Lecture 5: Reputation under Interdependent Values

Harry PEI Department of Economics, Northwestern University

Spring Quarter, 2021

Review

Lectures 1-4: Reputation models with two assumptions.

Example: Reputation Failure

- 1. Private values, i.e., uninformed player's payoff (more precisely, best reply) does not depend on the informed player's private info.
- 2. Uninformed players are myopic.

Relax These Assumptions (assume perfect monitoring)

Lecture 5: Pei (2020, 2021).

- Relax the private value assumption.
- Uninformed players are myopic.

Lectures 6-7: Schmidt (1993), Cripps and Thomas (1997), Chan (2000), Cripps, Dekel and Pesendorfer (2005), etc.

- The uninformed player is forward-looking.
- Private values.

Takeaways:

- Commitment payoff theorem applies only to special classes of games.
- Unclear what the commitment payoff is, results are not clean.
- Lots of open questions, lots of room for future research.

Monotone-Supermodular Games

Motivation

In many long-term relationships, economic agents

- build reputations for playing certain actions,
- persistent private info that affects their opponents' payoffs.

Reputation Builder	Opponents	Reputation	Private Info
incumbent firm	entrants	fight entrants	demand curve
seller	buyers	good service	durability/safety

Interaction between building reputations and signalling payoff relevant state

- 1. affect the value of reputations,
- 2. affect incentives to build reputations.

Model

Infinitely repeated game: t = 0, 1, 2, ...

- Long-lived player 1 (P1), discount factor $\delta \in (0, 1)$, vs an infinite sequence of short-lived player 2s (P2).
- Players' actions: $a_1 \in A_1$ and $a_2 \in A_2$.

P1 has *perfectly persistent* private info about two aspects:

- 1. State $\theta \in \Theta$. Stage game payoffs: $u_1(\theta, a_1, a_2), u_2(\theta, a_1, a_2)$.
- 2. *Either* rational: maximizes $\sum_{t=0}^{+\infty} (1 \delta) \delta^t u_1(\theta, a_{1,t}, a_{2,t})$. *Or* committed: follows some commitment plan $\gamma : \Theta \to A_1$.

Or committed: follows some commitment plan $\gamma:\Theta\to A_1$

Plays the same action in every period.

The set of possible commitment plans: Γ .

Model

P2's prior
$$\mu \in \Delta\Big(\Theta \times (\Gamma \cup \{\gamma^*\})\Big)$$
.

P2's history in period t: $\{a_{1,s}, a_{2,s}\}_{s < t}$.

• Today: P2 only observes P1's past actions.

 μ has full support. Θ , A_1 , and A_2 are finite.

Example: Reputation Failure under Common Interests

$\theta = \theta_1$	h	l
H	1,1	0,0
L	0,0	ϵ, ϵ

$\theta = \theta_2$	h	l
Н	0,0	ϵ, ϵ
L	1, 1	0,0

One commitment plan: H in state θ_1 and L in state θ_2 .

- $\epsilon \in (0,1)$,
- distribution of two dimensions of private info are independent.

When the prob that P1 is committed is small enough, there exist equilibria in which P1's payoff is ϵ in both states regardless of δ .

- Player 2 plays *l* at every history.
- Rational P1 plays L in state θ_1 , and plays H in state θ_2 .

Example: Reputation Failure under Common Interests

$\theta = \theta_1$	h	l
Н	1,1	0,0
L	0,0	ϵ, ϵ

$\theta = \theta_2$	h	l
H	0,0	ϵ,ϵ
L	1,1	0,0
	· ·	

Low payoff equilibria exist despite:

- 1. Players have common interests.
- 2. Conditional on {P1 is committed and plays H}, θ_1 occurs with prob 1.
- 3. Applies to all full support distributions of θ .

What goes wrong:

- P2s believe that rational P1 is more likely to play H when $\theta = \theta_2$.
- P1 faces a tradeoff between playing H and signalling $\theta = \theta_1$.

P1 faces a tradeoff between playing L and signalling $\theta = \theta_2$.

General Negative Result

If no restrictions are made on u_1 and the prob of commitment is small,

• then for every u_2 , we can find u_1 under which there exists equilibrium s.t. P1's payoff is less than his complete info commitment payoff.

Pei (2021): When commitment action is mixed, guaranteeing commitment payoff in all equilibria becomes harder.

Monotone Supermodular Games with $|A_2| = 2$

Assumption: Monotone-Supermodularity (MSM)

There exist a ranking on Θ , a ranking on A_1 , and a ranking on A_2 ,

- 1. $u_1(\theta, a_1, a_2)$ is strictly decreasing in a_1 , and is strictly increasing in a_2 .
- 2. $u_1(\theta, a_1, a_2)$ has strictly increasing differences in θ and (a_1, a_2) .
- 3. $u_2(\theta, a_1, a_2)$ has strictly increasing differences in a_2 and (θ, a_1) .

Let $\overline{a}_i \equiv \max A_i$ and $\underline{a}_i \equiv \min A_i$. By definition, $A_2 = \{\overline{a}_2, \underline{a}_2\}$. Let

- $\Theta^* \equiv \left\{ \theta \in \Theta \middle| u_1(\theta, \overline{a}_1, \overline{a}_2) > u_1(\theta, \underline{a}_1, \underline{a}_2) \right\}$
- $\mu(\overline{a}_1)$: prob of the event that P1 is committed and plays \overline{a}_1 .
- $\phi_{\overline{a}_1} \in \Delta(\Theta)$: state distribution conditional on the above event.
- $\mu(\theta)$: prob of the event that P1 is rational and the state is θ .

Result in Pei (2020)

Let $D(\theta) \equiv u_2(\theta, \overline{a}_1, \overline{a}_2) - u_2(\theta, \overline{a}_1, a_2)$.

Example: Reputation Failure

Theorem

Suppose payoffs are MSM, $|A_2| = 2$, and $\sum_{\theta \in \Theta} \mu(\overline{a}_1) \phi_{\overline{a}_1}(\theta) D(\theta) > 0$.

- 1. If $\sum_{\theta \in \Theta} \mu(\overline{a}_1) \phi_{\overline{a}_1}(\theta) D(\theta) + \sum_{\theta \in \Theta^*} \mu(\theta) D(\theta) > 0$, then as $\delta \to 1$, P1's payoff in state θ is at least $\max\{u_1(\theta, \overline{a}_1, \overline{a}_2), u_1(\theta, a_1, a_2)\}$.
- 2. If $\sum_{\theta \in \Theta} \mu(\overline{a}_1) \phi_{\overline{a}_1}(\theta) D(\theta) + \sum_{\theta \in \Theta^*} \mu(\theta) D(\theta) \leq 0$, then there exists $\theta^* \in \Theta^*$ such that in every equilibrium when δ is large enough,
 - P1's payoff in state $\theta \leq \theta^*$ is $u_1(\theta, \underline{a}_1, \underline{a}_2)$.
 - P1's payoff in state $\theta > \theta^*$ is $ru_1(\theta, \overline{a}_1, \overline{a}_2) + (1 r)u_1(\theta, \overline{a}_1, a_2)$ where $r \in [0, 1]$ is pinned down by:

$$ru_1(\theta^*, \overline{a}_1, \overline{a}_2) + (1-r)u_1(\theta^*, \overline{a}_1, a_2) = u_1(\theta^*, a_1, a_2).$$

• Rational P1 plays \overline{a}_1 in every period when $\theta > \theta^*$, plays a_1 in every period when $\theta < \theta^*$, and mixes between playing \overline{a}_1 in every period and playing \underline{a}_1 in every period when $\theta = \theta^*$.

Interpretation

If
$$\sum_{\theta \in \Theta} \mu(\overline{a}_1) \phi_{\overline{a}_1}(\theta) D(\theta) + \sum_{\theta \in \Theta^*} \mu(\theta) D(\theta) > 0$$
, then

Example: Reputation Failure

• lower bound on P1's payoff, no robust prediction on P1's behavior.

If
$$\sum_{\theta \in \Theta} \mu(\overline{a}_1) \phi_{\overline{a}_1}(\theta) D(\theta) + \sum_{\theta \in \Theta^*} \mu(\theta) D(\theta) \leq 0$$
, then

- unique equilibrium payoff and unique on-path behavior.
- stands in contrast to the private value benchmark.

Important things to understand:

- 1. Where are these payoffs coming from?
- 2. Where are the conditions on the state distribution coming from?
- 3. Why are the restrictions on stage-game payoff not redundant?

Example: Product Choice Game

$\theta = \theta_h$	T	N
Н	1,1	-1,0
L	2, -1	0,0

$\theta = \theta_l$	T	N
H	$1 - \eta, -1$	$-1 - \phi, 0$
L	2, -2	0,0

One commitment plan $\Gamma = \{\gamma\}$, with

$$\gamma(\theta) \equiv \begin{cases}
H & \text{if } \theta = \theta_h \\
L & \text{if } \theta = \theta_l.
\end{cases}$$

Whether P1 is committed or rational is independent of θ .

Stage-game payoffs satisfy MSM if $\eta \in (0, 1)$ and $\phi > 0$.

- 1. If the prob of θ_h is greater than 1/2, then P1's payoff in state θ_h is at least 1 and his payoff in state θ_l is at least 1η .
- 2. If the prob of θ_h is less than 1/2 and the prob of commitment is small, then when δ is large enough, P1's payoff in state θ_h is $\frac{\phi+\eta}{2+\phi-\eta}$ and his payoff in state θ_l is 0.

Reputation as Equilibrium Selection

Patient P1's equilibrium payoff set (in green) in the benchmark repeated incomplete information game s.t. P1 is rational for sure.

Proof: Partition the set of equilibria

Example: Reputation Failure

$\theta = \theta_h$	T	N
Н	1, 1	-1,0
L	2, -1	0,0

$\theta = \theta_l$	T	N
H	$1 - \eta, -1$	$-1 - \phi, 0$
L	2, -2	0,0

Partition the set of equilibria into two subsets:

- Regular equilibria: Playing H in every period is type θ_l 's best reply to P2's equilibrium strategy.
- Irregular equilibria: Playing H in every period is not type θ_l 's best reply to P2's equilibrium strategy.

Irregular Equilibria

Let h_H^t be the period t history s.t. P1 has played H from 0 to t-1.

• $q_t \equiv \Pr \left(\text{player 1 is rational}, \theta = \theta_l, \text{ and } h^t = h_H^t \right)$.

Example: Reputation Failure

• $p_t \equiv \Pr \left(\text{player 1 is rational}, \theta = \theta_h, \text{ and } h^t = h_H^t \right)$.

Lemma

For any $t \ge 1$, if $p_t \ge q_t$ but T is not P2's strict best reply at h_H^t , then:

$$(p_t+q_t)-(p_{t+1}+q_{t+1}) \ge \frac{1}{2} \underbrace{\Pr(P1 \text{ is committed and plays } H \text{ in every period})}_{\equiv Q}$$

Proof: Suppose $t \ge 1$ and T is not a strict best reply at h_H^t , then

$$Q + p_{t+1} - (p_t - p_{t+1}) - q_{t+1} - 2(q_t - q_{t+1}) \le 0,$$

$$Q \le Q + p_{t+1} - q_{t+1} + (p_t - p_{t+1}) \le 2(q_t - q_{t+1}) + 2(p_t - p_{t+1})$$

Irregular Equilibria

Lemma

In every irregular equilibrium, $p_t \geq q_t$ for every $t \in \mathbb{N}$.

Example: Reputation Failure

Proof: Suppose $p_t < q_t$ for some $t \in \mathbb{N}$.

- Recall the definition of irregular equilibria: Playing H in every period is *not* type θ_l 's best reply to P2's equilibrium strategy.
- There exists $N \in \mathbb{N}$ s.t. type θ_l has a strict incentive to play L at h_H^N .
- By definition, $q_N = 0$ so \exists the largest $t^* \in \mathbb{N}$ such that $p_{t^*} < q_{t^*}$.
- Type θ_l 's incentive at $h_H^{t^*}$.

In equilibrium, he plays L with positive prob, after which his continuation value is 0 (Why?).

If he plays H, then $p_t > q_t$ for every $t > t^*$.

When $p_t \ge q_t$, $p_t + q_t - p_{t+1} - q_{t+1} \ge \frac{Q}{2}$ in every period s.t. P2 doesn't play $T \Rightarrow$ at most $\frac{2}{Q}$ periods s.t. P2 doesn't play T.

Monotone-Supermodular Games

Irregular Equilibria

Lemma

For any $t \ge 1$, if $p_t \ge q_t$ but T is not P2's strict best reply at h_H^t , then:

$$p_t + q_t - p_{t+1} - q_{t+1} \ge \frac{Q}{2}.$$

Lemma

In every irregular equilibrium, $p_t \ge q_t$ *for every* $t \in \mathbb{N}$ *.*

Recall that

- $q_t \equiv \Pr \left(\text{player 1 is rational}, \theta = \theta_l, \text{ and } h^t = h_H^t \right)$.
- $p_t \equiv \Pr \left(\text{player 1 is rational}, \theta = \theta_h, \text{ and } h^t = h_H^t \right)$.

Irregular equilibria can only exist when $p(\theta_h) \ge 1/2$.

• When δ is close to 1, type θ_h 's payoff is at least 1 and type θ_l 's payoff is at least $1 - \eta$.

Regular Equilibrium

$\theta = \theta_h$	T	N
H	1, 1	-1,0
L	2, -1	0,0

$\theta = \theta_l$	T	N
Н	$1 - \eta, -1$	$-1 - \phi, 0$
L	2, -2	0,0

Each $\{a_{1,t}\}_{t\in\mathbb{N}}$ induces a sequence of P2's actions $\{\alpha_{2,t}\}_{t\in\mathbb{N}}$.

Example: Reputation Failure

- This is similar to a 1-shot signalling game.
- When $\eta, \phi > 0$, it is less costly to choose H when $\theta = \theta_h$.

Lemma

If playing H in every period is type θ_l 's best reply to P2's equilibrium strategy, then type θ_h plays H with probability 1 at every on-path history.

Does it follow from the Spence-Mirrlees theorem?

• No! Payoffs are not necessarily separable in the sender's type.

One-Shot Signalling Game

Why is the Spence-Mirrlees theorem not applicable?

high type	h	1
Н	4,4	2,2
L	3,3	1,1

low type	h	1
Н	1,1	3,3
L	2,2	4,4

What saves the day?

• A monotonicity condition: u_1 increases in a_2 and decreases in a_1 .

$\theta = \theta_h$	T	N
Н	1,1	-1,0
L	2, -1	0,0

$\theta = \theta_l$	T	N
Н	$1-\eta,-1$	$-1 - \phi, 0$
L	2, -2	0,0

- Liu and Pei (2020): If payoffs are MSM, and $|A_2| = 2$, then the sender's equilibrium strategy must be non-decreasing in his type.
- The previous lemma is a direct corollary of the above theorem.

Regular Equilibria

Lemma

If playing H in every period is type θ_l 's best reply to P2's equilibrium strategy, then type θ_h plays H with probability 1 at every on-path history.

Definition of regular equilibrium:

• Playing H in every period is type θ_l 's best reply to P2's equilibrium strategy.

Therefore, type θ_h plays H with prob 1 at every on-path history.

• Type θ_l 's continuation value after playing L is 0.

Example: Reputation Failure

Regular Equilibria

Lemma

If playing H in every period is type θ_l 's best reply to P2's equilibrium strategy, then type θ_h plays H with probability 1 at every on-path history.

$\theta = \theta_h$	T	N
H	1,1	-1,0
L	2, -1	0,0

$\theta = \theta_l$	T	N
H	$1 - \eta, -1$	$-1 - \phi, 0$
L	2, -2	0,0

Type θ_h plays H with prob 1 at every on-path history. Type θ_l 's continuation value after playing L is 0.

- If θ_h occurs with prob more than 1/2, then p_t ≥ q_t for every t ∈ N,
 type θ_t's payoff is at least 1 − η by playing H in every period, so he has no incentive to play L.
- Type θ_h 's equilibrium payoff is 1, type θ_l 's equilibrium payoff is 1η .

Regular Equilibria

Lemma

If playing H in every period is type θ_l 's best reply to P2's equilibrium strategy, then type θ_h plays H with probability 1 at every on-path history.

$\theta = \theta_h$	T	N
Н	1,1	-1,0
L	2, -1	0,0

$\theta = \theta_l$	T	N
Н	$1 - \eta, -1$	$-1 - \phi, 0$
L	2, -2	0,0

Type θ_h plays H with prob 1 at every on-path history. Type θ_l 's continuation value after playing L is 0.

- If θ_h occurs with prob less than 1/2 and the prob of commitment is small, then P2 has no incentive to play T until type θ_l plays L with positive prob.
- Type θ_l either plays L in period 0 or never plays L (**Why?**).
- Prob that type θ_l plays L in period 0 is such that after observing H in period 0, P2 is indifferent in period 1.

Why Equilibrium Behavior is Unique?

Private values, commitment type, and perfect monitoring:

Example: Reputation Failure

• Li and Pei (2021): Lots of plausible behaviors.

Interdependent values, pessimistic belief, and commitment type:

- Unique behavioral prediction.
- Presence of commitment type: P1's payoff is high by playing H in every period. (also present under private values)
- Presence of interdependent values: P1's payoff is low after playing L. (missing under private values)

What is hard about interdependent values?

- 1. What should be the right benchmark for high payoff?
 - What happens in a repeated game without commitment type?
 - I know the answer when payoffs are MSM.
- 2. How to exploit properties of players' stage-game payoffs to study repeated signaling games?
 - a repeated supermodular game is not supermodular.
- 3. What happens to MSM games when commitment action is mixed?
 - e.g., committed P1 plays H with prob 1ε in every period.
- 4. Sustainability of reputation under interdependent values.
 - Important assumption of CMS: P2 has a unique best reply to α_1^* .
 - This is generically satisfied under private values.
 - What about interdependent values?