 0, 0
L 0, 0 ε, ε

θ = θ2 h l
H 0, 0 ε, ε
L 1, 1 0, 0

One commitment plan: H in state θ1 and L in state θ2.

• ε ∈ (0, 1),

• distribution of two dimensions of private info are independent.

When the prob that P1 is committed is small enough, there exist equilibria in
which P1’s payoff is ε in both states regardless of δ.

• Player 2 plays l at every history.

• Rational P1 plays L in state θ1, and plays H in state θ2.
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Example: Reputation Failure under Common Interests

θ = θ1 h l
H 1, 1 0, 0
L 0, 0 ε, ε

θ = θ2 h l
H 0, 0 ε, ε
L 1, 1 0, 0

Low payoff equilibria exist despite:

1. Players have common interests.

2. Conditional on {P1 is committed and plays H}, θ1 occurs with prob 1.

3. Applies to all full support distributions of θ.

What goes wrong:

• P2s believe that rational P1 is more likely to play H when θ = θ2.

• P1 faces a tradeoff between playing H and signalling θ = θ1.

P1 faces a tradeoff between playing L and signalling θ = θ2.
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General Negative Result

If no restrictions are made on u1 and the prob of commitment is small,

• then for every u2, we can find u1 under which there exists equilibrium
s.t. P1’s payoff is less than his complete info commitment payoff.

Pei (2021): When commitment action is mixed, guaranteeing commitment
payoff in all equilibria becomes harder.
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Monotone Supermodular Games with |A2| = 2

Assumption: Monotone-Supermodularity (MSM)

There exist a ranking on Θ, a ranking on A1, and a ranking on A2,

1. u1(θ, a1, a2) is strictly decreasing in a1, and is strictly increasing in a2.

2. u1(θ, a1, a2) has strictly increasing differences in θ and (a1, a2).

3. u2(θ, a1, a2) has strictly increasing differences in a2 and (θ, a1).

Let ai ≡ max Ai and ai ≡ min Ai. By definition, A2 = {a2, a2}. Let

•
Θ∗ ≡

{
θ ∈ Θ

∣∣u1(θ, a1, a2) > u1(θ, a1, a2)
}

• µ(a1): prob of the event that P1 is committed and plays a1.

• φa1 ∈ ∆(Θ): state distribution conditional on the above event.

• µ(θ): prob of the event that P1 is rational and the state is θ.
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Result in Pei (2020)

Let D(θ) ≡ u2(θ, a1, a2)− u2(θ, a1, a2).

Theorem

Suppose payoffs are MSM, |A2| = 2, and
∑
θ∈Θ µ(a1)φa1(θ)D(θ) > 0.

1. If
∑
θ∈Θ µ(a1)φa1(θ)D(θ) +

∑
θ∈Θ∗ µ(θ)D(θ) > 0, then as δ → 1,

P1’s payoff in state θ is at least max{u1(θ, a1, a2), u1(θ, a1, a2)}.

2. If
∑
θ∈Θ µ(a1)φa1(θ)D(θ) +

∑
θ∈Θ∗ µ(θ)D(θ) ≤ 0, then there exists

θ∗ ∈ Θ∗ such that in every equilibrium when δ is large enough,

• P1’s payoff in state θ ≤ θ∗ is u1(θ, a1, a2).
• P1’s payoff in state θ > θ∗ is ru1(θ, a1, a2) + (1− r)u1(θ, a1, a2)

where r ∈ [0, 1] is pinned down by:

ru1(θ∗, a1, a2) + (1− r)u1(θ∗, a1, a2) = u1(θ∗, a1, a2).

• Rational P1 plays a1 in every period when θ > θ∗, plays a1 in
every period when θ < θ∗, and mixes between playing a1 in every
period and playing a1 in every period when θ = θ∗.
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Interpretation

If
∑
θ∈Θ µ(a1)φa1(θ)D(θ) +

∑
θ∈Θ∗ µ(θ)D(θ) > 0, then

• lower bound on P1’s payoff, no robust prediction on P1’s behavior.

If
∑
θ∈Θ µ(a1)φa1(θ)D(θ) +

∑
θ∈Θ∗ µ(θ)D(θ) ≤ 0, then

• unique equilibrium payoff and unique on-path behavior.

• stands in contrast to the private value benchmark.

Important things to understand:

1. Where are these payoffs coming from?

2. Where are the conditions on the state distribution coming from?

3. Why are the restrictions on stage-game payoff not redundant?
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Example: Product Choice Game

θ = θh T N
H 1, 1 −1, 0
L 2,−1 0, 0

θ = θl T N
H 1− η,−1 −1− φ, 0
L 2,−2 0, 0

One commitment plan Γ = {γ}, with

γ(θ) ≡
{

H if θ = θh

L if θ = θl.

Whether P1 is committed or rational is independent of θ.

Stage-game payoffs satisfy MSM if η ∈ (0, 1) and φ > 0.

1. If the prob of θh is greater than 1/2, then P1’s payoff in state θh is at
least 1 and his payoff in state θl is at least 1− η.

2. If the prob of θh is less than 1/2 and the prob of commitment is small,
then when δ is large enough, P1’s payoff in state θh is φ+η

2+φ−η and his
payoff in state θl is 0.
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Reputation as Equilibrium Selection

Patient P1’s equilibrium payoff set (in green) in the benchmark
repeated incomplete information game s.t. P1 is rational for sure.

vl

0 vhφ+η
2+φ−η

1

2

(H,T)1− η

prob of θh is greater than 1/2

vl

0 vh

prob of θh is less than 1/2

φ+η
2+φ−η

(H,T)

1

1− η

(L,N)
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Proof: Partition the set of equilibria

θ = θh T N
H 1, 1 −1, 0
L 2,−1 0, 0

θ = θl T N
H 1− η,−1 −1− φ, 0
L 2,−2 0, 0

Partition the set of equilibria into two subsets:

• Regular equilibria: Playing H in every period is type θl’s best reply to
P2’s equilibrium strategy.

• Irregular equilibria: Playing H in every period is not type θl’s best
reply to P2’s equilibrium strategy.
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Irregular Equilibria

Let ht
H be the period t history s.t. P1 has played H from 0 to t − 1.

• qt ≡ Pr
(

player 1 is rational, θ = θl, and ht = ht
H

)
.

• pt ≡ Pr
(

player 1 is rational, θ = θh, and ht = ht
H

)
.

Lemma

For any t ≥ 1, if pt ≥ qt but T is not P2’s strict best reply at ht
H , then:

(pt+qt)−(pt+1+qt+1) ≥ 1
2

Pr(P1 is committed and plays H in every period)︸ ︷︷ ︸
≡Q

Proof: Suppose t ≥ 1 and T is not a strict best reply at ht
H , then

Q + pt+1 − (pt − pt+1)− qt+1 − 2(qt − qt+1) ≤ 0,

⇒ Q ≤ Q + pt+1 − qt+1 + (pt − pt+1) ≤ 2(qt − qt+1) + 2(pt − pt+1)
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Irregular Equilibria

Lemma
In every irregular equilibrium, pt ≥ qt for every t ∈ N.

Proof: Suppose pt < qt for some t ∈ N.

• Recall the definition of irregular equilibria: Playing H in every period
is not type θl’s best reply to P2’s equilibrium strategy.

• There exists N ∈ N s.t. type θl has a strict incentive to play L at hN
H .

• By definition, qN = 0 so ∃ the largest t∗ ∈ N such that pt∗ < qt∗ .

• Type θl’s incentive at ht∗
H .

In equilibrium, he plays L with positive prob, after which his
continuation value is 0 (Why?).

If he plays H, then pt ≥ qt for every t > t∗.

When pt ≥ qt, pt + qt − pt+1 − qt+1 ≥ Q
2 in every period s.t. P2

doesn’t play T ⇒ at most 2
Q periods s.t. P2 doesn’t play T .
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Irregular Equilibria

Lemma

For any t ≥ 1, if pt ≥ qt but T is not P2’s strict best reply at ht
H , then:

pt + qt − pt+1 − qt+1 ≥
Q
2
.

Lemma
In every irregular equilibrium, pt ≥ qt for every t ∈ N.

Recall that

• qt ≡ Pr
(

player 1 is rational, θ = θl, and ht = ht
H

)
.

• pt ≡ Pr
(

player 1 is rational, θ = θh, and ht = ht
H

)
.

Irregular equilibria can only exist when p(θh) ≥ 1/2.

• When δ is close to 1, type θh’s payoff is at least 1 and type θl’s payoff
is at least 1− η.
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Regular Equilibrium

θ = θh T N
H 1, 1 −1, 0
L 2,−1 0, 0

θ = θl T N
H 1− η,−1 −1− φ, 0
L 2,−2 0, 0

Each {a1,t}t∈N induces a sequence of P2’s actions {α2,t}t∈N.

• This is similar to a 1-shot signalling game.

• When η, φ > 0, it is less costly to choose H when θ = θh.

Lemma
If playing H in every period is type θl’s best reply to P2’s equilibrium
strategy, then type θh plays H with probability 1 at every on-path history.

Does it follow from the Spence-Mirrlees theorem?

• No! Payoffs are not necessarily separable in the sender’s type.
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One-Shot Signalling Game

Why is the Spence-Mirrlees theorem not applicable?

high type h l
H 4, 4 2, 2
L 3, 3 1, 1

low type h l
H 1, 1 3, 3
L 2, 2 4, 4

What saves the day?

• A monotonicity condition: u1 increases in a2 and decreases in a1.

θ = θh T N
H 1, 1 −1, 0
L 2,−1 0, 0

θ = θl T N
H 1− η,−1 −1− φ, 0
L 2,−2 0, 0

• Liu and Pei (2020): If payoffs are MSM, and |A2| = 2, then the
sender’s equilibrium strategy must be non-decreasing in his type.

• The previous lemma is a direct corollary of the above theorem.
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Regular Equilibria

Lemma
If playing H in every period is type θl’s best reply to P2’s equilibrium
strategy, then type θh plays H with probability 1 at every on-path history.

Definition of regular equilibrium:

• Playing H in every period is type θl’s best reply to P2’s equilibrium
strategy.

Therefore, type θh plays H with prob 1 at every on-path history.

• Type θl’s continuation value after playing L is 0.
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Regular Equilibria

Lemma
If playing H in every period is type θl’s best reply to P2’s equilibrium
strategy, then type θh plays H with probability 1 at every on-path history.

θ = θh T N
H 1, 1 −1, 0
L 2,−1 0, 0

θ = θl T N
H 1− η,−1 −1− φ, 0
L 2,−2 0, 0

Type θh plays H with prob 1 at every on-path history. Type θl’s continuation
value after playing L is 0.

• If θh occurs with prob more than 1/2, then pt ≥ qt for every t ∈ N,

type θl’s payoff is at least 1− η by playing H in every period, so he has
no incentive to play L.

• Type θh’s equilibrium payoff is 1, type θl’s equilibrium payoff is 1− η.
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Regular Equilibria

Lemma
If playing H in every period is type θl’s best reply to P2’s equilibrium
strategy, then type θh plays H with probability 1 at every on-path history.

θ = θh T N
H 1, 1 −1, 0
L 2,−1 0, 0

θ = θl T N
H 1− η,−1 −1− φ, 0
L 2,−2 0, 0

Type θh plays H with prob 1 at every on-path history. Type θl’s continuation
value after playing L is 0.

• If θh occurs with prob less than 1/2 and the prob of commitment is
small, then P2 has no incentive to play T until type θl plays L with
positive prob.

• Type θl either plays L in period 0 or never plays L (Why?).

• Prob that type θl plays L in period 0 is such that after observing H in
period 0, P2 is indifferent in period 1.
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Why Equilibrium Behavior is Unique?

Private values, commitment type, and perfect monitoring:

• Li and Pei (2021): Lots of plausible behaviors.

Interdependent values, pessimistic belief, and commitment type:

• Unique behavioral prediction.

• Presence of commitment type: P1’s payoff is high by playing H in
every period. (also present under private values)

• Presence of interdependent values: P1’s payoff is low after playing L.
(missing under private values)
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What is hard about interdependent values?

1. What should be the right benchmark for high payoff?

• What happens in a repeated game without commitment type?
• I know the answer when payoffs are MSM.

2. How to exploit properties of players’ stage-game payoffs to study
repeated signaling games?

• a repeated supermodular game is not supermodular.

3. What happens to MSM games when commitment action is mixed?

• e.g., committed P1 plays H with prob 1− ε in every period.

4. Sustainability of reputation under interdependent values.

• Important assumption of CMS: P2 has a unique best reply to α∗1 .
• This is generically satisfied under private values.
• What about interdependent values?
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